/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
// This file implements the fastboot UDP protocol; see fastboot_protocol.txt for documentation.
#include "udp.h"
#include <errno.h>
#include <stdio.h>
#include <list>
#include <memory>
#include <vector>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include "socket.h"
namespace udp {
using namespace internal;
constexpr size_t kMinPacketSize = 512;
constexpr size_t kHeaderSize = 4;
enum Index {
kIndexId = 0,
kIndexFlags = 1,
kIndexSeqH = 2,
kIndexSeqL = 3,
};
// Extracts a big-endian uint16_t from a byte array.
static uint16_t ExtractUint16(const uint8_t* bytes) {
return (static_cast<uint16_t>(bytes[0]) << 8) | bytes[1];
}
// Packet header handling.
class Header {
public:
Header();
~Header() = default;
uint8_t id() const { return bytes_[kIndexId]; }
const uint8_t* bytes() const { return bytes_; }
void Set(uint8_t id, uint16_t sequence, Flag flag);
// Checks whether |response| is a match for this header.
bool Matches(const uint8_t* response);
private:
uint8_t bytes_[kHeaderSize];
};
Header::Header() {
Set(kIdError, 0, kFlagNone);
}
void Header::Set(uint8_t id, uint16_t sequence, Flag flag) {
bytes_[kIndexId] = id;
bytes_[kIndexFlags] = flag;
bytes_[kIndexSeqH] = sequence >> 8;
bytes_[kIndexSeqL] = sequence;
}
bool Header::Matches(const uint8_t* response) {
// Sequence numbers must be the same to match, but the response ID can either be the same
// or an error response which is always accepted.
return bytes_[kIndexSeqH] == response[kIndexSeqH] &&
bytes_[kIndexSeqL] == response[kIndexSeqL] &&
(bytes_[kIndexId] == response[kIndexId] || response[kIndexId] == kIdError);
}
// Implements the Transport interface to work with the fastboot engine.
class UdpTransport : public Transport {
public:
// Factory function so we can return nullptr if initialization fails.
static std::unique_ptr<UdpTransport> NewTransport(std::unique_ptr<Socket> socket,
std::string* error);
~UdpTransport() override = default;
ssize_t Read(void* data, size_t length) override;
ssize_t Write(const void* data, size_t length) override;
int Close() override;
private:
UdpTransport(std::unique_ptr<Socket> socket) : socket_(std::move(socket)) {}
// Performs the UDP initialization procedure. Returns true on success.
bool InitializeProtocol(std::string* error);
// Sends |length| bytes from |data| and waits for the response packet up to |attempts| times.
// Continuation packets are handled automatically and any return data is written to |rx_data|.
// Excess bytes that cannot fit in |rx_data| are dropped.
// On success, returns the number of response data bytes received, which may be greater than
// |rx_length|. On failure, returns -1 and fills |error| on failure.
ssize_t SendData(Id id, const uint8_t* tx_data, size_t tx_length, uint8_t* rx_data,
size_t rx_length, int attempts, std::string* error);
// Helper for SendData(); sends a single packet and handles the response. |header| specifies
// the initial outgoing packet information but may be modified by this function.
ssize_t SendSinglePacketHelper(Header* header, const uint8_t* tx_data, size_t tx_length,
uint8_t* rx_data, size_t rx_length, int attempts,
std::string* error);
std::unique_ptr<Socket> socket_;
int sequence_ = -1;
size_t max_data_length_ = kMinPacketSize - kHeaderSize;
std::vector<uint8_t> rx_packet_;
DISALLOW_COPY_AND_ASSIGN(UdpTransport);
};
std::unique_ptr<UdpTransport> UdpTransport::NewTransport(std::unique_ptr<Socket> socket,
std::string* error) {
std::unique_ptr<UdpTransport> transport(new UdpTransport(std::move(socket)));
if (!transport->InitializeProtocol(error)) {
return nullptr;
}
return transport;
}
bool UdpTransport::InitializeProtocol(std::string* error) {
uint8_t rx_data[4];
sequence_ = 0;
rx_packet_.resize(kMinPacketSize);
// First send the query packet to sync with the target. Only attempt this a small number of
// times so we can fail out quickly if the target isn't available.
ssize_t rx_bytes = SendData(kIdDeviceQuery, nullptr, 0, rx_data, sizeof(rx_data),
kMaxConnectAttempts, error);
if (rx_bytes == -1) {
return false;
} else if (rx_bytes < 2) {
*error = "invalid query response from target";
return false;
}
// The first two bytes contain the next expected sequence number.
sequence_ = ExtractUint16(rx_data);
// Now send the initialization packet with our version and maximum packet size.
uint8_t init_data[] = {kProtocolVersion >> 8, kProtocolVersion & 0xFF,
kHostMaxPacketSize >> 8, kHostMaxPacketSize & 0xFF};
rx_bytes = SendData(kIdInitialization, init_data, sizeof(init_data), rx_data, sizeof(rx_data),
kMaxTransmissionAttempts, error);
if (rx_bytes == -1) {
return false;
} else if (rx_bytes < 4) {
*error = "invalid initialization response from target";
return false;
}
// The first two data bytes contain the version, the second two bytes contain the target max
// supported packet size, which must be at least 512 bytes.
uint16_t version = ExtractUint16(rx_data);
if (version < kProtocolVersion) {
*error = android::base::StringPrintf("target reported invalid protocol version %d",
version);
return false;
}
uint16_t packet_size = ExtractUint16(rx_data + 2);
if (packet_size < kMinPacketSize) {
*error = android::base::StringPrintf("target reported invalid packet size %d", packet_size);
return false;
}
packet_size = std::min(kHostMaxPacketSize, packet_size);
max_data_length_ = packet_size - kHeaderSize;
rx_packet_.resize(packet_size);
return true;
}
// SendData() is just responsible for chunking |data| into packets until it's all been sent.
// Per-packet timeout/retransmission logic is done in SendSinglePacketHelper().
ssize_t UdpTransport::SendData(Id id, const uint8_t* tx_data, size_t tx_length, uint8_t* rx_data,
size_t rx_length, int attempts, std::string* error) {
if (socket_ == nullptr) {
*error = "socket is closed";
return -1;
}
Header header;
size_t packet_data_length;
ssize_t ret = 0;
// We often send header-only packets with no data as part of the protocol, so always send at
// least once even if |length| == 0, then repeat until we've sent all of |data|.
do {
// Set the continuation flag and truncate packet data if needed.
if (tx_length > max_data_length_) {
packet_data_length = max_data_length_;
header.Set(id, sequence_, kFlagContinuation);
} else {
packet_data_length = tx_length;
header.Set(id, sequence_, kFlagNone);
}
ssize_t bytes = SendSinglePacketHelper(&header, tx_data, packet_data_length, rx_data,
rx_length, attempts, error);
// Advance our read and write buffers for the next packet. Keep going even if we run out
// of receive buffer space so we can detect overflows.
if (bytes == -1) {
return -1;
} else if (static_cast<size_t>(bytes) < rx_length) {
rx_data += bytes;
rx_length -= bytes;
} else {
rx_data = nullptr;
rx_length = 0;
}
tx_length -= packet_data_length;
tx_data += packet_data_length;
ret += bytes;
} while (tx_length > 0);
return ret;
}
ssize_t UdpTransport::SendSinglePacketHelper(
Header* header, const uint8_t* tx_data, size_t tx_length, uint8_t* rx_data,
size_t rx_length, const int attempts, std::string* error) {
ssize_t total_data_bytes = 0;
error->clear();
int attempts_left = attempts;
while (attempts_left > 0) {
if (!socket_->Send({{header->bytes(), kHeaderSize}, {tx_data, tx_length}})) {
*error = Socket::GetErrorMessage();
return -1;
}
// Keep receiving until we get a matching response or we timeout.
ssize_t bytes = 0;
do {
bytes = socket_->Receive(rx_packet_.data(), rx_packet_.size(), kResponseTimeoutMs);
if (bytes == -1) {
if (socket_->ReceiveTimedOut()) {
break;
}
*error = Socket::GetErrorMessage();
return -1;
} else if (bytes < static_cast<ssize_t>(kHeaderSize)) {
*error = "protocol error: incomplete header";
return -1;
}
} while (!header->Matches(rx_packet_.data()));
if (socket_->ReceiveTimedOut()) {
--attempts_left;
continue;
}
++sequence_;
// Save to |error| or |rx_data| as appropriate.
if (rx_packet_[kIndexId] == kIdError) {
error->append(rx_packet_.data() + kHeaderSize, rx_packet_.data() + bytes);
} else {
total_data_bytes += bytes - kHeaderSize;
size_t rx_data_bytes = std::min<size_t>(bytes - kHeaderSize, rx_length);
if (rx_data_bytes > 0) {
memcpy(rx_data, rx_packet_.data() + kHeaderSize, rx_data_bytes);
rx_data += rx_data_bytes;
rx_length -= rx_data_bytes;
}
}
// If the response has a continuation flag we need to prompt for more data by sending
// an empty packet.
if (rx_packet_[kIndexFlags] & kFlagContinuation) {
// We got a valid response so reset our attempt counter.
attempts_left = attempts;
header->Set(rx_packet_[kIndexId], sequence_, kFlagNone);
tx_data = nullptr;
tx_length = 0;
continue;
}
break;
}
if (attempts_left <= 0) {
*error = "no response from target";
return -1;
}
if (rx_packet_[kIndexId] == kIdError) {
*error = "target reported error: " + *error;
return -1;
}
return total_data_bytes;
}
ssize_t UdpTransport::Read(void* data, size_t length) {
// Read from the target by sending an empty packet.
std::string error;
ssize_t bytes = SendData(kIdFastboot, nullptr, 0, reinterpret_cast<uint8_t*>(data), length,
kMaxTransmissionAttempts, &error);
if (bytes == -1) {
fprintf(stderr, "UDP error: %s\n", error.c_str());
return -1;
} else if (static_cast<size_t>(bytes) > length) {
// Fastboot protocol error: the target sent more data than our fastboot engine was prepared
// to receive.
fprintf(stderr, "UDP error: receive overflow, target sent too much fastboot data\n");
return -1;
}
return bytes;
}
ssize_t UdpTransport::Write(const void* data, size_t length) {
std::string error;
ssize_t bytes = SendData(kIdFastboot, reinterpret_cast<const uint8_t*>(data), length, nullptr,
0, kMaxTransmissionAttempts, &error);
if (bytes == -1) {
fprintf(stderr, "UDP error: %s\n", error.c_str());
return -1;
} else if (bytes > 0) {
// UDP protocol error: only empty ACK packets are allowed when writing to a device.
fprintf(stderr, "UDP error: target sent fastboot data out-of-turn\n");
return -1;
}
return length;
}
int UdpTransport::Close() {
if (socket_ == nullptr) {
return 0;
}
int result = socket_->Close();
socket_.reset();
return result;
}
std::unique_ptr<Transport> Connect(const std::string& hostname, int port, std::string* error) {
return internal::Connect(Socket::NewClient(Socket::Protocol::kUdp, hostname, port, error),
error);
}
namespace internal {
std::unique_ptr<Transport> Connect(std::unique_ptr<Socket> sock, std::string* error) {
if (sock == nullptr) {
// If Socket creation failed |error| is already set.
return nullptr;
}
return UdpTransport::NewTransport(std::move(sock), error);
}
} // namespace internal
} // namespace udp