// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This file holds inputs for the instructions tested by test-simulator-a64.
//
// If the input lists are updated, please run tools/generate_simulator_traces.py
// on a reference platform to regenerate the expected outputs. The outputs are
// stored in test-simulator-traces-a64.h.
#include <stdint.h>
// This header should only be used by test/test-simulator-a64.cc, so it
// doesn't need the usual header guard.
#ifdef VIXL_A64_TEST_SIMULATOR_INPUTS_A64_H_
#error This header should be inluded only once.
#endif
#define VIXL_A64_TEST_SIMULATOR_INPUTS_A64_H_
// Double values, stored as uint64_t representations. This ensures exact bit
// representation, and avoids the loss of NaNs and suchlike through C++ casts.
#define INPUT_DOUBLE_BASIC \
/* Simple values. */ \
0x0000000000000000, /* 0.0 */ \
0x0010000000000000, /* The smallest normal value. */ \
0x3fdfffffffffffff, /* The value just below 0.5. */ \
0x3fe0000000000000, /* 0.5 */ \
0x3fe0000000000001, /* The value just above 0.5. */ \
0x3fefffffffffffff, /* The value just below 1.0. */ \
0x3ff0000000000000, /* 1.0 */ \
0x3ff0000000000001, /* The value just above 1.0. */ \
0x3ff8000000000000, /* 1.5 */ \
0x4024000000000000, /* 10 */ \
0x7fefffffffffffff, /* The largest finite value. */ \
\
/* Infinity. */ \
0x7ff0000000000000, \
\
/* NaNs. */ \
/* - Quiet NaNs */ \
0x7ff923456789abcd, \
0x7ff8000000000000, \
/* - Signalling NaNs */ \
0x7ff123456789abcd, \
0x7ff0000000000000, \
\
/* Subnormals. */ \
/* - A recognisable bit pattern. */ \
0x000123456789abcd, \
/* - The largest subnormal value. */ \
0x000fffffffffffff, \
/* - The smallest subnormal value. */ \
0x0000000000000001, \
\
/* The same values again, but negated. */ \
0x8000000000000000, \
0x8010000000000000, \
0xbfdfffffffffffff, \
0xbfe0000000000000, \
0xbfe0000000000001, \
0xbfefffffffffffff, \
0xbff0000000000000, \
0xbff0000000000001, \
0xbff8000000000000, \
0xc024000000000000, \
0xffefffffffffffff, \
0xfff0000000000000, \
0xfff923456789abcd, \
0xfff8000000000000, \
0xfff123456789abcd, \
0xfff0000000000000, \
0x800123456789abcd, \
0x800fffffffffffff, \
0x8000000000000001,
// Extra inputs. Passing these to 3- or 2-op instructions makes the trace file
// very large, so these should only be used with 1-op instructions.
#define INPUT_DOUBLE_CONVERSIONS \
/* Values relevant for conversions to single-precision floats. */ \
0x47efffff00000000, \
/* - The smallest normalized float. */ \
0x3810000000000000, \
/* - Normal floats that need (ties-to-even) rounding. */ \
/* For normalized numbers, bit 29 (0x0000000020000000) is the */ \
/* lowest-order bit which will fit in the float's mantissa. */ \
0x3ff0000000000000, \
0x3ff0000000000001, \
0x3ff0000010000000, \
0x3ff0000010000001, \
0x3ff0000020000000, \
0x3ff0000020000001, \
0x3ff0000030000000, \
0x3ff0000030000001, \
0x3ff0000040000000, \
0x3ff0000040000001, \
0x3ff0000050000000, \
0x3ff0000050000001, \
0x3ff0000060000000, \
/* - A mantissa that overflows into the exponent during rounding. */ \
0x3feffffff0000000, \
/* - The largest double that rounds to a normal float. */ \
0x47efffffefffffff, \
/* - The smallest exponent that's too big for a float. */ \
0x47f0000000000000, \
/* - This exponent is in range, but the value rounds to infinity. */ \
0x47effffff0000000, \
/* - The largest double which is too small for a subnormal float. */ \
0x3690000000000000, \
/* - The largest subnormal float. */ \
0x380fffffc0000000, \
/* - The smallest subnormal float. */ \
0x36a0000000000000, \
/* - Subnormal floats that need (ties-to-even) rounding. */ \
/* For these subnormals, bit 34 (0x0000000400000000) is the */ \
/* lowest-order bit which will fit in the float's mantissa. */ \
0x37c159e000000000, \
0x37c159e000000001, \
0x37c159e200000000, \
0x37c159e200000001, \
0x37c159e400000000, \
0x37c159e400000001, \
0x37c159e600000000, \
0x37c159e600000001, \
0x37c159e800000000, \
0x37c159e800000001, \
0x37c159ea00000000, \
0x37c159ea00000001, \
0x37c159ec00000000, \
/* - The smallest double which rounds up to become a subnormal float. */ \
0x3690000000000001, \
\
/* The same values again, but negated. */ \
0xc7efffff00000000, \
0xb810000000000000, \
0xbff0000000000000, \
0xbff0000000000001, \
0xbff0000010000000, \
0xbff0000010000001, \
0xbff0000020000000, \
0xbff0000020000001, \
0xbff0000030000000, \
0xbff0000030000001, \
0xbff0000040000000, \
0xbff0000040000001, \
0xbff0000050000000, \
0xbff0000050000001, \
0xbff0000060000000, \
0xbfeffffff0000000, \
0xc7efffffefffffff, \
0xc7f0000000000000, \
0xc7effffff0000000, \
0xb690000000000000, \
0xb80fffffc0000000, \
0xb6a0000000000000, \
0xb7c159e000000000, \
0xb7c159e000000001, \
0xb7c159e200000000, \
0xb7c159e200000001, \
0xb7c159e400000000, \
0xb7c159e400000001, \
0xb7c159e600000000, \
0xb7c159e600000001, \
0xb7c159e800000000, \
0xb7c159e800000001, \
0xb7c159ea00000000, \
0xb7c159ea00000001, \
0xb7c159ec00000000, \
0xb690000000000001, \
\
/* Values relevant for conversions to integers (frint). */ \
/* - The lowest-order mantissa bit has value 1. */ \
0x4330000000000000, \
0x4330000000000001, \
0x4330000000000002, \
0x4330000000000003, \
0x433fedcba9876543, \
0x433ffffffffffffc, \
0x433ffffffffffffd, \
0x433ffffffffffffe, \
0x433fffffffffffff, \
/* - The lowest-order mantissa bit has value 0.5. */ \
0x4320000000000000, \
0x4320000000000001, \
0x4320000000000002, \
0x4320000000000003, \
0x432fedcba9876543, \
0x432ffffffffffffc, \
0x432ffffffffffffd, \
0x432ffffffffffffe, \
0x432fffffffffffff, \
/* - The lowest-order mantissa bit has value 0.25. */ \
0x4310000000000000, \
0x4310000000000001, \
0x4310000000000002, \
0x4310000000000003, \
0x431fedcba9876543, \
0x431ffffffffffffc, \
0x431ffffffffffffd, \
0x431ffffffffffffe, \
0x431fffffffffffff, \
\
/* The same values again, but negated. */ \
0xc330000000000000, \
0xc330000000000001, \
0xc330000000000002, \
0xc330000000000003, \
0xc33fedcba9876543, \
0xc33ffffffffffffc, \
0xc33ffffffffffffd, \
0xc33ffffffffffffe, \
0xc33fffffffffffff, \
0xc320000000000000, \
0xc320000000000001, \
0xc320000000000002, \
0xc320000000000003, \
0xc32fedcba9876543, \
0xc32ffffffffffffc, \
0xc32ffffffffffffd, \
0xc32ffffffffffffe, \
0xc32fffffffffffff, \
0xc310000000000000, \
0xc310000000000001, \
0xc310000000000002, \
0xc310000000000003, \
0xc31fedcba9876543, \
0xc31ffffffffffffc, \
0xc31ffffffffffffd, \
0xc31ffffffffffffe, \
0xc31fffffffffffff, \
\
/* Values relevant for conversions to integers (fcvt). */ \
0xc3e0000000000001, /* The value just below INT64_MIN. */ \
0xc3e0000000000000, /* INT64_MIN */ \
0xc3dfffffffffffff, /* The value just above INT64_MIN. */ \
0x43dfffffffffffff, /* The value just below INT64_MAX. */ \
/* INT64_MAX is not representable. */ \
0x43e0000000000000, /* The value just above INT64_MAX. */ \
\
0x43efffffffffffff, /* The value just below UINT64_MAX. */ \
/* UINT64_MAX is not representable. */ \
0x43f0000000000000, /* The value just above UINT64_MAX. */ \
\
0xc1e0000000200001, /* The value just below INT32_MIN - 1.0. */ \
0xc1e0000000200000, /* INT32_MIN - 1.0 */ \
0xc1e00000001fffff, /* The value just above INT32_MIN - 1.0. */ \
0xc1e0000000100001, /* The value just below INT32_MIN - 0.5. */ \
0xc1e0000000100000, /* INT32_MIN - 0.5 */ \
0xc1e00000000fffff, /* The value just above INT32_MIN - 0.5. */ \
0xc1e0000000000001, /* The value just below INT32_MIN. */ \
0xc1e0000000000000, /* INT32_MIN */ \
0xc1dfffffffffffff, /* The value just above INT32_MIN. */ \
0xc1dfffffffe00001, /* The value just below INT32_MIN + 0.5. */ \
0xc1dfffffffe00000, /* INT32_MIN + 0.5 */ \
0xc1dfffffffdfffff, /* The value just above INT32_MIN + 0.5. */ \
\
0x41dfffffff7fffff, /* The value just below INT32_MAX - 1.0. */ \
0x41dfffffff800000, /* INT32_MAX - 1.0 */ \
0x41dfffffff800001, /* The value just above INT32_MAX - 1.0. */ \
0x41dfffffff9fffff, /* The value just below INT32_MAX - 0.5. */ \
0x41dfffffffa00000, /* INT32_MAX - 0.5 */ \
0x41dfffffffa00001, /* The value just above INT32_MAX - 0.5. */ \
0x41dfffffffbfffff, /* The value just below INT32_MAX. */ \
0x41dfffffffc00000, /* INT32_MAX */ \
0x41dfffffffc00001, /* The value just above INT32_MAX. */ \
0x41dfffffffdfffff, /* The value just below INT32_MAX + 0.5. */ \
0x41dfffffffe00000, /* INT32_MAX + 0.5 */ \
0x41dfffffffe00001, /* The value just above INT32_MAX + 0.5. */ \
\
0x41efffffffbfffff, /* The value just below UINT32_MAX - 1.0. */ \
0x41efffffffc00000, /* UINT32_MAX - 1.0 */ \
0x41efffffffc00001, /* The value just above UINT32_MAX - 1.0. */ \
0x41efffffffcfffff, /* The value just below UINT32_MAX - 0.5. */ \
0x41efffffffd00000, /* UINT32_MAX - 0.5 */ \
0x41efffffffd00001, /* The value just above UINT32_MAX - 0.5. */ \
0x41efffffffdfffff, /* The value just below UINT32_MAX. */ \
0x41efffffffe00000, /* UINT32_MAX */ \
0x41efffffffe00001, /* The value just above UINT32_MAX. */ \
0x41efffffffefffff, /* The value just below UINT32_MAX + 0.5. */ \
0x41effffffff00000, /* UINT32_MAX + 0.5 */ \
0x41effffffff00001, /* The value just above UINT32_MAX + 0.5. */
// Float values, stored as uint32_t representations. This ensures exact bit
// representation, and avoids the loss of NaNs and suchlike through C++ casts.
#define INPUT_FLOAT_BASIC \
/* Simple values. */ \
0x00000000, /* 0.0 */ \
0x00800000, /* The smallest normal value. */ \
0x3effffff, /* The value just below 0.5. */ \
0x3f000000, /* 0.5 */ \
0x3f000001, /* The value just above 0.5. */ \
0x3f7fffff, /* The value just below 1.0. */ \
0x3f800000, /* 1.0 */ \
0x3f800001, /* The value just above 1.0. */ \
0x3fc00000, /* 1.5 */ \
0x41200000, /* 10 */ \
0x7f8fffff, /* The largest finite value. */ \
\
/* Infinity. */ \
0x7f800000, \
\
/* NaNs. */ \
/* - Quiet NaNs */ \
0x7fd23456, \
0x7fc00000, \
/* - Signalling NaNs */ \
0x7f923456, \
0x7f800001, \
\
/* Subnormals. */ \
/* - A recognisable bit pattern. */ \
0x00123456, \
/* - The largest subnormal value. */ \
0x007fffff, \
/* - The smallest subnormal value. */ \
0x00000001, \
\
/* The same values again, but negated. */ \
0x80000000, \
0x80800000, \
0xbeffffff, \
0xbf000000, \
0xbf000001, \
0xbf7fffff, \
0xbf800000, \
0xbf800001, \
0xbfc00000, \
0xc1200000, \
0xff8fffff, \
0xff800000, \
0xffd23456, \
0xffc00000, \
0xff923456, \
0xff800001, \
0x80123456, \
0x807fffff, \
0x80000001,
// Extra inputs. Passing these to 3- or 2-op instructions makes the trace file
// very large, so these should only be used with 1-op instructions.
#define INPUT_FLOAT_CONVERSIONS \
/* Values relevant for conversions to integers (frint). */ \
/* - The lowest-order mantissa bit has value 1. */ \
0x4b000000, \
0x4b000001, \
0x4b000002, \
0x4b000003, \
0x4b765432, \
0x4b7ffffc, \
0x4b7ffffd, \
0x4b7ffffe, \
0x4b7fffff, \
/* - The lowest-order mantissa bit has value 0.5. */ \
0x4a800000, \
0x4a800001, \
0x4a800002, \
0x4a800003, \
0x4af65432, \
0x4afffffc, \
0x4afffffd, \
0x4afffffe, \
0x4affffff, \
/* - The lowest-order mantissa bit has value 0.25. */ \
0x4a000000, \
0x4a000001, \
0x4a000002, \
0x4a000003, \
0x4a765432, \
0x4a7ffffc, \
0x4a7ffffd, \
0x4a7ffffe, \
0x4a7fffff, \
\
/* The same values again, but negated. */ \
0xcb000000, \
0xcb000001, \
0xcb000002, \
0xcb000003, \
0xcb765432, \
0xcb7ffffc, \
0xcb7ffffd, \
0xcb7ffffe, \
0xcb7fffff, \
0xca800000, \
0xca800001, \
0xca800002, \
0xca800003, \
0xcaf65432, \
0xcafffffc, \
0xcafffffd, \
0xcafffffe, \
0xcaffffff, \
0xca000000, \
0xca000001, \
0xca000002, \
0xca000003, \
0xca765432, \
0xca7ffffc, \
0xca7ffffd, \
0xca7ffffe, \
0xca7fffff, \
\
/* Values relevant for conversions to integers (fcvt). */ \
0xdf000001, /* The value just below INT64_MIN. */ \
0xdf000000, /* INT64_MIN */ \
0xdeffffff, /* The value just above INT64_MIN. */ \
0x5effffff, /* The value just below INT64_MAX. */ \
/* INT64_MAX is not representable. */ \
0x5f000000, /* The value just above INT64_MAX. */ \
\
0x5f7fffff, /* The value just below UINT64_MAX. */ \
/* UINT64_MAX is not representable. */ \
0x5f800000, /* The value just above UINT64_MAX. */ \
\
0xcf000001, /* The value just below INT32_MIN. */ \
0xcf000000, /* INT32_MIN */ \
0xceffffff, /* The value just above INT32_MIN. */ \
0x4effffff, /* The value just below INT32_MAX. */ \
/* INT32_MAX is not representable. */ \
0x4f000000, /* The value just above INT32_MAX. */
#define INPUT_32BITS_FIXEDPOINT_CONVERSIONS \
0x00000000, \
0x00000001, \
0x00800000, \
0x00800001, \
0x00876543, \
0x01000000, \
0x01000001, \
0x01800000, \
0x01800001, \
0x02000000, \
0x02000001, \
0x02800000, \
0x02800001, \
0x03000000, \
0x40000000, \
0x7fffff80, \
0x7fffffc0, \
0x7fffffff, \
0x80000000, \
0x80000100, \
0xffffff00, \
0xffffff80, \
0xffffffff, \
0xffffffff
#define INPUT_64BITS_FIXEDPOINT_CONVERSIONS \
0x0000000000000000, \
0x0000000000000001, \
0x0000000040000000, \
0x0000000100000000, \
0x4000000000000000, \
0x4000000000000400, \
0x000000007fffffff, \
0x00000000ffffffff, \
0x0000000080000000, \
0x0000000080000001, \
0x7ffffffffffffc00, \
0x0123456789abcde0, \
0x0000000012345678, \
0xffffffffc0000000, \
0xffffffff00000000, \
0xc000000000000000, \
0x1000000000000000, \
0x1000000000000001, \
0x1000000000000080, \
0x1000000000000081, \
0x1000000000000100, \
0x1000000000000101, \
0x1000000000000180, \
0x1000000000000181, \
0x1000000000000200, \
0x1000000000000201, \
0x1000000000000280, \
0x1000000000000281, \
0x1000000000000300, \
0x8000000000000000, \
0x8000000000000001, \
0x8000000000000200, \
0x8000000000000201, \
0x8000000000000400, \
0x8000000000000401, \
0x8000000000000600, \
0x8000000000000601, \
0x8000000000000800, \
0x8000000000000801, \
0x8000000000000a00, \
0x8000000000000a01, \
0x8000000000000c00, \
0x7ffffffffffffe00, \
0x7fffffffffffffff, \
0xfffffffffffffc00, \
0xffffffffffffffff
// Float16 - Basic test values.
#define INPUT_FLOAT16_BASIC \
0x3c00, /* 1 0 01111 0000000000 */ \
0x3c01, /* Next smallest float after 1. 0 01111 0000000001 */ \
0xc000, /* -2 1 10000 0000000000 */ \
0x7bff, /* Maximum in half precision. 0 11110 1111111111 */ \
0x0400, /* Minimum positive normal. 0 00001 0000000000 */ \
0x03ff, /* Maximum subnormal. 0 00000 1111111111 */ \
0x0001, /* Minimum positive subnormal. 0 00000 0000000001 */ \
0x0000, /* 0 0 00000 0000000000 */ \
0x8000, /* -0 1 00000 0000000000 */ \
0x7c00, /* inf 0 11111 0000000000 */ \
0xfc00, /* -inf 1 11111 0000000000 */ \
0x3555, /* 1/3 0 01101 0101010101 */ \
0x3e00, /* 1.5 0 01111 1000000000 */ \
0x4900, /* 10 0 10010 0100000000 */ \
0xbe00, /* -1.5 1 01111 1000000000 */ \
0xc900, /* -10 1 10010 0100000000 */ \
// Float16 - Conversion test values.
// Note the second column in the comments shows what the value might
// look like if represented in single precision (32 bit) floating point format.
#define INPUT_FLOAT16_CONVERSIONS \
0x37ff, /* 0.4999999701976776 0x3effffff f16: 0 01101 1111111111 */ \
0x3800, /* 0.4999999701976776 0x3effffff f16: 0 01110 0000000000 */ \
0x3801, /* 0.5000000596046448 0x3f000001 f16: 0 01110 0000000001 */ \
0x3bff, /* 0.9999999403953552 0x3f7fffff f16: 0 01110 1111111111 */ \
0x7c7f, /* nan 0x7f8fffff f16: 0 11111 0001111111 */ \
0x7e91, /* nan 0x7fd23456 f16: 0 11111 1010010001 */ \
0x7e00, /* nan 0x7fc00000 f16: 0 11111 1000000000 */ \
0x7c91, /* nan 0x7f923456 f16: 0 11111 0010010001 */ \
0x8001, /* -1.175494350822288e-38 0x80800000 f16: 1 00000 0000000001 */ \
0xb7ff, /* -0.4999999701976776 0xbeffffff f16: 1 01101 1111111111 */ \
0xb800, /* -0.4999999701976776 0xbeffffff f16: 1 01110 0000000000 */ \
0xb801, /* -0.5000000596046448 0xbf000001 f16: 1 01110 0000000001 */ \
0xbbff, /* -0.9999999403953552 0xbf7fffff f16: 1 01110 1111111111 */ \
0xbc00, /* -0.9999999403953552 0xbf7fffff f16: 1 01111 0000000000 */ \
0xbc01, /* -1.00000011920929 0xbf800001 f16: 1 01111 0000000001 */ \
0xfc7f, /* -nan 0xff8fffff f16: 1 11111 0001111111 */ \
0xfe91, /* -nan 0xffd23456 f16: 1 11111 1010010001 */ \
0xfe00, /* -nan 0xffc00000 f16: 1 11111 1000000000 */ \
0xfc91, /* -nan 0xff923456 f16: 1 11111 0010010001 */ \
0xfbff, /* -8388608 0xcb000000 f16: 1 11110 1111111111 */ \
0x0002, /* 1.192092895507812e-07 0x00000002 f16: 0 00000 0000000010 */ \
0x8002, /* -1.192092895507812e-07 0x80000002 f16: 1 00000 0000000010 */ \
0x8fff, /* -0.0004880428314208984 0x8fffffff f16: 1 00011 1111111111 */ \
0xffff, /* -nan 0xffffffff f16: 1 11111 1111111111 */ \
// Some useful sets of values for testing vector SIMD operations.
#define INPUT_8BITS_IMM_LANECOUNT_FROMZERO \
0x00, \
0x01, \
0x02, \
0x03, \
0x04, \
0x05, \
0x06, \
0x07, \
0x08, \
0x09, \
0x0a, \
0x0b, \
0x0c, \
0x0d, \
0x0e, \
0x0f
#define INPUT_16BITS_IMM_LANECOUNT_FROMZERO \
0x00, \
0x01, \
0x02, \
0x03, \
0x04, \
0x05, \
0x06, \
0x07
#define INPUT_32BITS_IMM_LANECOUNT_FROMZERO \
0x00, \
0x01, \
0x02, \
0x03
#define INPUT_64BITS_IMM_LANECOUNT_FROMZERO \
0x00, \
0x01
#define INPUT_8BITS_IMM_TYPEWIDTH_BASE \
0x01, \
0x02, \
0x03, \
0x04, \
0x05, \
0x06, \
0x07
#define INPUT_16BITS_IMM_TYPEWIDTH_BASE \
INPUT_8BITS_IMM_TYPEWIDTH_BASE, \
0x08, \
0x09, \
0x0a, \
0x0b, \
0x0c, \
0x0d, \
0x0e, \
0x0f
#define INPUT_32BITS_IMM_TYPEWIDTH_BASE \
INPUT_16BITS_IMM_TYPEWIDTH_BASE, \
0x10, \
0x11, \
0x12, \
0x13, \
0x14, \
0x15, \
0x16, \
0x17, \
0x18, \
0x19, \
0x1a, \
0x1b, \
0x1c, \
0x1d, \
0x1e, \
0x1f
#define INPUT_64BITS_IMM_TYPEWIDTH_BASE \
INPUT_32BITS_IMM_TYPEWIDTH_BASE, \
0x20, \
0x21, \
0x22, \
0x23, \
0x24, \
0x25, \
0x26, \
0x27, \
0x28, \
0x29, \
0x2a, \
0x2b, \
0x2c, \
0x2d, \
0x2e, \
0x2f, \
0x30, \
0x31, \
0x32, \
0x33, \
0x34, \
0x35, \
0x36, \
0x37, \
0x38, \
0x39, \
0x3a, \
0x3b, \
0x3c, \
0x3d, \
0x3e, \
0x3f
#define INPUT_8BITS_IMM_TYPEWIDTH \
INPUT_8BITS_IMM_TYPEWIDTH_BASE, \
0x08
#define INPUT_16BITS_IMM_TYPEWIDTH \
INPUT_16BITS_IMM_TYPEWIDTH_BASE, \
0x10
#define INPUT_32BITS_IMM_TYPEWIDTH \
INPUT_32BITS_IMM_TYPEWIDTH_BASE, \
0x20
#define INPUT_64BITS_IMM_TYPEWIDTH \
INPUT_64BITS_IMM_TYPEWIDTH_BASE, \
0x40
#define INPUT_8BITS_IMM_TYPEWIDTH_FROMZERO \
0x00, \
INPUT_8BITS_IMM_TYPEWIDTH_BASE
#define INPUT_16BITS_IMM_TYPEWIDTH_FROMZERO \
0x00, \
INPUT_16BITS_IMM_TYPEWIDTH_BASE
#define INPUT_32BITS_IMM_TYPEWIDTH_FROMZERO \
0x00, \
INPUT_32BITS_IMM_TYPEWIDTH_BASE
#define INPUT_64BITS_IMM_TYPEWIDTH_FROMZERO \
0x00, \
INPUT_64BITS_IMM_TYPEWIDTH_BASE
#define INPUT_32BITS_IMM_TYPEWIDTH_FROMZERO_TOWIDTH \
0x00, \
INPUT_32BITS_IMM_TYPEWIDTH_BASE, \
0x20
#define INPUT_64BITS_IMM_TYPEWIDTH_FROMZERO_TOWIDTH \
0x00, \
INPUT_64BITS_IMM_TYPEWIDTH_BASE, \
0x40
#define INPUT_8BITS_BASIC \
0x00, \
0x01, \
0x02, \
0x08, \
0x33, \
0x55, \
0x7d, \
0x7e, \
0x7f, \
0x80, \
0x81, \
0x82, \
0x83, \
0xaa, \
0xcc, \
0xf8, \
0xfd, \
0xfe, \
0xff
// Basic values for vector SIMD operations of types 4H or 8H.
#define INPUT_16BITS_BASIC \
0x0000, \
0x0001, \
0x0002, \
0x0010, \
0x007d, \
0x007e, \
0x007f, \
0x3333, \
0x5555, \
0x7ffd, \
0x7ffe, \
0x7fff, \
0x8000, \
0x8001, \
0xaaaa, \
0xcccc, \
0xff80, \
0xff81, \
0xff82, \
0xff83, \
0xfff0, \
0xfffd, \
0xfffe, \
0xffff
// Basic values for vector SIMD operations of types 2S or 4S.
#define INPUT_32BITS_BASIC \
0x00000000, \
0x00000001, \
0x00000002, \
0x00000020, \
0x0000007d, \
0x0000007e, \
0x0000007f, \
0x00007ffd, \
0x00007ffe, \
0x00007fff, \
0x33333333, \
0x55555555, \
0x7ffffffd, \
0x7ffffffe, \
0x7fffffff, \
0x80000000, \
0x80000001, \
0xaaaaaaaa, \
0xcccccccc, \
0xffff8000, \
0xffff8001, \
0xffff8002, \
0xffff8003, \
0xffffff80, \
0xffffff81, \
0xffffff82, \
0xffffff83, \
0xffffffe0, \
0xfffffffd, \
0xfffffffe, \
0xffffffff
// Basic values for vector SIMD operations of type 2D
#define INPUT_64BITS_BASIC \
0x0000000000000000, \
0x0000000000000001, \
0x0000000000000002, \
0x0000000000000040, \
0x000000000000007d, \
0x000000000000007e, \
0x000000000000007f, \
0x0000000000007ffd, \
0x0000000000007ffe, \
0x0000000000007fff, \
0x000000007ffffffd, \
0x000000007ffffffe, \
0x000000007fffffff, \
0x3333333333333333, \
0x5555555555555555, \
0x7ffffffffffffffd, \
0x7ffffffffffffffe, \
0x7fffffffffffffff, \
0x8000000000000000, \
0x8000000000000001, \
0x8000000000000002, \
0x8000000000000003, \
0xaaaaaaaaaaaaaaaa, \
0xcccccccccccccccc, \
0xffffffff80000000, \
0xffffffff80000001, \
0xffffffff80000002, \
0xffffffff80000003, \
0xffffffffffff8000, \
0xffffffffffff8001, \
0xffffffffffff8002, \
0xffffffffffff8003, \
0xffffffffffffff80, \
0xffffffffffffff81, \
0xffffffffffffff82, \
0xffffffffffffff83, \
0xffffffffffffffc0, \
0xfffffffffffffffd, \
0xfffffffffffffffe, \
0xffffffffffffffff
// For most 2- and 3-op instructions, use only basic inputs. Because every
// combination is tested, the length of the output trace is very sensitive to
// the length of this list.
static const uint64_t kInputDoubleBasic[] = { INPUT_DOUBLE_BASIC };
static const uint32_t kInputFloatBasic[] = { INPUT_FLOAT_BASIC };
// TODO: Define different values when the traces file is split.
#define INPUT_DOUBLE_ACC_DESTINATION INPUT_DOUBLE_BASIC
#define INPUT_FLOAT_ACC_DESTINATION INPUT_FLOAT_BASIC
static const uint64_t kInputDoubleAccDestination[] = {
INPUT_DOUBLE_ACC_DESTINATION
};
static const uint32_t kInputFloatAccDestination[] = {
INPUT_FLOAT_ACC_DESTINATION
};
// For conversions, include several extra inputs.
static const uint64_t kInputDoubleConversions[] = {
INPUT_DOUBLE_BASIC
INPUT_DOUBLE_CONVERSIONS
};
static const uint32_t kInputFloatConversions[] = {
INPUT_FLOAT_BASIC
INPUT_FLOAT_CONVERSIONS
};
static const uint64_t kInput64bitsFixedPointConversions[] = {
INPUT_64BITS_BASIC,
INPUT_64BITS_FIXEDPOINT_CONVERSIONS
};
static const uint32_t kInput32bitsFixedPointConversions[] = {
INPUT_32BITS_BASIC,
INPUT_32BITS_FIXEDPOINT_CONVERSIONS
};
static const uint16_t kInputFloat16Conversions[] = {
INPUT_FLOAT16_BASIC
INPUT_FLOAT16_CONVERSIONS
};
static const uint8_t kInput8bitsBasic[] = {
INPUT_8BITS_BASIC
};
static const uint16_t kInput16bitsBasic[] = {
INPUT_16BITS_BASIC
};
static const uint32_t kInput32bitsBasic[] = {
INPUT_32BITS_BASIC
};
static const uint64_t kInput64bitsBasic[] = {
INPUT_64BITS_BASIC
};
static const int kInput8bitsImmTypeWidth[] = {
INPUT_8BITS_IMM_TYPEWIDTH
};
static const int kInput16bitsImmTypeWidth[] = {
INPUT_16BITS_IMM_TYPEWIDTH
};
static const int kInput32bitsImmTypeWidth[] = {
INPUT_32BITS_IMM_TYPEWIDTH
};
static const int kInput64bitsImmTypeWidth[] = {
INPUT_64BITS_IMM_TYPEWIDTH
};
static const int kInput8bitsImmTypeWidthFromZero[] = {
INPUT_8BITS_IMM_TYPEWIDTH_FROMZERO
};
static const int kInput16bitsImmTypeWidthFromZero[] = {
INPUT_16BITS_IMM_TYPEWIDTH_FROMZERO
};
static const int kInput32bitsImmTypeWidthFromZero[] = {
INPUT_32BITS_IMM_TYPEWIDTH_FROMZERO
};
static const int kInput64bitsImmTypeWidthFromZero[] = {
INPUT_64BITS_IMM_TYPEWIDTH_FROMZERO
};
static const int kInput32bitsImmTypeWidthFromZeroToWidth[] = {
INPUT_32BITS_IMM_TYPEWIDTH_FROMZERO_TOWIDTH
};
static const int kInput64bitsImmTypeWidthFromZeroToWidth[] = {
INPUT_64BITS_IMM_TYPEWIDTH_FROMZERO_TOWIDTH
};
// These immediate values are used only in 'shll{2}' tests.
static const int kInput8bitsImmSHLL[] = { 8 };
static const int kInput16bitsImmSHLL[] = { 16 };
static const int kInput32bitsImmSHLL[] = { 32 };
static const double kInputDoubleImmZero[] = { 0.0 };
static const int kInput8bitsImmZero[] = { 0 };
static const int kInput16bitsImmZero[] = { 0 };
static const int kInput32bitsImmZero[] = { 0 };
static const int kInput64bitsImmZero[] = { 0 };
static const int kInput8bitsImmLaneCountFromZero[] = {
INPUT_8BITS_IMM_LANECOUNT_FROMZERO
};
static const int kInput16bitsImmLaneCountFromZero[] = {
INPUT_16BITS_IMM_LANECOUNT_FROMZERO
};
static const int kInput32bitsImmLaneCountFromZero[] = {
INPUT_32BITS_IMM_LANECOUNT_FROMZERO
};
static const int kInput64bitsImmLaneCountFromZero[] = {
INPUT_64BITS_IMM_LANECOUNT_FROMZERO
};
// TODO: Define different values when the traces file is split.
#define INPUT_8BITS_ACC_DESTINATION INPUT_8BITS_BASIC
#define INPUT_16BITS_ACC_DESTINATION INPUT_16BITS_BASIC
#define INPUT_32BITS_ACC_DESTINATION INPUT_32BITS_BASIC
#define INPUT_64BITS_ACC_DESTINATION INPUT_64BITS_BASIC
static const uint8_t kInput8bitsAccDestination[] = {
INPUT_8BITS_ACC_DESTINATION
};
static const uint16_t kInput16bitsAccDestination[] = {
INPUT_16BITS_ACC_DESTINATION
};
static const uint32_t kInput32bitsAccDestination[] = {
INPUT_32BITS_ACC_DESTINATION
};
static const uint64_t kInput64bitsAccDestination[] = {
INPUT_64BITS_ACC_DESTINATION
};
static const int kInputHIndices[] = {
0, 1, 2, 3,
4, 5, 6, 7
};
static const int kInputSIndices[] = {
0, 1, 2, 3
};
static const int kInputDIndices[] = {
0, 1
};