/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_AUDIO_TEST_UTILS_H
#define ANDROID_AUDIO_TEST_UTILS_H
#include <audio_utils/sndfile.h>
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#endif
template<typename T, typename U>
struct is_same
{
static const bool value = false;
};
template<typename T>
struct is_same<T, T> // partial specialization
{
static const bool value = true;
};
template<typename T>
static inline T convertValue(double val)
{
if (is_same<T, int16_t>::value) {
return floor(val * 32767.0 + 0.5);
} else if (is_same<T, int32_t>::value) {
return floor(val * (1UL<<31) + 0.5);
}
return val; // assume float or double
}
// Convert a list of integers in CSV format to a Vector of those values.
// Returns the number of elements in the list, or -1 on error.
static inline int parseCSV(const char *string, std::vector<int>& values)
{
// pass 1: count the number of values and do syntax check
size_t numValues = 0;
bool hadDigit = false;
for (const char *p = string; ; ) {
switch (*p++) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
hadDigit = true;
break;
case '\0':
if (hadDigit) {
// pass 2: allocate and initialize vector of values
values.resize(++numValues);
values[0] = atoi(p = string);
for (size_t i = 1; i < numValues; ) {
if (*p++ == ',') {
values[i++] = atoi(p);
}
}
return numValues;
}
// fall through
case ',':
if (hadDigit) {
hadDigit = false;
numValues++;
break;
}
// fall through
default:
return -1;
}
}
}
/* Creates a type-independent audio buffer provider from
* a buffer base address, size, framesize, and input increment array.
*
* No allocation or deallocation of the provided buffer is done.
*/
class TestProvider : public android::AudioBufferProvider {
public:
TestProvider(void* addr, size_t frames, size_t frameSize,
const std::vector<int>& inputIncr)
: mAddr(addr),
mNumFrames(frames),
mFrameSize(frameSize),
mNextFrame(0), mUnrel(0), mInputIncr(inputIncr), mNextIdx(0)
{
}
TestProvider()
: mAddr(NULL), mNumFrames(0), mFrameSize(0),
mNextFrame(0), mUnrel(0), mNextIdx(0)
{
}
void setIncr(const std::vector<int>& inputIncr) {
mInputIncr = inputIncr;
mNextIdx = 0;
}
virtual android::status_t getNextBuffer(Buffer* buffer)
{
size_t requestedFrames = buffer->frameCount;
if (requestedFrames > mNumFrames - mNextFrame) {
buffer->frameCount = mNumFrames - mNextFrame;
}
if (!mInputIncr.empty()) {
size_t provided = mInputIncr[mNextIdx++];
ALOGV("getNextBuffer() mValue[%zu]=%zu not %zu",
mNextIdx-1, provided, buffer->frameCount);
if (provided < buffer->frameCount) {
buffer->frameCount = provided;
}
if (mNextIdx >= mInputIncr.size()) {
mNextIdx = 0;
}
}
ALOGV("getNextBuffer() requested %zu frames out of %zu frames available"
" and returned %zu frames",
requestedFrames, mNumFrames - mNextFrame, buffer->frameCount);
mUnrel = buffer->frameCount;
if (buffer->frameCount > 0) {
buffer->raw = (char *)mAddr + mFrameSize * mNextFrame;
return android::NO_ERROR;
} else {
buffer->raw = NULL;
return android::NOT_ENOUGH_DATA;
}
}
virtual void releaseBuffer(Buffer* buffer)
{
if (buffer->frameCount > mUnrel) {
ALOGE("releaseBuffer() released %zu frames but only %zu available "
"to release", buffer->frameCount, mUnrel);
mNextFrame += mUnrel;
mUnrel = 0;
} else {
ALOGV("releaseBuffer() released %zu frames out of %zu frames available "
"to release", buffer->frameCount, mUnrel);
mNextFrame += buffer->frameCount;
mUnrel -= buffer->frameCount;
}
buffer->frameCount = 0;
buffer->raw = NULL;
}
void reset()
{
mNextFrame = 0;
}
size_t getNumFrames()
{
return mNumFrames;
}
protected:
void* mAddr; // base address
size_t mNumFrames; // total frames
int mFrameSize; // frame size (# channels * bytes per sample)
size_t mNextFrame; // index of next frame to provide
size_t mUnrel; // number of frames not yet released
std::vector<int> mInputIncr; // number of frames provided per call
size_t mNextIdx; // index of next entry in mInputIncr to use
};
/* Creates a buffer filled with a sine wave.
*/
template<typename T>
static void createSine(void *vbuffer, size_t frames,
size_t channels, double sampleRate, double freq)
{
double tscale = 1. / sampleRate;
T* buffer = reinterpret_cast<T*>(vbuffer);
for (size_t i = 0; i < frames; ++i) {
double t = i * tscale;
double y = sin(2. * M_PI * freq * t);
T yt = convertValue<T>(y);
for (size_t j = 0; j < channels; ++j) {
buffer[i*channels + j] = yt / T(j + 1);
}
}
}
/* Creates a buffer filled with a chirp signal (a sine wave sweep).
*
* When creating the Chirp, note that the frequency is the true sinusoidal
* frequency not the sampling rate.
*
* http://en.wikipedia.org/wiki/Chirp
*/
template<typename T>
static void createChirp(void *vbuffer, size_t frames,
size_t channels, double sampleRate, double minfreq, double maxfreq)
{
double tscale = 1. / sampleRate;
T *buffer = reinterpret_cast<T*>(vbuffer);
// note the chirp constant k has a divide-by-two.
double k = (maxfreq - minfreq) / (2. * tscale * frames);
for (size_t i = 0; i < frames; ++i) {
double t = i * tscale;
double y = sin(2. * M_PI * (k * t + minfreq) * t);
T yt = convertValue<T>(y);
for (size_t j = 0; j < channels; ++j) {
buffer[i*channels + j] = yt / T(j + 1);
}
}
}
/* This derived class creates a buffer provider of datatype T,
* consisting of an input signal, e.g. from createChirp().
* The number of frames can be obtained from the base class
* TestProvider::getNumFrames().
*/
class SignalProvider : public TestProvider {
public:
SignalProvider()
: mSampleRate(0),
mChannels(0)
{
}
virtual ~SignalProvider()
{
free(mAddr);
mAddr = NULL;
}
template <typename T>
void setChirp(size_t channels, double minfreq, double maxfreq, double sampleRate, double time)
{
createBufferByFrames<T>(channels, sampleRate, sampleRate*time);
createChirp<T>(mAddr, mNumFrames, mChannels, mSampleRate, minfreq, maxfreq);
}
template <typename T>
void setSine(size_t channels,
double freq, double sampleRate, double time)
{
createBufferByFrames<T>(channels, sampleRate, sampleRate*time);
createSine<T>(mAddr, mNumFrames, mChannels, mSampleRate, freq);
}
template <typename T>
void setFile(const char *file_in)
{
SF_INFO info;
info.format = 0;
SNDFILE *sf = sf_open(file_in, SFM_READ, &info);
if (sf == NULL) {
perror(file_in);
return;
}
createBufferByFrames<T>(info.channels, info.samplerate, info.frames);
if (is_same<T, float>::value) {
(void) sf_readf_float(sf, (float *) mAddr, mNumFrames);
} else if (is_same<T, short>::value) {
(void) sf_readf_short(sf, (short *) mAddr, mNumFrames);
}
sf_close(sf);
}
template <typename T>
void createBufferByFrames(size_t channels, uint32_t sampleRate, size_t frames)
{
mNumFrames = frames;
mChannels = channels;
mFrameSize = mChannels * sizeof(T);
free(mAddr);
mAddr = malloc(mFrameSize * mNumFrames);
mSampleRate = sampleRate;
}
uint32_t getSampleRate() const {
return mSampleRate;
}
uint32_t getNumChannels() const {
return mChannels;
}
protected:
uint32_t mSampleRate;
uint32_t mChannels;
};
#endif // ANDROID_AUDIO_TEST_UTILS_H