/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_SCOPED_ARENA_CONTAINERS_H_ #define ART_RUNTIME_BASE_SCOPED_ARENA_CONTAINERS_H_ #include <deque> #include <queue> #include <set> #include <type_traits> #include <unordered_map> #include <utility> #include "arena_containers.h" // For ArenaAllocatorAdapterKind. #include "base/dchecked_vector.h" #include "scoped_arena_allocator.h" #include "safe_map.h" namespace art { // Adapter for use of ScopedArenaAllocator in STL containers. // Use ScopedArenaAllocator::Adapter() to create an adapter to pass to container constructors. // For example, // void foo(ScopedArenaAllocator* allocator) { // ScopedArenaVector<int> foo_vector(allocator->Adapter(kArenaAllocMisc)); // ScopedArenaSafeMap<int, int> foo_map(std::less<int>(), allocator->Adapter()); // // Use foo_vector and foo_map... // } template <typename T> class ScopedArenaAllocatorAdapter; template <typename T> using ScopedArenaDeque = std::deque<T, ScopedArenaAllocatorAdapter<T>>; template <typename T> using ScopedArenaQueue = std::queue<T, ScopedArenaDeque<T>>; template <typename T> using ScopedArenaVector = dchecked_vector<T, ScopedArenaAllocatorAdapter<T>>; template <typename T, typename Comparator = std::less<T>> using ScopedArenaSet = std::set<T, Comparator, ScopedArenaAllocatorAdapter<T>>; template <typename K, typename V, typename Comparator = std::less<K>> using ScopedArenaSafeMap = SafeMap<K, V, Comparator, ScopedArenaAllocatorAdapter<std::pair<const K, V>>>; template <typename K, typename V, class Hash = std::hash<K>, class KeyEqual = std::equal_to<K>> using ScopedArenaUnorderedMap = std::unordered_map<K, V, Hash, KeyEqual, ScopedArenaAllocatorAdapter<std::pair<const K, V>>>; // Implementation details below. template <> class ScopedArenaAllocatorAdapter<void> : private DebugStackReference, private DebugStackIndirectTopRef, private ArenaAllocatorAdapterKind { public: typedef void value_type; typedef void* pointer; typedef const void* const_pointer; template <typename U> struct rebind { typedef ScopedArenaAllocatorAdapter<U> other; }; explicit ScopedArenaAllocatorAdapter(ScopedArenaAllocator* arena_allocator, ArenaAllocKind kind = kArenaAllocSTL) : DebugStackReference(arena_allocator), DebugStackIndirectTopRef(arena_allocator), ArenaAllocatorAdapterKind(kind), arena_stack_(arena_allocator->arena_stack_) { } template <typename U> ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter<U>& other) : DebugStackReference(other), DebugStackIndirectTopRef(other), ArenaAllocatorAdapterKind(other), arena_stack_(other.arena_stack_) { } ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter&) = default; ScopedArenaAllocatorAdapter& operator=(const ScopedArenaAllocatorAdapter&) = default; ~ScopedArenaAllocatorAdapter() = default; private: ArenaStack* arena_stack_; template <typename U> friend class ScopedArenaAllocatorAdapter; }; template <typename T> class ScopedArenaAllocatorAdapter : private DebugStackReference, private DebugStackIndirectTopRef, private ArenaAllocatorAdapterKind { public: typedef T value_type; typedef T* pointer; typedef T& reference; typedef const T* const_pointer; typedef const T& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; template <typename U> struct rebind { typedef ScopedArenaAllocatorAdapter<U> other; }; explicit ScopedArenaAllocatorAdapter(ScopedArenaAllocator* arena_allocator, ArenaAllocKind kind = kArenaAllocSTL) : DebugStackReference(arena_allocator), DebugStackIndirectTopRef(arena_allocator), ArenaAllocatorAdapterKind(kind), arena_stack_(arena_allocator->arena_stack_) { } template <typename U> ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter<U>& other) : DebugStackReference(other), DebugStackIndirectTopRef(other), ArenaAllocatorAdapterKind(other), arena_stack_(other.arena_stack_) { } ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter&) = default; ScopedArenaAllocatorAdapter& operator=(const ScopedArenaAllocatorAdapter&) = default; ~ScopedArenaAllocatorAdapter() = default; size_type max_size() const { return static_cast<size_type>(-1) / sizeof(T); } pointer address(reference x) const { return &x; } const_pointer address(const_reference x) const { return &x; } pointer allocate(size_type n, ScopedArenaAllocatorAdapter<void>::pointer hint ATTRIBUTE_UNUSED = nullptr) { DCHECK_LE(n, max_size()); DebugStackIndirectTopRef::CheckTop(); return reinterpret_cast<T*>(arena_stack_->Alloc(n * sizeof(T), ArenaAllocatorAdapterKind::Kind())); } void deallocate(pointer p, size_type n) { DebugStackIndirectTopRef::CheckTop(); arena_stack_->MakeInaccessible(p, sizeof(T) * n); } template <typename U, typename... Args> void construct(U* p, Args&&... args) { // Don't CheckTop(), allow reusing existing capacity of a vector/deque below the top. ::new (static_cast<void*>(p)) U(std::forward<Args>(args)...); } template <typename U> void destroy(U* p) { // Don't CheckTop(), allow reusing existing capacity of a vector/deque below the top. p->~U(); } private: ArenaStack* arena_stack_; template <typename U> friend class ScopedArenaAllocatorAdapter; template <typename U> friend bool operator==(const ScopedArenaAllocatorAdapter<U>& lhs, const ScopedArenaAllocatorAdapter<U>& rhs); }; template <typename T> inline bool operator==(const ScopedArenaAllocatorAdapter<T>& lhs, const ScopedArenaAllocatorAdapter<T>& rhs) { return lhs.arena_stack_ == rhs.arena_stack_; } template <typename T> inline bool operator!=(const ScopedArenaAllocatorAdapter<T>& lhs, const ScopedArenaAllocatorAdapter<T>& rhs) { return !(lhs == rhs); } inline ScopedArenaAllocatorAdapter<void> ScopedArenaAllocator::Adapter(ArenaAllocKind kind) { return ScopedArenaAllocatorAdapter<void>(this, kind); } // Special deleter that only calls the destructor. Also checks for double free errors. template <typename T> class ArenaDelete { static constexpr uint8_t kMagicFill = 0xCE; protected: // Used for variable sized objects such as RegisterLine. ALWAYS_INLINE void ProtectMemory(T* ptr, size_t size) const { if (RUNNING_ON_MEMORY_TOOL > 0) { // Writing to the memory will fail ift we already destroyed the pointer with // DestroyOnlyDelete since we make it no access. memset(ptr, kMagicFill, size); MEMORY_TOOL_MAKE_NOACCESS(ptr, size); } else if (kIsDebugBuild) { CHECK(ArenaStack::ArenaTagForAllocation(reinterpret_cast<void*>(ptr)) == ArenaFreeTag::kUsed) << "Freeing invalid object " << ptr; ArenaStack::ArenaTagForAllocation(reinterpret_cast<void*>(ptr)) = ArenaFreeTag::kFree; // Write a magic value to try and catch use after free error. memset(ptr, kMagicFill, size); } } public: void operator()(T* ptr) const { if (ptr != nullptr) { ptr->~T(); ProtectMemory(ptr, sizeof(T)); } } }; // In general we lack support for arrays. We would need to call the destructor on each element, // which requires access to the array size. Support for that is future work. // // However, we can support trivially destructible component types, as then a destructor doesn't // need to be called. template <typename T> class ArenaDelete<T[]> { public: void operator()(T* ptr ATTRIBUTE_UNUSED) const { static_assert(std::is_trivially_destructible<T>::value, "ArenaUniquePtr does not support non-trivially-destructible arrays."); // TODO: Implement debug checks, and MEMORY_TOOL support. } }; // Arena unique ptr that only calls the destructor of the element. template <typename T> using ArenaUniquePtr = std::unique_ptr<T, ArenaDelete<T>>; } // namespace art #endif // ART_RUNTIME_BASE_SCOPED_ARENA_CONTAINERS_H_