/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <unistd.h>
#include "fs_mgr_priv.h"
struct fs_mgr_flag_values {
char *key_loc;
char *verity_loc;
long long part_length;
char *label;
int partnum;
int swap_prio;
unsigned int zram_size;
};
struct flag_list {
const char *name;
unsigned flag;
};
static struct flag_list mount_flags[] = {
{ "noatime", MS_NOATIME },
{ "noexec", MS_NOEXEC },
{ "nosuid", MS_NOSUID },
{ "nodev", MS_NODEV },
{ "nodiratime", MS_NODIRATIME },
{ "ro", MS_RDONLY },
{ "rw", 0 },
{ "remount", MS_REMOUNT },
{ "bind", MS_BIND },
{ "rec", MS_REC },
{ "unbindable", MS_UNBINDABLE },
{ "private", MS_PRIVATE },
{ "slave", MS_SLAVE },
{ "shared", MS_SHARED },
{ "defaults", 0 },
{ 0, 0 },
};
static struct flag_list fs_mgr_flags[] = {
{ "wait", MF_WAIT },
{ "check", MF_CHECK },
{ "encryptable=",MF_CRYPT },
{ "forceencrypt=",MF_FORCECRYPT },
{ "fileencryption",MF_FILEENCRYPTION },
{ "forcefdeorfbe=",MF_FORCEFDEORFBE },
{ "nonremovable",MF_NONREMOVABLE },
{ "voldmanaged=",MF_VOLDMANAGED},
{ "length=", MF_LENGTH },
{ "recoveryonly",MF_RECOVERYONLY },
{ "swapprio=", MF_SWAPPRIO },
{ "zramsize=", MF_ZRAMSIZE },
{ "verify", MF_VERIFY },
{ "noemulatedsd", MF_NOEMULATEDSD },
{ "notrim", MF_NOTRIM },
{ "formattable", MF_FORMATTABLE },
{ "slotselect", MF_SLOTSELECT },
{ "nofail", MF_NOFAIL },
{ "defaults", 0 },
{ 0, 0 },
};
static uint64_t calculate_zram_size(unsigned int percentage)
{
uint64_t total;
total = sysconf(_SC_PHYS_PAGES);
total *= percentage;
total /= 100;
total *= sysconf(_SC_PAGESIZE);
return total;
}
static int parse_flags(char *flags, struct flag_list *fl,
struct fs_mgr_flag_values *flag_vals,
char *fs_options, int fs_options_len)
{
int f = 0;
int i;
char *p;
char *savep;
/* initialize flag values. If we find a relevant flag, we'll
* update the value */
if (flag_vals) {
memset(flag_vals, 0, sizeof(*flag_vals));
flag_vals->partnum = -1;
flag_vals->swap_prio = -1; /* negative means it wasn't specified. */
}
/* initialize fs_options to the null string */
if (fs_options && (fs_options_len > 0)) {
fs_options[0] = '\0';
}
p = strtok_r(flags, ",", &savep);
while (p) {
/* Look for the flag "p" in the flag list "fl"
* If not found, the loop exits with fl[i].name being null.
*/
for (i = 0; fl[i].name; i++) {
if (!strncmp(p, fl[i].name, strlen(fl[i].name))) {
f |= fl[i].flag;
if ((fl[i].flag == MF_CRYPT) && flag_vals) {
/* The encryptable flag is followed by an = and the
* location of the keys. Get it and return it.
*/
flag_vals->key_loc = strdup(strchr(p, '=') + 1);
} else if ((fl[i].flag == MF_VERIFY) && flag_vals) {
/* If the verify flag is followed by an = and the
* location for the verity state, get it and return it.
*/
char *start = strchr(p, '=');
if (start) {
flag_vals->verity_loc = strdup(start + 1);
}
} else if ((fl[i].flag == MF_FORCECRYPT) && flag_vals) {
/* The forceencrypt flag is followed by an = and the
* location of the keys. Get it and return it.
*/
flag_vals->key_loc = strdup(strchr(p, '=') + 1);
} else if ((fl[i].flag == MF_FORCEFDEORFBE) && flag_vals) {
/* The forcefdeorfbe flag is followed by an = and the
* location of the keys. Get it and return it.
*/
flag_vals->key_loc = strdup(strchr(p, '=') + 1);
} else if ((fl[i].flag == MF_LENGTH) && flag_vals) {
/* The length flag is followed by an = and the
* size of the partition. Get it and return it.
*/
flag_vals->part_length = strtoll(strchr(p, '=') + 1, NULL, 0);
} else if ((fl[i].flag == MF_VOLDMANAGED) && flag_vals) {
/* The voldmanaged flag is followed by an = and the
* label, a colon and the partition number or the
* word "auto", e.g.
* voldmanaged=sdcard:3
* Get and return them.
*/
char *label_start;
char *label_end;
char *part_start;
label_start = strchr(p, '=') + 1;
label_end = strchr(p, ':');
if (label_end) {
flag_vals->label = strndup(label_start,
(int) (label_end - label_start));
part_start = strchr(p, ':') + 1;
if (!strcmp(part_start, "auto")) {
flag_vals->partnum = -1;
} else {
flag_vals->partnum = strtol(part_start, NULL, 0);
}
} else {
ERROR("Warning: voldmanaged= flag malformed\n");
}
} else if ((fl[i].flag == MF_SWAPPRIO) && flag_vals) {
flag_vals->swap_prio = strtoll(strchr(p, '=') + 1, NULL, 0);
} else if ((fl[i].flag == MF_ZRAMSIZE) && flag_vals) {
int is_percent = !!strrchr(p, '%');
unsigned int val = strtoll(strchr(p, '=') + 1, NULL, 0);
if (is_percent)
flag_vals->zram_size = calculate_zram_size(val);
else
flag_vals->zram_size = val;
}
break;
}
}
if (!fl[i].name) {
if (fs_options) {
/* It's not a known flag, so it must be a filesystem specific
* option. Add it to fs_options if it was passed in.
*/
strlcat(fs_options, p, fs_options_len);
strlcat(fs_options, ",", fs_options_len);
} else {
/* fs_options was not passed in, so if the flag is unknown
* it's an error.
*/
ERROR("Warning: unknown flag %s\n", p);
}
}
p = strtok_r(NULL, ",", &savep);
}
if (fs_options && fs_options[0]) {
/* remove the last trailing comma from the list of options */
fs_options[strlen(fs_options) - 1] = '\0';
}
return f;
}
struct fstab *fs_mgr_read_fstab(const char *fstab_path)
{
FILE *fstab_file;
int cnt, entries;
ssize_t len;
size_t alloc_len = 0;
char *line = NULL;
const char *delim = " \t";
char *save_ptr, *p;
struct fstab *fstab = NULL;
struct fs_mgr_flag_values flag_vals;
#define FS_OPTIONS_LEN 1024
char tmp_fs_options[FS_OPTIONS_LEN];
fstab_file = fopen(fstab_path, "r");
if (!fstab_file) {
ERROR("Cannot open file %s\n", fstab_path);
return 0;
}
entries = 0;
while ((len = getline(&line, &alloc_len, fstab_file)) != -1) {
/* if the last character is a newline, shorten the string by 1 byte */
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
}
/* Skip any leading whitespace */
p = line;
while (isspace(*p)) {
p++;
}
/* ignore comments or empty lines */
if (*p == '#' || *p == '\0')
continue;
entries++;
}
if (!entries) {
ERROR("No entries found in fstab\n");
goto err;
}
/* Allocate and init the fstab structure */
fstab = calloc(1, sizeof(struct fstab));
fstab->num_entries = entries;
fstab->fstab_filename = strdup(fstab_path);
fstab->recs = calloc(fstab->num_entries, sizeof(struct fstab_rec));
fseek(fstab_file, 0, SEEK_SET);
cnt = 0;
while ((len = getline(&line, &alloc_len, fstab_file)) != -1) {
/* if the last character is a newline, shorten the string by 1 byte */
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
}
/* Skip any leading whitespace */
p = line;
while (isspace(*p)) {
p++;
}
/* ignore comments or empty lines */
if (*p == '#' || *p == '\0')
continue;
/* If a non-comment entry is greater than the size we allocated, give an
* error and quit. This can happen in the unlikely case the file changes
* between the two reads.
*/
if (cnt >= entries) {
ERROR("Tried to process more entries than counted\n");
break;
}
if (!(p = strtok_r(line, delim, &save_ptr))) {
ERROR("Error parsing mount source\n");
goto err;
}
fstab->recs[cnt].blk_device = strdup(p);
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing mount_point\n");
goto err;
}
fstab->recs[cnt].mount_point = strdup(p);
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing fs_type\n");
goto err;
}
fstab->recs[cnt].fs_type = strdup(p);
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing mount_flags\n");
goto err;
}
tmp_fs_options[0] = '\0';
fstab->recs[cnt].flags = parse_flags(p, mount_flags, NULL,
tmp_fs_options, FS_OPTIONS_LEN);
/* fs_options are optional */
if (tmp_fs_options[0]) {
fstab->recs[cnt].fs_options = strdup(tmp_fs_options);
} else {
fstab->recs[cnt].fs_options = NULL;
}
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing fs_mgr_options\n");
goto err;
}
fstab->recs[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags,
&flag_vals, NULL, 0);
fstab->recs[cnt].key_loc = flag_vals.key_loc;
fstab->recs[cnt].verity_loc = flag_vals.verity_loc;
fstab->recs[cnt].length = flag_vals.part_length;
fstab->recs[cnt].label = flag_vals.label;
fstab->recs[cnt].partnum = flag_vals.partnum;
fstab->recs[cnt].swap_prio = flag_vals.swap_prio;
fstab->recs[cnt].zram_size = flag_vals.zram_size;
cnt++;
}
/* If an A/B partition, modify block device to be the real block device */
if (fs_mgr_update_for_slotselect(fstab) != 0) {
ERROR("Error updating for slotselect\n");
goto err;
}
fclose(fstab_file);
free(line);
return fstab;
err:
fclose(fstab_file);
free(line);
if (fstab)
fs_mgr_free_fstab(fstab);
return NULL;
}
void fs_mgr_free_fstab(struct fstab *fstab)
{
int i;
if (!fstab) {
return;
}
for (i = 0; i < fstab->num_entries; i++) {
/* Free the pointers return by strdup(3) */
free(fstab->recs[i].blk_device);
free(fstab->recs[i].mount_point);
free(fstab->recs[i].fs_type);
free(fstab->recs[i].fs_options);
free(fstab->recs[i].key_loc);
free(fstab->recs[i].label);
}
/* Free the fstab_recs array created by calloc(3) */
free(fstab->recs);
/* Free the fstab filename */
free(fstab->fstab_filename);
/* Free fstab */
free(fstab);
}
/* Add an entry to the fstab, and return 0 on success or -1 on error */
int fs_mgr_add_entry(struct fstab *fstab,
const char *mount_point, const char *fs_type,
const char *blk_device)
{
struct fstab_rec *new_fstab_recs;
int n = fstab->num_entries;
new_fstab_recs = (struct fstab_rec *)
realloc(fstab->recs, sizeof(struct fstab_rec) * (n + 1));
if (!new_fstab_recs) {
return -1;
}
/* A new entry was added, so initialize it */
memset(&new_fstab_recs[n], 0, sizeof(struct fstab_rec));
new_fstab_recs[n].mount_point = strdup(mount_point);
new_fstab_recs[n].fs_type = strdup(fs_type);
new_fstab_recs[n].blk_device = strdup(blk_device);
new_fstab_recs[n].length = 0;
/* Update the fstab struct */
fstab->recs = new_fstab_recs;
fstab->num_entries++;
return 0;
}
/*
* Returns the 1st matching fstab_rec that follows the start_rec.
* start_rec is the result of a previous search or NULL.
*/
struct fstab_rec *fs_mgr_get_entry_for_mount_point_after(struct fstab_rec *start_rec, struct fstab *fstab, const char *path)
{
int i;
if (!fstab) {
return NULL;
}
if (start_rec) {
for (i = 0; i < fstab->num_entries; i++) {
if (&fstab->recs[i] == start_rec) {
i++;
break;
}
}
} else {
i = 0;
}
for (; i < fstab->num_entries; i++) {
int len = strlen(fstab->recs[i].mount_point);
if (strncmp(path, fstab->recs[i].mount_point, len) == 0 &&
(path[len] == '\0' || path[len] == '/')) {
return &fstab->recs[i];
}
}
return NULL;
}
/*
* Returns the 1st matching mount point.
* There might be more. To look for others, use fs_mgr_get_entry_for_mount_point_after()
* and give the fstab_rec from the previous search.
*/
struct fstab_rec *fs_mgr_get_entry_for_mount_point(struct fstab *fstab, const char *path)
{
return fs_mgr_get_entry_for_mount_point_after(NULL, fstab, path);
}
int fs_mgr_is_voldmanaged(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_VOLDMANAGED;
}
int fs_mgr_is_nonremovable(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_NONREMOVABLE;
}
int fs_mgr_is_verified(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_VERIFY;
}
int fs_mgr_is_encryptable(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & (MF_CRYPT | MF_FORCECRYPT | MF_FORCEFDEORFBE);
}
int fs_mgr_is_file_encrypted(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_FILEENCRYPTION;
}
int fs_mgr_is_convertible_to_fbe(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_FORCEFDEORFBE;
}
int fs_mgr_is_noemulatedsd(const struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_NOEMULATEDSD;
}
int fs_mgr_is_notrim(struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_NOTRIM;
}
int fs_mgr_is_formattable(struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & (MF_FORMATTABLE);
}
int fs_mgr_is_slotselect(struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_SLOTSELECT;
}
int fs_mgr_is_nofail(struct fstab_rec *fstab)
{
return fstab->fs_mgr_flags & MF_NOFAIL;
}