/*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef _SMMINTRIN_H
#define _SMMINTRIN_H
#include <tmmintrin.h>
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.1")))
/* SSE4 Rounding macros. */
#define _MM_FROUND_TO_NEAREST_INT 0x00
#define _MM_FROUND_TO_NEG_INF 0x01
#define _MM_FROUND_TO_POS_INF 0x02
#define _MM_FROUND_TO_ZERO 0x03
#define _MM_FROUND_CUR_DIRECTION 0x04
#define _MM_FROUND_RAISE_EXC 0x00
#define _MM_FROUND_NO_EXC 0x08
#define _MM_FROUND_NINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
#define _MM_FROUND_FLOOR (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
#define _MM_FROUND_CEIL (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
#define _MM_FROUND_TRUNC (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
#define _MM_FROUND_RINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
#define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
#define _mm_ceil_ps(X) _mm_round_ps((X), _MM_FROUND_CEIL)
#define _mm_ceil_pd(X) _mm_round_pd((X), _MM_FROUND_CEIL)
#define _mm_ceil_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
#define _mm_ceil_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
#define _mm_floor_ps(X) _mm_round_ps((X), _MM_FROUND_FLOOR)
#define _mm_floor_pd(X) _mm_round_pd((X), _MM_FROUND_FLOOR)
#define _mm_floor_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
#define _mm_floor_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
#define _mm_round_ps(X, M) __extension__ ({ \
(__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M)); })
#define _mm_round_ss(X, Y, M) __extension__ ({ \
(__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), \
(__v4sf)(__m128)(Y), (M)); })
#define _mm_round_pd(X, M) __extension__ ({ \
(__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M)); })
#define _mm_round_sd(X, Y, M) __extension__ ({ \
(__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), \
(__v2df)(__m128d)(Y), (M)); })
/* SSE4 Packed Blending Intrinsics. */
#define _mm_blend_pd(V1, V2, M) __extension__ ({ \
(__m128d)__builtin_shufflevector((__v2df)(__m128d)(V1), \
(__v2df)(__m128d)(V2), \
(((M) & 0x01) ? 2 : 0), \
(((M) & 0x02) ? 3 : 1)); })
#define _mm_blend_ps(V1, V2, M) __extension__ ({ \
(__m128)__builtin_shufflevector((__v4sf)(__m128)(V1), (__v4sf)(__m128)(V2), \
(((M) & 0x01) ? 4 : 0), \
(((M) & 0x02) ? 5 : 1), \
(((M) & 0x04) ? 6 : 2), \
(((M) & 0x08) ? 7 : 3)); })
static __inline__ __m128d __DEFAULT_FN_ATTRS
_mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M)
{
return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2,
(__v2df)__M);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M)
{
return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2,
(__v4sf)__M);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M)
{
return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2,
(__v16qi)__M);
}
#define _mm_blend_epi16(V1, V2, M) __extension__ ({ \
(__m128i)__builtin_shufflevector((__v8hi)(__m128i)(V1), \
(__v8hi)(__m128i)(V2), \
(((M) & 0x01) ? 8 : 0), \
(((M) & 0x02) ? 9 : 1), \
(((M) & 0x04) ? 10 : 2), \
(((M) & 0x08) ? 11 : 3), \
(((M) & 0x10) ? 12 : 4), \
(((M) & 0x20) ? 13 : 5), \
(((M) & 0x40) ? 14 : 6), \
(((M) & 0x80) ? 15 : 7)); })
/* SSE4 Dword Multiply Instructions. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_mullo_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) ((__v4si)__V1 * (__v4si)__V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_mul_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2);
}
/* SSE4 Floating Point Dot Product Instructions. */
#define _mm_dp_ps(X, Y, M) __extension__ ({ \
(__m128) __builtin_ia32_dpps((__v4sf)(__m128)(X), \
(__v4sf)(__m128)(Y), (M)); })
#define _mm_dp_pd(X, Y, M) __extension__ ({\
(__m128d) __builtin_ia32_dppd((__v2df)(__m128d)(X), \
(__v2df)(__m128d)(Y), (M)); })
/* SSE4 Streaming Load Hint Instruction. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_stream_load_si128 (__m128i const *__V)
{
return (__m128i) __builtin_ia32_movntdqa ((const __v2di *) __V);
}
/* SSE4 Packed Integer Min/Max Instructions. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epi8 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminsb128 ((__v16qi) __V1, (__v16qi) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epi8 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi) __V1, (__v16qi) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epu16 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminuw128 ((__v8hi) __V1, (__v8hi) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epu16 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi) __V1, (__v8hi) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminsd128 ((__v4si) __V1, (__v4si) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epi32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si) __V1, (__v4si) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_min_epu32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pminud128((__v4si) __V1, (__v4si) __V2);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_max_epu32 (__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_pmaxud128((__v4si) __V1, (__v4si) __V2);
}
/* SSE4 Insertion and Extraction from XMM Register Instructions. */
#define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
#define _mm_extract_ps(X, N) (__extension__ \
({ union { int __i; float __f; } __t; \
__v4sf __a = (__v4sf)(__m128)(X); \
__t.__f = __a[(N) & 3]; \
__t.__i;}))
/* Miscellaneous insert and extract macros. */
/* Extract a single-precision float from X at index N into D. */
#define _MM_EXTRACT_FLOAT(D, X, N) (__extension__ ({ __v4sf __a = (__v4sf)(X); \
(D) = __a[N]; }))
/* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
an index suitable for _mm_insert_ps. */
#define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
/* Extract a float from X at index N into the first index of the return. */
#define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X), \
_MM_MK_INSERTPS_NDX((N), 0, 0x0e))
/* Insert int into packed integer array at index. */
#define _mm_insert_epi8(X, I, N) (__extension__ \
({ __v16qi __a = (__v16qi)(__m128i)(X); \
__a[(N) & 15] = (I); \
__a;}))
#define _mm_insert_epi32(X, I, N) (__extension__ \
({ __v4si __a = (__v4si)(__m128i)(X); \
__a[(N) & 3] = (I); \
__a;}))
#ifdef __x86_64__
#define _mm_insert_epi64(X, I, N) (__extension__ \
({ __v2di __a = (__v2di)(__m128i)(X); \
__a[(N) & 1] = (I); \
__a;}))
#endif /* __x86_64__ */
/* Extract int from packed integer array at index. This returns the element
* as a zero extended value, so it is unsigned.
*/
#define _mm_extract_epi8(X, N) (__extension__ \
({ __v16qi __a = (__v16qi)(__m128i)(X); \
(int)(unsigned char) __a[(N) & 15];}))
#define _mm_extract_epi32(X, N) (__extension__ \
({ __v4si __a = (__v4si)(__m128i)(X); \
(int)__a[(N) & 3];}))
#ifdef __x86_64__
#define _mm_extract_epi64(X, N) (__extension__ \
({ __v2di __a = (__v2di)(__m128i)(X); \
(long long)__a[(N) & 1];}))
#endif /* __x86_64 */
/* SSE4 128-bit Packed Integer Comparisons. */
static __inline__ int __DEFAULT_FN_ATTRS
_mm_testz_si128(__m128i __M, __m128i __V)
{
return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
}
static __inline__ int __DEFAULT_FN_ATTRS
_mm_testc_si128(__m128i __M, __m128i __V)
{
return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
}
static __inline__ int __DEFAULT_FN_ATTRS
_mm_testnzc_si128(__m128i __M, __m128i __V)
{
return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
}
#define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_cmpeq_epi32((V), (V)))
#define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
#define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V))
/* SSE4 64-bit Packed Integer Comparisons. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cmpeq_epi64(__m128i __V1, __m128i __V2)
{
return (__m128i)((__v2di)__V1 == (__v2di)__V2);
}
/* SSE4 Packed Integer Sign-Extension. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepi8_epi16(__m128i __V)
{
/* This function always performs a signed extension, but __v16qi is a char
which may be signed or unsigned, so use __v16qs. */
return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepi8_epi32(__m128i __V)
{
/* This function always performs a signed extension, but __v16qi is a char
which may be signed or unsigned, so use __v16qs. */
return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepi8_epi64(__m128i __V)
{
/* This function always performs a signed extension, but __v16qi is a char
which may be signed or unsigned, so use __v16qs. */
typedef signed char __v16qs __attribute__((__vector_size__(16)));
return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepi16_epi32(__m128i __V)
{
return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepi16_epi64(__m128i __V)
{
return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepi32_epi64(__m128i __V)
{
return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di);
}
/* SSE4 Packed Integer Zero-Extension. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepu8_epi16(__m128i __V)
{
return (__m128i) __builtin_ia32_pmovzxbw128((__v16qi) __V);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepu8_epi32(__m128i __V)
{
return (__m128i) __builtin_ia32_pmovzxbd128((__v16qi)__V);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepu8_epi64(__m128i __V)
{
return (__m128i) __builtin_ia32_pmovzxbq128((__v16qi)__V);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepu16_epi32(__m128i __V)
{
return (__m128i) __builtin_ia32_pmovzxwd128((__v8hi)__V);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepu16_epi64(__m128i __V)
{
return (__m128i) __builtin_ia32_pmovzxwq128((__v8hi)__V);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cvtepu32_epi64(__m128i __V)
{
return (__m128i) __builtin_ia32_pmovzxdq128((__v4si)__V);
}
/* SSE4 Pack with Unsigned Saturation. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_packus_epi32(__m128i __V1, __m128i __V2)
{
return (__m128i) __builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
}
/* SSE4 Multiple Packed Sums of Absolute Difference. */
#define _mm_mpsadbw_epu8(X, Y, M) __extension__ ({ \
(__m128i) __builtin_ia32_mpsadbw128((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (M)); })
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_minpos_epu16(__m128i __V)
{
return (__m128i) __builtin_ia32_phminposuw128((__v8hi)__V);
}
/* Handle the sse4.2 definitions here. */
/* These definitions are normally in nmmintrin.h, but gcc puts them in here
so we'll do the same. */
#undef __DEFAULT_FN_ATTRS
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.2")))
/* These specify the type of data that we're comparing. */
#define _SIDD_UBYTE_OPS 0x00
#define _SIDD_UWORD_OPS 0x01
#define _SIDD_SBYTE_OPS 0x02
#define _SIDD_SWORD_OPS 0x03
/* These specify the type of comparison operation. */
#define _SIDD_CMP_EQUAL_ANY 0x00
#define _SIDD_CMP_RANGES 0x04
#define _SIDD_CMP_EQUAL_EACH 0x08
#define _SIDD_CMP_EQUAL_ORDERED 0x0c
/* These macros specify the polarity of the operation. */
#define _SIDD_POSITIVE_POLARITY 0x00
#define _SIDD_NEGATIVE_POLARITY 0x10
#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
#define _SIDD_MASKED_NEGATIVE_POLARITY 0x30
/* These macros are used in _mm_cmpXstri() to specify the return. */
#define _SIDD_LEAST_SIGNIFICANT 0x00
#define _SIDD_MOST_SIGNIFICANT 0x40
/* These macros are used in _mm_cmpXstri() to specify the return. */
#define _SIDD_BIT_MASK 0x00
#define _SIDD_UNIT_MASK 0x40
/* SSE4.2 Packed Comparison Intrinsics. */
#define _mm_cmpistrm(A, B, M) \
(__m128i)__builtin_ia32_pcmpistrm128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpistri(A, B, M) \
(int)__builtin_ia32_pcmpistri128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpestrm(A, LA, B, LB, M) \
(__m128i)__builtin_ia32_pcmpestrm128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
#define _mm_cmpestri(A, LA, B, LB, M) \
(int)__builtin_ia32_pcmpestri128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
/* SSE4.2 Packed Comparison Intrinsics and EFlag Reading. */
#define _mm_cmpistra(A, B, M) \
(int)__builtin_ia32_pcmpistria128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpistrc(A, B, M) \
(int)__builtin_ia32_pcmpistric128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpistro(A, B, M) \
(int)__builtin_ia32_pcmpistrio128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpistrs(A, B, M) \
(int)__builtin_ia32_pcmpistris128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpistrz(A, B, M) \
(int)__builtin_ia32_pcmpistriz128((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), (int)(M))
#define _mm_cmpestra(A, LA, B, LB, M) \
(int)__builtin_ia32_pcmpestria128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
#define _mm_cmpestrc(A, LA, B, LB, M) \
(int)__builtin_ia32_pcmpestric128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
#define _mm_cmpestro(A, LA, B, LB, M) \
(int)__builtin_ia32_pcmpestrio128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
#define _mm_cmpestrs(A, LA, B, LB, M) \
(int)__builtin_ia32_pcmpestris128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
#define _mm_cmpestrz(A, LA, B, LB, M) \
(int)__builtin_ia32_pcmpestriz128((__v16qi)(__m128i)(A), (int)(LA), \
(__v16qi)(__m128i)(B), (int)(LB), \
(int)(M))
/* SSE4.2 Compare Packed Data -- Greater Than. */
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_cmpgt_epi64(__m128i __V1, __m128i __V2)
{
return (__m128i)((__v2di)__V1 > (__v2di)__V2);
}
/* SSE4.2 Accumulate CRC32. */
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mm_crc32_u8(unsigned int __C, unsigned char __D)
{
return __builtin_ia32_crc32qi(__C, __D);
}
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mm_crc32_u16(unsigned int __C, unsigned short __D)
{
return __builtin_ia32_crc32hi(__C, __D);
}
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mm_crc32_u32(unsigned int __C, unsigned int __D)
{
return __builtin_ia32_crc32si(__C, __D);
}
#ifdef __x86_64__
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_mm_crc32_u64(unsigned long long __C, unsigned long long __D)
{
return __builtin_ia32_crc32di(__C, __D);
}
#endif /* __x86_64__ */
#undef __DEFAULT_FN_ATTRS
#ifdef __POPCNT__
#include <popcntintrin.h>
#endif
#endif /* _SMMINTRIN_H */