/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "sysincludes.h"
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "gpt.h"
#include "gpt_misc.h"
#include "utility.h"
const static int SECTOR_SIZE = 512;
size_t CalculateEntriesSectors(GptHeader* h) {
size_t bytes = h->number_of_entries * h->size_of_entry;
size_t ret = (bytes + SECTOR_SIZE - 1) / SECTOR_SIZE;
return ret;
}
int CheckParameters(GptData *gpt)
{
/* Currently, we only support 512-byte sectors. */
if (gpt->sector_bytes != SECTOR_SIZE)
return GPT_ERROR_INVALID_SECTOR_SIZE;
/*
* gpt_drive_sectors should be reasonable. It cannot be unset, and it
* cannot differ from streaming_drive_sectors if the GPT structs are
* stored on same device.
*/
if (gpt->gpt_drive_sectors == 0 ||
(!(gpt->flags & GPT_FLAG_EXTERNAL) &&
gpt->gpt_drive_sectors != gpt->streaming_drive_sectors)) {
return GPT_ERROR_INVALID_SECTOR_NUMBER;
}
/*
* Sector count of a drive should be reasonable. If the given value is
* too small to contain basic GPT structure (PMBR + Headers + Entries),
* the value is wrong.
*/
if (gpt->gpt_drive_sectors <
(1 + 2 * (1 + MIN_NUMBER_OF_ENTRIES /
(SECTOR_SIZE / sizeof(GptEntry)))))
return GPT_ERROR_INVALID_SECTOR_NUMBER;
return GPT_SUCCESS;
}
uint32_t HeaderCrc(GptHeader *h)
{
uint32_t crc32, original_crc32;
/* Original CRC is calculated with the CRC field 0. */
original_crc32 = h->header_crc32;
h->header_crc32 = 0;
crc32 = Crc32((const uint8_t *)h, h->size);
h->header_crc32 = original_crc32;
return crc32;
}
int CheckHeader(GptHeader *h, int is_secondary,
uint64_t streaming_drive_sectors,
uint64_t gpt_drive_sectors, uint32_t flags)
{
if (!h)
return 1;
/*
* Make sure we're looking at a header of reasonable size before
* attempting to calculate CRC.
*/
if (Memcmp(h->signature, GPT_HEADER_SIGNATURE,
GPT_HEADER_SIGNATURE_SIZE) &&
Memcmp(h->signature, GPT_HEADER_SIGNATURE2,
GPT_HEADER_SIGNATURE_SIZE))
return 1;
if (h->revision != GPT_HEADER_REVISION)
return 1;
if (h->size < MIN_SIZE_OF_HEADER || h->size > MAX_SIZE_OF_HEADER)
return 1;
/* Check CRC before looking at remaining fields */
if (HeaderCrc(h) != h->header_crc32)
return 1;
/* Reserved fields must be zero. */
if (h->reserved_zero)
return 1;
/* Could check that padding is zero, but that doesn't matter to us. */
/*
* If entry size is different than our struct, we won't be able to
* parse it. Technically, any size 2^N where N>=7 is valid.
*/
if (h->size_of_entry != sizeof(GptEntry))
return 1;
if ((h->number_of_entries < MIN_NUMBER_OF_ENTRIES) ||
(h->number_of_entries > MAX_NUMBER_OF_ENTRIES) ||
(!(flags & GPT_FLAG_EXTERNAL) &&
h->number_of_entries != MAX_NUMBER_OF_ENTRIES))
return 1;
/*
* Check locations for the header and its entries. The primary
* immediately follows the PMBR, and is followed by its entries. The
* secondary is at the end of the drive, preceded by its entries.
*/
if (is_secondary) {
if (h->my_lba != gpt_drive_sectors - GPT_HEADER_SECTORS)
return 1;
if (h->entries_lba != h->my_lba - CalculateEntriesSectors(h))
return 1;
} else {
if (h->my_lba != GPT_PMBR_SECTORS)
return 1;
if (h->entries_lba < h->my_lba + 1)
return 1;
}
/* FirstUsableLBA <= LastUsableLBA. */
if (h->first_usable_lba > h->last_usable_lba)
return 1;
if (flags & GPT_FLAG_EXTERNAL) {
if (h->last_usable_lba >= streaming_drive_sectors) {
return 1;
}
return 0;
}
/*
* FirstUsableLBA must be after the end of the primary GPT table array.
* LastUsableLBA must be before the start of the secondary GPT table
* array.
*/
/* TODO(namnguyen): Also check for padding between header & entries. */
if (h->first_usable_lba < 2 + CalculateEntriesSectors(h))
return 1;
if (h->last_usable_lba >=
streaming_drive_sectors - 1 - CalculateEntriesSectors(h))
return 1;
/* Success */
return 0;
}
int IsKernelEntry(const GptEntry *e)
{
static Guid chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
return !Memcmp(&e->type, &chromeos_kernel, sizeof(Guid));
}
int CheckEntries(GptEntry *entries, GptHeader *h)
{
if (!entries)
return GPT_ERROR_INVALID_ENTRIES;
GptEntry *entry;
uint32_t crc32;
uint32_t i;
/* Check CRC before examining entries. */
crc32 = Crc32((const uint8_t *)entries,
h->size_of_entry * h->number_of_entries);
if (crc32 != h->entries_crc32)
return GPT_ERROR_CRC_CORRUPTED;
/* Check all entries. */
for (i = 0, entry = entries; i < h->number_of_entries; i++, entry++) {
GptEntry *e2;
uint32_t i2;
if (IsUnusedEntry(entry))
continue;
/* Entry must be in valid region. */
if ((entry->starting_lba < h->first_usable_lba) ||
(entry->ending_lba > h->last_usable_lba) ||
(entry->ending_lba < entry->starting_lba))
return GPT_ERROR_OUT_OF_REGION;
/* Entry must not overlap other entries. */
for (i2 = 0, e2 = entries; i2 < h->number_of_entries;
i2++, e2++) {
if (i2 == i || IsUnusedEntry(e2))
continue;
if ((entry->starting_lba >= e2->starting_lba) &&
(entry->starting_lba <= e2->ending_lba))
return GPT_ERROR_START_LBA_OVERLAP;
if ((entry->ending_lba >= e2->starting_lba) &&
(entry->ending_lba <= e2->ending_lba))
return GPT_ERROR_END_LBA_OVERLAP;
/* UniqueGuid field must be unique. */
if (0 == Memcmp(&entry->unique, &e2->unique,
sizeof(Guid)))
return GPT_ERROR_DUP_GUID;
}
}
/* Success */
return 0;
}
int HeaderFieldsSame(GptHeader *h1, GptHeader *h2)
{
if (Memcmp(h1->signature, h2->signature, sizeof(h1->signature)))
return 1;
if (h1->revision != h2->revision)
return 1;
if (h1->size != h2->size)
return 1;
if (h1->reserved_zero != h2->reserved_zero)
return 1;
if (h1->first_usable_lba != h2->first_usable_lba)
return 1;
if (h1->last_usable_lba != h2->last_usable_lba)
return 1;
if (Memcmp(&h1->disk_uuid, &h2->disk_uuid, sizeof(Guid)))
return 1;
if (h1->number_of_entries != h2->number_of_entries)
return 1;
if (h1->size_of_entry != h2->size_of_entry)
return 1;
if (h1->entries_crc32 != h2->entries_crc32)
return 1;
return 0;
}
int GptSanityCheck(GptData *gpt)
{
int retval;
GptHeader *header1 = (GptHeader *)(gpt->primary_header);
GptHeader *header2 = (GptHeader *)(gpt->secondary_header);
GptEntry *entries1 = (GptEntry *)(gpt->primary_entries);
GptEntry *entries2 = (GptEntry *)(gpt->secondary_entries);
GptHeader *goodhdr = NULL;
gpt->valid_headers = 0;
gpt->valid_entries = 0;
retval = CheckParameters(gpt);
if (retval != GPT_SUCCESS)
return retval;
/* Check both headers; we need at least one valid header. */
if (0 == CheckHeader(header1, 0, gpt->streaming_drive_sectors,
gpt->gpt_drive_sectors, gpt->flags)) {
gpt->valid_headers |= MASK_PRIMARY;
goodhdr = header1;
}
if (0 == CheckHeader(header2, 1, gpt->streaming_drive_sectors,
gpt->gpt_drive_sectors, gpt->flags)) {
gpt->valid_headers |= MASK_SECONDARY;
if (!goodhdr)
goodhdr = header2;
}
if (!gpt->valid_headers)
return GPT_ERROR_INVALID_HEADERS;
/*
* Check if entries are valid.
*
* Note that we use the same header in both checks. This way we'll
* catch the case where (header1,entries1) and (header2,entries2) are
* both valid, but (entries1 != entries2).
*/
if (0 == CheckEntries(entries1, goodhdr))
gpt->valid_entries |= MASK_PRIMARY;
if (0 == CheckEntries(entries2, goodhdr))
gpt->valid_entries |= MASK_SECONDARY;
/*
* If both headers are good but neither entries were good, check the
* entries with the secondary header.
*/
if (MASK_BOTH == gpt->valid_headers && !gpt->valid_entries) {
if (0 == CheckEntries(entries1, header2))
gpt->valid_entries |= MASK_PRIMARY;
if (0 == CheckEntries(entries2, header2))
gpt->valid_entries |= MASK_SECONDARY;
if (gpt->valid_entries) {
/*
* Sure enough, header2 had a good CRC for one of the
* entries. Mark header1 invalid, so we'll update its
* entries CRC.
*/
gpt->valid_headers &= ~MASK_PRIMARY;
goodhdr = header2;
}
}
if (!gpt->valid_entries)
return GPT_ERROR_INVALID_ENTRIES;
/*
* Now that we've determined which header contains a good CRC for
* the entries, make sure the headers are otherwise identical.
*/
if (MASK_BOTH == gpt->valid_headers &&
0 != HeaderFieldsSame(header1, header2))
gpt->valid_headers &= ~MASK_SECONDARY;
return GPT_SUCCESS;
}
void GptRepair(GptData *gpt)
{
GptHeader *header1 = (GptHeader *)(gpt->primary_header);
GptHeader *header2 = (GptHeader *)(gpt->secondary_header);
GptEntry *entries1 = (GptEntry *)(gpt->primary_entries);
GptEntry *entries2 = (GptEntry *)(gpt->secondary_entries);
int entries_size;
/* Need at least one good header and one good set of entries. */
if (MASK_NONE == gpt->valid_headers || MASK_NONE == gpt->valid_entries)
return;
/* Repair headers if necessary */
if (MASK_PRIMARY == gpt->valid_headers) {
/* Primary is good, secondary is bad */
Memcpy(header2, header1, sizeof(GptHeader));
header2->my_lba = gpt->gpt_drive_sectors - GPT_HEADER_SECTORS;
header2->alternate_lba = GPT_PMBR_SECTORS; /* Second sector. */
header2->entries_lba = header2->my_lba - CalculateEntriesSectors(header1);
header2->header_crc32 = HeaderCrc(header2);
gpt->modified |= GPT_MODIFIED_HEADER2;
}
else if (MASK_SECONDARY == gpt->valid_headers) {
/* Secondary is good, primary is bad */
Memcpy(header1, header2, sizeof(GptHeader));
header1->my_lba = GPT_PMBR_SECTORS; /* Second sector. */
header1->alternate_lba =
gpt->streaming_drive_sectors - GPT_HEADER_SECTORS;
/* TODO (namnguyen): Preserve (header, entries) padding. */
header1->entries_lba = header1->my_lba + 1;
header1->header_crc32 = HeaderCrc(header1);
gpt->modified |= GPT_MODIFIED_HEADER1;
}
gpt->valid_headers = MASK_BOTH;
/* Repair entries if necessary */
entries_size = header1->size_of_entry * header1->number_of_entries;
if (MASK_PRIMARY == gpt->valid_entries) {
/* Primary is good, secondary is bad */
Memcpy(entries2, entries1, entries_size);
gpt->modified |= GPT_MODIFIED_ENTRIES2;
}
else if (MASK_SECONDARY == gpt->valid_entries) {
/* Secondary is good, primary is bad */
Memcpy(entries1, entries2, entries_size);
gpt->modified |= GPT_MODIFIED_ENTRIES1;
}
gpt->valid_entries = MASK_BOTH;
}
int GetEntrySuccessful(const GptEntry *e)
{
return (e->attrs.fields.gpt_att & CGPT_ATTRIBUTE_SUCCESSFUL_MASK) >>
CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
}
int GetEntryPriority(const GptEntry *e)
{
return (e->attrs.fields.gpt_att & CGPT_ATTRIBUTE_PRIORITY_MASK) >>
CGPT_ATTRIBUTE_PRIORITY_OFFSET;
}
int GetEntryTries(const GptEntry *e)
{
return (e->attrs.fields.gpt_att & CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET;
}
void SetEntrySuccessful(GptEntry *e, int successful)
{
if (successful)
e->attrs.fields.gpt_att |= CGPT_ATTRIBUTE_SUCCESSFUL_MASK;
else
e->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_SUCCESSFUL_MASK;
}
void SetEntryPriority(GptEntry *e, int priority)
{
e->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_PRIORITY_MASK;
e->attrs.fields.gpt_att |=
(priority << CGPT_ATTRIBUTE_PRIORITY_OFFSET) &
CGPT_ATTRIBUTE_PRIORITY_MASK;
}
void SetEntryTries(GptEntry *e, int tries)
{
e->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_TRIES_MASK;
e->attrs.fields.gpt_att |= (tries << CGPT_ATTRIBUTE_TRIES_OFFSET) &
CGPT_ATTRIBUTE_TRIES_MASK;
}
void GetCurrentKernelUniqueGuid(GptData *gpt, void *dest)
{
GptEntry *entries = (GptEntry *)gpt->primary_entries;
GptEntry *e = entries + gpt->current_kernel;
Memcpy(dest, &e->unique, sizeof(Guid));
}
void GptModified(GptData *gpt) {
GptHeader *header = (GptHeader *)gpt->primary_header;
/* Update the CRCs */
header->entries_crc32 = Crc32(gpt->primary_entries,
header->size_of_entry *
header->number_of_entries);
header->header_crc32 = HeaderCrc(header);
gpt->modified |= GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1;
/*
* Use the repair function to update the other copy of the GPT. This
* is a tad inefficient, but is much faster than the disk I/O to update
* the GPT on disk so it doesn't matter.
*/
gpt->valid_headers = MASK_PRIMARY;
gpt->valid_entries = MASK_PRIMARY;
GptRepair(gpt);
}
const char *GptErrorText(int error_code)
{
switch(error_code) {
case GPT_SUCCESS:
return "none";
case GPT_ERROR_NO_VALID_KERNEL:
return "Invalid kernel";
case GPT_ERROR_INVALID_HEADERS:
return "Invalid headers";
case GPT_ERROR_INVALID_ENTRIES:
return "Invalid entries";
case GPT_ERROR_INVALID_SECTOR_SIZE:
return "Invalid sector size";
case GPT_ERROR_INVALID_SECTOR_NUMBER:
return "Invalid sector number";
case GPT_ERROR_INVALID_UPDATE_TYPE:
return "Invalid update type";
case GPT_ERROR_CRC_CORRUPTED:
return "Entries' crc corrupted";
case GPT_ERROR_OUT_OF_REGION:
return "Entry outside of valid region";
case GPT_ERROR_START_LBA_OVERLAP:
return "Starting LBA overlaps";
case GPT_ERROR_END_LBA_OVERLAP:
return "Ending LBA overlaps";
case GPT_ERROR_DUP_GUID:
return "Duplicated GUID";
case GPT_ERROR_INVALID_FLASH_GEOMETRY:
return "Invalid flash geometry";
case GPT_ERROR_NO_SUCH_ENTRY:
return "No entry found";
default:
break;
};
return "Unknown";
}