/* -*- mode: C; c-basic-offset: 3; -*- */
/*--------------------------------------------------------------------*/
/*--- Implementation of POSIX signals. m_signals.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2015 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
/*
Signal handling.
There are 4 distinct classes of signal:
1. Synchronous, instruction-generated (SIGILL, FPE, BUS, SEGV and
TRAP): these are signals as a result of an instruction fault. If
we get one while running client code, then we just do the
appropriate thing. If it happens while running Valgrind code, then
it indicates a Valgrind bug. Note that we "manually" implement
automatic stack growth, such that if a fault happens near the
client process stack, it is extended in the same way the kernel
would, and the fault is never reported to the client program.
2. Asynchronous variants of the above signals: If the kernel tries
to deliver a sync signal while it is blocked, it just kills the
process. Therefore, we can't block those signals if we want to be
able to report on bugs in Valgrind. This means that we're also
open to receiving those signals from other processes, sent with
kill. We could get away with just dropping them, since they aren't
really signals that processes send to each other.
3. Synchronous, general signals. If a thread/process sends itself
a signal with kill, its expected to be synchronous: ie, the signal
will have been delivered by the time the syscall finishes.
4. Asynchronous, general signals. All other signals, sent by
another process with kill. These are generally blocked, except for
two special cases: we poll for them each time we're about to run a
thread for a time quanta, and while running blocking syscalls.
In addition, we reserve one signal for internal use: SIGVGKILL.
SIGVGKILL is used to terminate threads. When one thread wants
another to exit, it will set its exitreason and send it SIGVGKILL
if it appears to be blocked in a syscall.
We use a kernel thread for each application thread. When the
thread allows itself to be open to signals, it sets the thread
signal mask to what the client application set it to. This means
that we get the kernel to do all signal routing: under Valgrind,
signals get delivered in the same way as in the non-Valgrind case
(the exception being for the sync signal set, since they're almost
always unblocked).
*/
/*
Some more details...
First off, we take note of the client's requests (via sys_sigaction
and sys_sigprocmask) to set the signal state (handlers for each
signal, which are process-wide, + a mask for each signal, which is
per-thread). This info is duly recorded in the SCSS (static Client
signal state) in m_signals.c, and if the client later queries what
the state is, we merely fish the relevant info out of SCSS and give
it back.
However, we set the real signal state in the kernel to something
entirely different. This is recorded in SKSS, the static Kernel
signal state. What's nice (to the extent that anything is nice w.r.t
signals) is that there's a pure function to calculate SKSS from SCSS,
calculate_SKSS_from_SCSS. So when the client changes SCSS then we
recompute the associated SKSS and apply any changes from the previous
SKSS through to the kernel.
Now, that said, the general scheme we have now is, that regardless of
what the client puts into the SCSS (viz, asks for), what we would
like to do is as follows:
(1) run code on the virtual CPU with all signals blocked
(2) at convenient moments for us (that is, when the VCPU stops, and
control is back with the scheduler), ask the kernel "do you have
any signals for me?" and if it does, collect up the info, and
deliver them to the client (by building sigframes).
And that's almost what we do. The signal polling is done by
VG_(poll_signals), which calls through to VG_(sigtimedwait_zero) to
do the dirty work. (of which more later).
By polling signals, rather than catching them, we get to deal with
them only at convenient moments, rather than having to recover from
taking a signal while generated code is running.
Now unfortunately .. the above scheme only works for so-called async
signals. An async signal is one which isn't associated with any
particular instruction, eg Control-C (SIGINT). For those, it doesn't
matter if we don't deliver the signal to the client immediately; it
only matters that we deliver it eventually. Hence polling is OK.
But the other group -- sync signals -- are all related by the fact
that they are various ways for the host CPU to fail to execute an
instruction: SIGILL, SIGSEGV, SIGFPU. And they can't be deferred,
because obviously if a host instruction can't execute, well then we
have to immediately do Plan B, whatever that is.
So the next approximation of what happens is:
(1) run code on vcpu with all async signals blocked
(2) at convenient moments (when NOT running the vcpu), poll for async
signals.
(1) and (2) together imply that if the host does deliver a signal to
async_signalhandler while the VCPU is running, something's
seriously wrong.
(3) when running code on vcpu, don't block sync signals. Instead
register sync_signalhandler and catch any such via that. Of
course, that means an ugly recovery path if we do -- the
sync_signalhandler has to longjump, exiting out of the generated
code, and the assembly-dispatcher thingy that runs it, and gets
caught in m_scheduler, which then tells m_signals to deliver the
signal.
Now naturally (ha ha) even that might be tolerable, but there's
something worse: dealing with signals delivered to threads in
syscalls.
Obviously from the above, SKSS's signal mask (viz, what we really run
with) is way different from SCSS's signal mask (viz, what the client
thread thought it asked for). (eg) It may well be that the client
did not block control-C, so that it just expects to drop dead if it
receives ^C whilst blocked in a syscall, but by default we are
running with all async signals blocked, and so that signal could be
arbitrarily delayed, or perhaps even lost (not sure).
So what we have to do, when doing any syscall which SfMayBlock, is to
quickly switch in the SCSS-specified signal mask just before the
syscall, and switch it back just afterwards, and hope that we don't
get caught up in some weird race condition. This is the primary
purpose of the ultra-magical pieces of assembly code in
coregrind/m_syswrap/syscall-<plat>.S
-----------
The ways in which V can come to hear of signals that need to be
forwarded to the client as are follows:
sync signals: can arrive at any time whatsoever. These are caught
by sync_signalhandler
async signals:
if running generated code
then these are blocked, so we don't expect to catch them in
async_signalhandler
else
if thread is blocked in a syscall marked SfMayBlock
then signals may be delivered to async_sighandler, since we
temporarily unblocked them for the duration of the syscall,
by using the real (SCSS) mask for this thread
else we're doing misc housekeeping activities (eg, making a translation,
washing our hair, etc). As in the normal case, these signals are
blocked, but we can and do poll for them using VG_(poll_signals).
Now, re VG_(poll_signals), it polls the kernel by doing
VG_(sigtimedwait_zero). This is trivial on Linux, since it's just a
syscall. But on Darwin and AIX, we have to cobble together the
functionality in a tedious, longwinded and probably error-prone way.
Finally, if a gdb is debugging the process under valgrind,
the signal can be ignored if gdb tells this. So, before resuming the
scheduler/delivering the signal, a call to VG_(gdbserver_report_signal)
is done. If this returns True, the signal is delivered.
*/
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_debuglog.h"
#include "pub_core_threadstate.h"
#include "pub_core_xarray.h"
#include "pub_core_clientstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_errormgr.h"
#include "pub_core_gdbserver.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_machine.h"
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_signals.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_create)()
#include "pub_core_stacks.h" // For VG_(change_stack)()
#include "pub_core_stacktrace.h" // For VG_(get_and_pp_StackTrace)()
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_coredump.h"
/* ---------------------------------------------------------------------
Forwards decls.
------------------------------------------------------------------ */
static void sync_signalhandler ( Int sigNo, vki_siginfo_t *info,
struct vki_ucontext * );
static void async_signalhandler ( Int sigNo, vki_siginfo_t *info,
struct vki_ucontext * );
static void sigvgkill_handler ( Int sigNo, vki_siginfo_t *info,
struct vki_ucontext * );
/* Maximum usable signal. */
Int VG_(max_signal) = _VKI_NSIG;
#define N_QUEUED_SIGNALS 8
typedef struct SigQueue {
Int next;
vki_siginfo_t sigs[N_QUEUED_SIGNALS];
} SigQueue;
/* ------ Macros for pulling stuff out of ucontexts ------ */
/* Q: what does VG_UCONTEXT_SYSCALL_SYSRES do? A: let's suppose the
machine context (uc) reflects the situation that a syscall had just
completed, quite literally -- that is, that the program counter was
now at the instruction following the syscall. (or we're slightly
downstream, but we're sure no relevant register has yet changed
value.) Then VG_UCONTEXT_SYSCALL_SYSRES returns a SysRes reflecting
the result of the syscall; it does this by fishing relevant bits of
the machine state out of the uc. Of course if the program counter
was somewhere else entirely then the result is likely to be
meaningless, so the caller of VG_UCONTEXT_SYSCALL_SYSRES has to be
very careful to pay attention to the results only when it is sure
that the said constraint on the program counter is indeed valid. */
#if defined(VGP_x86_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_mcontext.eip)
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.esp)
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.eax into a SysRes. */ \
VG_(mk_SysRes_x86_linux)( (uc)->uc_mcontext.eax )
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (ULong)((uc)->uc_mcontext.eip); \
(srP)->r_sp = (ULong)((uc)->uc_mcontext.esp); \
(srP)->misc.X86.r_ebp = (uc)->uc_mcontext.ebp; \
}
#elif defined(VGP_amd64_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_mcontext.rip)
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.rsp)
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.rax into a SysRes. */ \
VG_(mk_SysRes_amd64_linux)( (uc)->uc_mcontext.rax )
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.rip; \
(srP)->r_sp = (uc)->uc_mcontext.rsp; \
(srP)->misc.AMD64.r_rbp = (uc)->uc_mcontext.rbp; \
}
#elif defined(VGP_ppc32_linux)
/* Comments from Paul Mackerras 25 Nov 05:
> I'm tracking down a problem where V's signal handling doesn't
> work properly on a ppc440gx running 2.4.20. The problem is that
> the ucontext being presented to V's sighandler seems completely
> bogus.
> V's kernel headers and hence ucontext layout are derived from
> 2.6.9. I compared include/asm-ppc/ucontext.h from 2.4.20 and
> 2.6.13.
> Can I just check my interpretation: the 2.4.20 one contains the
> uc_mcontext field in line, whereas the 2.6.13 one has a pointer
> to said struct? And so if V is using the 2.6.13 struct then a
> 2.4.20 one will make no sense to it.
Not quite... what is inline in the 2.4.20 version is a
sigcontext_struct, not an mcontext. The sigcontext looks like
this:
struct sigcontext_struct {
unsigned long _unused[4];
int signal;
unsigned long handler;
unsigned long oldmask;
struct pt_regs *regs;
};
The regs pointer of that struct ends up at the same offset as the
uc_regs of the 2.6 struct ucontext, and a struct pt_regs is the
same as the mc_gregs field of the mcontext. In fact the integer
regs are followed in memory by the floating point regs on 2.4.20.
Thus if you are using the 2.6 definitions, it should work on 2.4.20
provided that you go via uc->uc_regs rather than looking in
uc->uc_mcontext directly.
There is another subtlety: 2.4.20 doesn't save the vector regs when
delivering a signal, and 2.6.x only saves the vector regs if the
process has ever used an altivec instructions. If 2.6.x does save
the vector regs, it sets the MSR_VEC bit in
uc->uc_regs->mc_gregs[PT_MSR], otherwise it clears it. That bit
will always be clear under 2.4.20. So you can use that bit to tell
whether uc->uc_regs->mc_vregs is valid. */
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_regs->mc_gregs[VKI_PT_NIP])
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_regs->mc_gregs[VKI_PT_R1])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the values in uc_mcontext r3,cr into a SysRes. */ \
VG_(mk_SysRes_ppc32_linux)( \
(uc)->uc_regs->mc_gregs[VKI_PT_R3], \
(((uc)->uc_regs->mc_gregs[VKI_PT_CCR] >> 28) & 1) \
)
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (ULong)((uc)->uc_regs->mc_gregs[VKI_PT_NIP]); \
(srP)->r_sp = (ULong)((uc)->uc_regs->mc_gregs[VKI_PT_R1]); \
(srP)->misc.PPC32.r_lr = (uc)->uc_regs->mc_gregs[VKI_PT_LNK]; \
}
#elif defined(VGP_ppc64be_linux) || defined(VGP_ppc64le_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_mcontext.gp_regs[VKI_PT_NIP])
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.gp_regs[VKI_PT_R1])
/* Dubious hack: if there is an error, only consider the lowest 8
bits of r3. memcheck/tests/post-syscall shows a case where an
interrupted syscall should have produced a ucontext with 0x4
(VKI_EINTR) in r3 but is in fact producing 0x204. */
/* Awaiting clarification from PaulM. Evidently 0x204 is
ERESTART_RESTARTBLOCK, which shouldn't have made it into user
space. */
static inline SysRes VG_UCONTEXT_SYSCALL_SYSRES( struct vki_ucontext* uc )
{
ULong err = (uc->uc_mcontext.gp_regs[VKI_PT_CCR] >> 28) & 1;
ULong r3 = uc->uc_mcontext.gp_regs[VKI_PT_R3];
if (err) r3 &= 0xFF;
return VG_(mk_SysRes_ppc64_linux)( r3, err );
}
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.gp_regs[VKI_PT_NIP]; \
(srP)->r_sp = (uc)->uc_mcontext.gp_regs[VKI_PT_R1]; \
(srP)->misc.PPC64.r_lr = (uc)->uc_mcontext.gp_regs[VKI_PT_LNK]; \
}
#elif defined(VGP_arm_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_mcontext.arm_pc)
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.arm_sp)
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.rax into a SysRes. */ \
VG_(mk_SysRes_arm_linux)( (uc)->uc_mcontext.arm_r0 )
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.arm_pc; \
(srP)->r_sp = (uc)->uc_mcontext.arm_sp; \
(srP)->misc.ARM.r14 = (uc)->uc_mcontext.arm_lr; \
(srP)->misc.ARM.r12 = (uc)->uc_mcontext.arm_ip; \
(srP)->misc.ARM.r11 = (uc)->uc_mcontext.arm_fp; \
(srP)->misc.ARM.r7 = (uc)->uc_mcontext.arm_r7; \
}
#elif defined(VGP_arm64_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((UWord)((uc)->uc_mcontext.pc))
# define VG_UCONTEXT_STACK_PTR(uc) ((UWord)((uc)->uc_mcontext.sp))
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.regs[0] into a SysRes. */ \
VG_(mk_SysRes_arm64_linux)( (uc)->uc_mcontext.regs[0] )
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.pc; \
(srP)->r_sp = (uc)->uc_mcontext.sp; \
(srP)->misc.ARM64.x29 = (uc)->uc_mcontext.regs[29]; \
(srP)->misc.ARM64.x30 = (uc)->uc_mcontext.regs[30]; \
}
#elif defined(VGP_x86_darwin)
static inline Addr VG_UCONTEXT_INSTR_PTR( void* ucV ) {
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext32* mc = uc->uc_mcontext;
struct __darwin_i386_thread_state* ss = &mc->__ss;
return ss->__eip;
}
static inline Addr VG_UCONTEXT_STACK_PTR( void* ucV ) {
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext32* mc = uc->uc_mcontext;
struct __darwin_i386_thread_state* ss = &mc->__ss;
return ss->__esp;
}
static inline SysRes VG_UCONTEXT_SYSCALL_SYSRES( void* ucV,
UWord scclass ) {
/* this is complicated by the problem that there are 3 different
kinds of syscalls, each with its own return convention.
NB: scclass is a host word, hence UWord is good for both
amd64-darwin and x86-darwin */
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext32* mc = uc->uc_mcontext;
struct __darwin_i386_thread_state* ss = &mc->__ss;
/* duplicates logic in m_syswrap.getSyscallStatusFromGuestState */
UInt carry = 1 & ss->__eflags;
UInt err = 0;
UInt wLO = 0;
UInt wHI = 0;
switch (scclass) {
case VG_DARWIN_SYSCALL_CLASS_UNIX:
err = carry;
wLO = ss->__eax;
wHI = ss->__edx;
break;
case VG_DARWIN_SYSCALL_CLASS_MACH:
wLO = ss->__eax;
break;
case VG_DARWIN_SYSCALL_CLASS_MDEP:
wLO = ss->__eax;
break;
default:
vg_assert(0);
break;
}
return VG_(mk_SysRes_x86_darwin)( scclass, err ? True : False,
wHI, wLO );
}
static inline
void VG_UCONTEXT_TO_UnwindStartRegs( UnwindStartRegs* srP,
void* ucV ) {
ucontext_t* uc = (ucontext_t*)(ucV);
struct __darwin_mcontext32* mc = uc->uc_mcontext;
struct __darwin_i386_thread_state* ss = &mc->__ss;
srP->r_pc = (ULong)(ss->__eip);
srP->r_sp = (ULong)(ss->__esp);
srP->misc.X86.r_ebp = (UInt)(ss->__ebp);
}
#elif defined(VGP_amd64_darwin)
static inline Addr VG_UCONTEXT_INSTR_PTR( void* ucV ) {
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext64* mc = uc->uc_mcontext;
struct __darwin_x86_thread_state64* ss = &mc->__ss;
return ss->__rip;
}
static inline Addr VG_UCONTEXT_STACK_PTR( void* ucV ) {
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext64* mc = uc->uc_mcontext;
struct __darwin_x86_thread_state64* ss = &mc->__ss;
return ss->__rsp;
}
static inline SysRes VG_UCONTEXT_SYSCALL_SYSRES( void* ucV,
UWord scclass ) {
/* This is copied from the x86-darwin case. I'm not sure if it
is correct. */
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext64* mc = uc->uc_mcontext;
struct __darwin_x86_thread_state64* ss = &mc->__ss;
/* duplicates logic in m_syswrap.getSyscallStatusFromGuestState */
ULong carry = 1 & ss->__rflags;
ULong err = 0;
ULong wLO = 0;
ULong wHI = 0;
switch (scclass) {
case VG_DARWIN_SYSCALL_CLASS_UNIX:
err = carry;
wLO = ss->__rax;
wHI = ss->__rdx;
break;
case VG_DARWIN_SYSCALL_CLASS_MACH:
wLO = ss->__rax;
break;
case VG_DARWIN_SYSCALL_CLASS_MDEP:
wLO = ss->__rax;
break;
default:
vg_assert(0);
break;
}
return VG_(mk_SysRes_amd64_darwin)( scclass, err ? True : False,
wHI, wLO );
}
static inline
void VG_UCONTEXT_TO_UnwindStartRegs( UnwindStartRegs* srP,
void* ucV ) {
ucontext_t* uc = (ucontext_t*)ucV;
struct __darwin_mcontext64* mc = uc->uc_mcontext;
struct __darwin_x86_thread_state64* ss = &mc->__ss;
srP->r_pc = (ULong)(ss->__rip);
srP->r_sp = (ULong)(ss->__rsp);
srP->misc.AMD64.r_rbp = (ULong)(ss->__rbp);
}
#elif defined(VGP_s390x_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_mcontext.regs.psw.addr)
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.regs.gprs[15])
# define VG_UCONTEXT_FRAME_PTR(uc) ((uc)->uc_mcontext.regs.gprs[11])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
VG_(mk_SysRes_s390x_linux)((uc)->uc_mcontext.regs.gprs[2])
# define VG_UCONTEXT_LINK_REG(uc) ((uc)->uc_mcontext.regs.gprs[14])
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (ULong)((uc)->uc_mcontext.regs.psw.addr); \
(srP)->r_sp = (ULong)((uc)->uc_mcontext.regs.gprs[15]); \
(srP)->misc.S390X.r_fp = (uc)->uc_mcontext.regs.gprs[11]; \
(srP)->misc.S390X.r_lr = (uc)->uc_mcontext.regs.gprs[14]; \
}
#elif defined(VGP_mips32_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((UWord)(((uc)->uc_mcontext.sc_pc)))
# define VG_UCONTEXT_STACK_PTR(uc) ((UWord)((uc)->uc_mcontext.sc_regs[29]))
# define VG_UCONTEXT_FRAME_PTR(uc) ((uc)->uc_mcontext.sc_regs[30])
# define VG_UCONTEXT_SYSCALL_NUM(uc) ((uc)->uc_mcontext.sc_regs[2])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.rax into a SysRes. */ \
VG_(mk_SysRes_mips32_linux)( (uc)->uc_mcontext.sc_regs[2], \
(uc)->uc_mcontext.sc_regs[3], \
(uc)->uc_mcontext.sc_regs[7])
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.sc_pc; \
(srP)->r_sp = (uc)->uc_mcontext.sc_regs[29]; \
(srP)->misc.MIPS32.r30 = (uc)->uc_mcontext.sc_regs[30]; \
(srP)->misc.MIPS32.r31 = (uc)->uc_mcontext.sc_regs[31]; \
(srP)->misc.MIPS32.r28 = (uc)->uc_mcontext.sc_regs[28]; \
}
#elif defined(VGP_mips64_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) (((uc)->uc_mcontext.sc_pc))
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.sc_regs[29])
# define VG_UCONTEXT_FRAME_PTR(uc) ((uc)->uc_mcontext.sc_regs[30])
# define VG_UCONTEXT_SYSCALL_NUM(uc) ((uc)->uc_mcontext.sc_regs[2])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.rax into a SysRes. */ \
VG_(mk_SysRes_mips64_linux)((uc)->uc_mcontext.sc_regs[2], \
(uc)->uc_mcontext.sc_regs[3], \
(uc)->uc_mcontext.sc_regs[7])
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.sc_pc; \
(srP)->r_sp = (uc)->uc_mcontext.sc_regs[29]; \
(srP)->misc.MIPS64.r30 = (uc)->uc_mcontext.sc_regs[30]; \
(srP)->misc.MIPS64.r31 = (uc)->uc_mcontext.sc_regs[31]; \
(srP)->misc.MIPS64.r28 = (uc)->uc_mcontext.sc_regs[28]; \
}
#elif defined(VGP_tilegx_linux)
# define VG_UCONTEXT_INSTR_PTR(uc) ((uc)->uc_mcontext.pc)
# define VG_UCONTEXT_STACK_PTR(uc) ((uc)->uc_mcontext.sp)
# define VG_UCONTEXT_FRAME_PTR(uc) ((uc)->uc_mcontext.gregs[52])
# define VG_UCONTEXT_SYSCALL_NUM(uc) ((uc)->uc_mcontext.gregs[10])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
/* Convert the value in uc_mcontext.rax into a SysRes. */ \
VG_(mk_SysRes_tilegx_linux)((uc)->uc_mcontext.gregs[0])
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.pc; \
(srP)->r_sp = (uc)->uc_mcontext.sp; \
(srP)->misc.TILEGX.r52 = (uc)->uc_mcontext.gregs[52]; \
(srP)->misc.TILEGX.r55 = (uc)->uc_mcontext.lr; \
}
#elif defined(VGP_x86_solaris)
# define VG_UCONTEXT_INSTR_PTR(uc) ((Addr)(uc)->uc_mcontext.gregs[VKI_EIP])
# define VG_UCONTEXT_STACK_PTR(uc) ((Addr)(uc)->uc_mcontext.gregs[VKI_UESP])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
VG_(mk_SysRes_x86_solaris)((uc)->uc_mcontext.gregs[VKI_EFL] & 1, \
(uc)->uc_mcontext.gregs[VKI_EAX], \
(uc)->uc_mcontext.gregs[VKI_EFL] & 1 \
? 0 : (uc)->uc_mcontext.gregs[VKI_EDX])
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (ULong)(uc)->uc_mcontext.gregs[VKI_EIP]; \
(srP)->r_sp = (ULong)(uc)->uc_mcontext.gregs[VKI_UESP]; \
(srP)->misc.X86.r_ebp = (uc)->uc_mcontext.gregs[VKI_EBP]; \
}
#elif defined(VGP_amd64_solaris)
# define VG_UCONTEXT_INSTR_PTR(uc) ((Addr)(uc)->uc_mcontext.gregs[VKI_REG_RIP])
# define VG_UCONTEXT_STACK_PTR(uc) ((Addr)(uc)->uc_mcontext.gregs[VKI_REG_RSP])
# define VG_UCONTEXT_SYSCALL_SYSRES(uc) \
VG_(mk_SysRes_amd64_solaris)((uc)->uc_mcontext.gregs[VKI_REG_RFL] & 1, \
(uc)->uc_mcontext.gregs[VKI_REG_RAX], \
(uc)->uc_mcontext.gregs[VKI_REG_RFL] & 1 \
? 0 : (uc)->uc_mcontext.gregs[VKI_REG_RDX])
# define VG_UCONTEXT_TO_UnwindStartRegs(srP, uc) \
{ (srP)->r_pc = (uc)->uc_mcontext.gregs[VKI_REG_RIP]; \
(srP)->r_sp = (uc)->uc_mcontext.gregs[VKI_REG_RSP]; \
(srP)->misc.AMD64.r_rbp = (uc)->uc_mcontext.gregs[VKI_REG_RBP]; \
}
#else
# error Unknown platform
#endif
/* ------ Macros for pulling stuff out of siginfos ------ */
/* These macros allow use of uniform names when working with
both the Linux and Darwin vki definitions. */
#if defined(VGO_linux)
# define VKI_SIGINFO_si_addr _sifields._sigfault._addr
# define VKI_SIGINFO_si_pid _sifields._kill._pid
#elif defined(VGO_darwin) || defined(VGO_solaris)
# define VKI_SIGINFO_si_addr si_addr
# define VKI_SIGINFO_si_pid si_pid
#else
# error Unknown OS
#endif
/* ---------------------------------------------------------------------
HIGH LEVEL STUFF TO DO WITH SIGNALS: POLICY (MOSTLY)
------------------------------------------------------------------ */
/* ---------------------------------------------------------------------
Signal state for this process.
------------------------------------------------------------------ */
/* Base-ment of these arrays[_VKI_NSIG].
Valid signal numbers are 1 .. _VKI_NSIG inclusive.
Rather than subtracting 1 for indexing these arrays, which
is tedious and error-prone, they are simply dimensioned 1 larger,
and entry [0] is not used.
*/
/* -----------------------------------------------------
Static client signal state (SCSS). This is the state
that the client thinks it has the kernel in.
SCSS records verbatim the client's settings. These
are mashed around only when SKSS is calculated from it.
-------------------------------------------------- */
typedef
struct {
void* scss_handler; /* VKI_SIG_DFL or VKI_SIG_IGN or ptr to
client's handler */
UInt scss_flags;
vki_sigset_t scss_mask;
void* scss_restorer; /* where sigreturn goes */
void* scss_sa_tramp; /* sa_tramp setting, Darwin only */
/* re _restorer and _sa_tramp, we merely record the values
supplied when the client does 'sigaction' and give them back
when requested. Otherwise they are simply ignored. */
}
SCSS_Per_Signal;
typedef
struct {
/* per-signal info */
SCSS_Per_Signal scss_per_sig[1+_VKI_NSIG];
/* Additional elements to SCSS not stored here:
- for each thread, the thread's blocking mask
- for each thread in WaitSIG, the set of waited-on sigs
*/
}
SCSS;
static SCSS scss;
/* -----------------------------------------------------
Static kernel signal state (SKSS). This is the state
that we have the kernel in. It is computed from SCSS.
-------------------------------------------------- */
/* Let's do:
sigprocmask assigns to all thread masks
so that at least everything is always consistent
Flags:
SA_SIGINFO -- we always set it, and honour it for the client
SA_NOCLDSTOP -- passed to kernel
SA_ONESHOT or SA_RESETHAND -- pass through
SA_RESTART -- we observe this but set our handlers to always restart
(this doesn't apply to the Solaris port)
SA_NOMASK or SA_NODEFER -- we observe this, but our handlers block everything
SA_ONSTACK -- pass through
SA_NOCLDWAIT -- pass through
*/
typedef
struct {
void* skss_handler; /* VKI_SIG_DFL or VKI_SIG_IGN
or ptr to our handler */
UInt skss_flags;
/* There is no skss_mask, since we know that we will always ask
for all signals to be blocked in our sighandlers. */
/* Also there is no skss_restorer. */
}
SKSS_Per_Signal;
typedef
struct {
SKSS_Per_Signal skss_per_sig[1+_VKI_NSIG];
}
SKSS;
static SKSS skss;
/* returns True if signal is to be ignored.
To check this, possibly call gdbserver with tid. */
static Bool is_sig_ign(vki_siginfo_t *info, ThreadId tid)
{
vg_assert(info->si_signo >= 1 && info->si_signo <= _VKI_NSIG);
/* If VG_(gdbserver_report_signal) tells to report the signal,
then verify if this signal is not to be ignored. GDB might have
modified si_signo, so we check after the call to gdbserver. */
return !VG_(gdbserver_report_signal) (info, tid)
|| scss.scss_per_sig[info->si_signo].scss_handler == VKI_SIG_IGN;
}
/* ---------------------------------------------------------------------
Compute the SKSS required by the current SCSS.
------------------------------------------------------------------ */
static
void pp_SKSS ( void )
{
Int sig;
VG_(printf)("\n\nSKSS:\n");
for (sig = 1; sig <= _VKI_NSIG; sig++) {
VG_(printf)("sig %d: handler %p, flags 0x%x\n", sig,
skss.skss_per_sig[sig].skss_handler,
skss.skss_per_sig[sig].skss_flags );
}
}
/* This is the core, clever bit. Computation is as follows:
For each signal
handler = if client has a handler, then our handler
else if client is DFL, then our handler as well
else (client must be IGN)
then hander is IGN
*/
static
void calculate_SKSS_from_SCSS ( SKSS* dst )
{
Int sig;
UInt scss_flags;
UInt skss_flags;
for (sig = 1; sig <= _VKI_NSIG; sig++) {
void *skss_handler;
void *scss_handler;
scss_handler = scss.scss_per_sig[sig].scss_handler;
scss_flags = scss.scss_per_sig[sig].scss_flags;
switch(sig) {
case VKI_SIGSEGV:
case VKI_SIGBUS:
case VKI_SIGFPE:
case VKI_SIGILL:
case VKI_SIGTRAP:
/* For these, we always want to catch them and report, even
if the client code doesn't. */
skss_handler = sync_signalhandler;
break;
case VKI_SIGCONT:
/* Let the kernel handle SIGCONT unless the client is actually
catching it. */
case VKI_SIGCHLD:
case VKI_SIGWINCH:
case VKI_SIGURG:
/* For signals which are have a default action of Ignore,
only set a handler if the client has set a signal handler.
Otherwise the kernel will interrupt a syscall which
wouldn't have otherwise been interrupted. */
if (scss.scss_per_sig[sig].scss_handler == VKI_SIG_DFL)
skss_handler = VKI_SIG_DFL;
else if (scss.scss_per_sig[sig].scss_handler == VKI_SIG_IGN)
skss_handler = VKI_SIG_IGN;
else
skss_handler = async_signalhandler;
break;
default:
// VKI_SIGVG* are runtime variables, so we can't make them
// cases in the switch, so we handle them in the 'default' case.
if (sig == VG_SIGVGKILL)
skss_handler = sigvgkill_handler;
else {
if (scss_handler == VKI_SIG_IGN)
skss_handler = VKI_SIG_IGN;
else
skss_handler = async_signalhandler;
}
break;
}
/* Flags */
skss_flags = 0;
/* SA_NOCLDSTOP, SA_NOCLDWAIT: pass to kernel */
skss_flags |= scss_flags & (VKI_SA_NOCLDSTOP | VKI_SA_NOCLDWAIT);
/* SA_ONESHOT: ignore client setting */
# if !defined(VGO_solaris)
/* SA_RESTART: ignore client setting and always set it for us.
Though we never rely on the kernel to restart a
syscall, we observe whether it wanted to restart the syscall
or not, which is needed by
VG_(fixup_guest_state_after_syscall_interrupted) */
skss_flags |= VKI_SA_RESTART;
#else
/* The above does not apply to the Solaris port, where the kernel does
not directly restart syscalls, but instead it checks SA_RESTART flag
and if it is set then it returns ERESTART to libc and the library
actually restarts the syscall. */
skss_flags |= scss_flags & VKI_SA_RESTART;
# endif
/* SA_NOMASK: ignore it */
/* SA_ONSTACK: client setting is irrelevant here */
/* We don't set a signal stack, so ignore */
/* always ask for SA_SIGINFO */
skss_flags |= VKI_SA_SIGINFO;
/* use our own restorer */
skss_flags |= VKI_SA_RESTORER;
/* Create SKSS entry for this signal. */
if (sig != VKI_SIGKILL && sig != VKI_SIGSTOP)
dst->skss_per_sig[sig].skss_handler = skss_handler;
else
dst->skss_per_sig[sig].skss_handler = VKI_SIG_DFL;
dst->skss_per_sig[sig].skss_flags = skss_flags;
}
/* Sanity checks. */
vg_assert(dst->skss_per_sig[VKI_SIGKILL].skss_handler == VKI_SIG_DFL);
vg_assert(dst->skss_per_sig[VKI_SIGSTOP].skss_handler == VKI_SIG_DFL);
if (0)
pp_SKSS();
}
/* ---------------------------------------------------------------------
After a possible SCSS change, update SKSS and the kernel itself.
------------------------------------------------------------------ */
// We need two levels of macro-expansion here to convert __NR_rt_sigreturn
// to a number before converting it to a string... sigh.
extern void my_sigreturn(void);
#if defined(VGP_x86_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
" movl $" #name ", %eax\n" \
" int $0x80\n" \
".previous\n"
#elif defined(VGP_amd64_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
" movq $" #name ", %rax\n" \
" syscall\n" \
".previous\n"
#elif defined(VGP_ppc32_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
" li 0, " #name "\n" \
" sc\n" \
".previous\n"
#elif defined(VGP_ppc64be_linux)
# define _MY_SIGRETURN(name) \
".align 2\n" \
".globl my_sigreturn\n" \
".section \".opd\",\"aw\"\n" \
".align 3\n" \
"my_sigreturn:\n" \
".quad .my_sigreturn,.TOC.@tocbase,0\n" \
".previous\n" \
".type .my_sigreturn,@function\n" \
".globl .my_sigreturn\n" \
".my_sigreturn:\n" \
" li 0, " #name "\n" \
" sc\n"
#elif defined(VGP_ppc64le_linux)
/* Little Endian supports ELF version 2. In the future, it may
* support other versions.
*/
# define _MY_SIGRETURN(name) \
".align 2\n" \
".globl my_sigreturn\n" \
".type .my_sigreturn,@function\n" \
"my_sigreturn:\n" \
"#if _CALL_ELF == 2 \n" \
"0: addis 2,12,.TOC.-0b@ha\n" \
" addi 2,2,.TOC.-0b@l\n" \
" .localentry my_sigreturn,.-my_sigreturn\n" \
"#endif \n" \
" sc\n" \
" .size my_sigreturn,.-my_sigreturn\n"
#elif defined(VGP_arm_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n\t" \
" mov r7, #" #name "\n\t" \
" svc 0x00000000\n" \
".previous\n"
#elif defined(VGP_arm64_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n\t" \
" mov x8, #" #name "\n\t" \
" svc 0x0\n" \
".previous\n"
#elif defined(VGP_x86_darwin)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
" movl $" VG_STRINGIFY(__NR_DARWIN_FAKE_SIGRETURN) ",%eax\n" \
" int $0x80\n"
#elif defined(VGP_amd64_darwin)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
" movq $" VG_STRINGIFY(__NR_DARWIN_FAKE_SIGRETURN) ",%rax\n" \
" syscall\n"
#elif defined(VGP_s390x_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
" svc " #name "\n" \
".previous\n"
#elif defined(VGP_mips32_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
"my_sigreturn:\n" \
" li $2, " #name "\n" /* apparently $2 is v0 */ \
" syscall\n" \
".previous\n"
#elif defined(VGP_mips64_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
"my_sigreturn:\n" \
" li $2, " #name "\n" \
" syscall\n" \
".previous\n"
#elif defined(VGP_tilegx_linux)
# define _MY_SIGRETURN(name) \
".text\n" \
"my_sigreturn:\n" \
" moveli r10 ," #name "\n" \
" swint1\n" \
".previous\n"
#elif defined(VGP_x86_solaris) || defined(VGP_amd64_solaris)
/* Not used on Solaris. */
# define _MY_SIGRETURN(name) \
".text\n" \
".globl my_sigreturn\n" \
"my_sigreturn:\n" \
"ud2\n" \
".previous\n"
#else
# error Unknown platform
#endif
#define MY_SIGRETURN(name) _MY_SIGRETURN(name)
asm(
MY_SIGRETURN(__NR_rt_sigreturn)
);
static void handle_SCSS_change ( Bool force_update )
{
Int res, sig;
SKSS skss_old;
vki_sigaction_toK_t ksa;
vki_sigaction_fromK_t ksa_old;
/* Remember old SKSS and calculate new one. */
skss_old = skss;
calculate_SKSS_from_SCSS ( &skss );
/* Compare the new SKSS entries vs the old ones, and update kernel
where they differ. */
for (sig = 1; sig <= VG_(max_signal); sig++) {
/* Trying to do anything with SIGKILL is pointless; just ignore
it. */
if (sig == VKI_SIGKILL || sig == VKI_SIGSTOP)
continue;
if (!force_update) {
if ((skss_old.skss_per_sig[sig].skss_handler
== skss.skss_per_sig[sig].skss_handler)
&& (skss_old.skss_per_sig[sig].skss_flags
== skss.skss_per_sig[sig].skss_flags))
/* no difference */
continue;
}
ksa.ksa_handler = skss.skss_per_sig[sig].skss_handler;
ksa.sa_flags = skss.skss_per_sig[sig].skss_flags;
# if !defined(VGP_ppc32_linux) && \
!defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGP_mips32_linux) && !defined(VGO_solaris)
ksa.sa_restorer = my_sigreturn;
# endif
/* Re above ifdef (also the assertion below), PaulM says:
The sa_restorer field is not used at all on ppc. Glibc
converts the sigaction you give it into a kernel sigaction,
but it doesn't put anything in the sa_restorer field.
*/
/* block all signals in handler */
VG_(sigfillset)( &ksa.sa_mask );
VG_(sigdelset)( &ksa.sa_mask, VKI_SIGKILL );
VG_(sigdelset)( &ksa.sa_mask, VKI_SIGSTOP );
if (VG_(clo_trace_signals) && VG_(clo_verbosity) > 2)
VG_(dmsg)("setting ksig %d to: hdlr %p, flags 0x%lx, "
"mask(msb..lsb) 0x%llx 0x%llx\n",
sig, ksa.ksa_handler,
(UWord)ksa.sa_flags,
_VKI_NSIG_WORDS > 1 ? (ULong)ksa.sa_mask.sig[1] : 0,
(ULong)ksa.sa_mask.sig[0]);
res = VG_(sigaction)( sig, &ksa, &ksa_old );
vg_assert(res == 0);
/* Since we got the old sigaction more or less for free, might
as well extract the maximum sanity-check value from it. */
if (!force_update) {
vg_assert(ksa_old.ksa_handler
== skss_old.skss_per_sig[sig].skss_handler);
# if defined(VGO_solaris)
if (ksa_old.ksa_handler == VKI_SIG_DFL
|| ksa_old.ksa_handler == VKI_SIG_IGN) {
/* The Solaris kernel ignores signal flags (except SA_NOCLDWAIT
and SA_NOCLDSTOP) and a signal mask if a handler is set to
SIG_DFL or SIG_IGN. */
skss_old.skss_per_sig[sig].skss_flags
&= (VKI_SA_NOCLDWAIT | VKI_SA_NOCLDSTOP);
vg_assert(VG_(isemptysigset)( &ksa_old.sa_mask ));
VG_(sigfillset)( &ksa_old.sa_mask );
}
# endif
vg_assert(ksa_old.sa_flags
== skss_old.skss_per_sig[sig].skss_flags);
# if !defined(VGP_ppc32_linux) && \
!defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGP_mips32_linux) && !defined(VGP_mips64_linux) && \
!defined(VGO_solaris)
vg_assert(ksa_old.sa_restorer == my_sigreturn);
# endif
VG_(sigaddset)( &ksa_old.sa_mask, VKI_SIGKILL );
VG_(sigaddset)( &ksa_old.sa_mask, VKI_SIGSTOP );
vg_assert(VG_(isfullsigset)( &ksa_old.sa_mask ));
}
}
}
/* ---------------------------------------------------------------------
Update/query SCSS in accordance with client requests.
------------------------------------------------------------------ */
/* Logic for this alt-stack stuff copied directly from do_sigaltstack
in kernel/signal.[ch] */
/* True if we are on the alternate signal stack. */
static Bool on_sig_stack ( ThreadId tid, Addr m_SP )
{
ThreadState *tst = VG_(get_ThreadState)(tid);
return (m_SP - (Addr)tst->altstack.ss_sp < (Addr)tst->altstack.ss_size);
}
static Int sas_ss_flags ( ThreadId tid, Addr m_SP )
{
ThreadState *tst = VG_(get_ThreadState)(tid);
return (tst->altstack.ss_size == 0
? VKI_SS_DISABLE
: on_sig_stack(tid, m_SP) ? VKI_SS_ONSTACK : 0);
}
SysRes VG_(do_sys_sigaltstack) ( ThreadId tid, vki_stack_t* ss, vki_stack_t* oss )
{
Addr m_SP;
vg_assert(VG_(is_valid_tid)(tid));
m_SP = VG_(get_SP)(tid);
if (VG_(clo_trace_signals))
VG_(dmsg)("sys_sigaltstack: tid %u, "
"ss %p{%p,sz=%llu,flags=0x%llx}, oss %p (current SP %p)\n",
tid, (void*)ss,
ss ? ss->ss_sp : 0,
(ULong)(ss ? ss->ss_size : 0),
(ULong)(ss ? ss->ss_flags : 0),
(void*)oss, (void*)m_SP);
if (oss != NULL) {
oss->ss_sp = VG_(threads)[tid].altstack.ss_sp;
oss->ss_size = VG_(threads)[tid].altstack.ss_size;
oss->ss_flags = VG_(threads)[tid].altstack.ss_flags
| sas_ss_flags(tid, m_SP);
}
if (ss != NULL) {
if (on_sig_stack(tid, VG_(get_SP)(tid))) {
return VG_(mk_SysRes_Error)( VKI_EPERM );
}
if (ss->ss_flags != VKI_SS_DISABLE
&& ss->ss_flags != VKI_SS_ONSTACK
&& ss->ss_flags != 0) {
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
if (ss->ss_flags == VKI_SS_DISABLE) {
VG_(threads)[tid].altstack.ss_flags = VKI_SS_DISABLE;
} else {
if (ss->ss_size < VKI_MINSIGSTKSZ) {
return VG_(mk_SysRes_Error)( VKI_ENOMEM );
}
VG_(threads)[tid].altstack.ss_sp = ss->ss_sp;
VG_(threads)[tid].altstack.ss_size = ss->ss_size;
VG_(threads)[tid].altstack.ss_flags = 0;
}
}
return VG_(mk_SysRes_Success)( 0 );
}
SysRes VG_(do_sys_sigaction) ( Int signo,
const vki_sigaction_toK_t* new_act,
vki_sigaction_fromK_t* old_act )
{
if (VG_(clo_trace_signals))
VG_(dmsg)("sys_sigaction: sigNo %d, "
"new %#lx, old %#lx, new flags 0x%llx\n",
signo, (UWord)new_act, (UWord)old_act,
(ULong)(new_act ? new_act->sa_flags : 0));
/* Rule out various error conditions. The aim is to ensure that if
when the call is passed to the kernel it will definitely
succeed. */
/* Reject out-of-range signal numbers. */
if (signo < 1 || signo > VG_(max_signal)) goto bad_signo;
/* don't let them use our signals */
if ( (signo > VG_SIGVGRTUSERMAX)
&& new_act
&& !(new_act->ksa_handler == VKI_SIG_DFL
|| new_act->ksa_handler == VKI_SIG_IGN) )
goto bad_signo_reserved;
/* Reject attempts to set a handler (or set ignore) for SIGKILL. */
if ( (signo == VKI_SIGKILL || signo == VKI_SIGSTOP)
&& new_act
&& new_act->ksa_handler != VKI_SIG_DFL)
goto bad_sigkill_or_sigstop;
/* If the client supplied non-NULL old_act, copy the relevant SCSS
entry into it. */
if (old_act) {
old_act->ksa_handler = scss.scss_per_sig[signo].scss_handler;
old_act->sa_flags = scss.scss_per_sig[signo].scss_flags;
old_act->sa_mask = scss.scss_per_sig[signo].scss_mask;
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
old_act->sa_restorer = scss.scss_per_sig[signo].scss_restorer;
# endif
}
/* And now copy new SCSS entry from new_act. */
if (new_act) {
scss.scss_per_sig[signo].scss_handler = new_act->ksa_handler;
scss.scss_per_sig[signo].scss_flags = new_act->sa_flags;
scss.scss_per_sig[signo].scss_mask = new_act->sa_mask;
scss.scss_per_sig[signo].scss_restorer = NULL;
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
scss.scss_per_sig[signo].scss_restorer = new_act->sa_restorer;
# endif
scss.scss_per_sig[signo].scss_sa_tramp = NULL;
# if defined(VGP_x86_darwin) || defined(VGP_amd64_darwin)
scss.scss_per_sig[signo].scss_sa_tramp = new_act->sa_tramp;
# endif
VG_(sigdelset)(&scss.scss_per_sig[signo].scss_mask, VKI_SIGKILL);
VG_(sigdelset)(&scss.scss_per_sig[signo].scss_mask, VKI_SIGSTOP);
}
/* All happy bunnies ... */
if (new_act) {
handle_SCSS_change( False /* lazy update */ );
}
return VG_(mk_SysRes_Success)( 0 );
bad_signo:
if (VG_(showing_core_errors)() && !VG_(clo_xml)) {
VG_(umsg)("Warning: bad signal number %d in sigaction()\n", signo);
}
return VG_(mk_SysRes_Error)( VKI_EINVAL );
bad_signo_reserved:
if (VG_(showing_core_errors)() && !VG_(clo_xml)) {
VG_(umsg)("Warning: ignored attempt to set %s handler in sigaction();\n",
VG_(signame)(signo));
VG_(umsg)(" the %s signal is used internally by Valgrind\n",
VG_(signame)(signo));
}
return VG_(mk_SysRes_Error)( VKI_EINVAL );
bad_sigkill_or_sigstop:
if (VG_(showing_core_errors)() && !VG_(clo_xml)) {
VG_(umsg)("Warning: ignored attempt to set %s handler in sigaction();\n",
VG_(signame)(signo));
VG_(umsg)(" the %s signal is uncatchable\n",
VG_(signame)(signo));
}
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
static
void do_sigprocmask_bitops ( Int vki_how,
vki_sigset_t* orig_set,
vki_sigset_t* modifier )
{
switch (vki_how) {
case VKI_SIG_BLOCK:
VG_(sigaddset_from_set)( orig_set, modifier );
break;
case VKI_SIG_UNBLOCK:
VG_(sigdelset_from_set)( orig_set, modifier );
break;
case VKI_SIG_SETMASK:
*orig_set = *modifier;
break;
default:
VG_(core_panic)("do_sigprocmask_bitops");
break;
}
}
static
HChar* format_sigset ( const vki_sigset_t* set )
{
static HChar buf[_VKI_NSIG_WORDS * 16 + 1];
int w;
VG_(strcpy)(buf, "");
for (w = _VKI_NSIG_WORDS - 1; w >= 0; w--)
{
# if _VKI_NSIG_BPW == 32
VG_(sprintf)(buf + VG_(strlen)(buf), "%08llx",
set ? (ULong)set->sig[w] : 0);
# elif _VKI_NSIG_BPW == 64
VG_(sprintf)(buf + VG_(strlen)(buf), "%16llx",
set ? (ULong)set->sig[w] : 0);
# else
# error "Unsupported value for _VKI_NSIG_BPW"
# endif
}
return buf;
}
/*
This updates the thread's signal mask. There's no such thing as a
process-wide signal mask.
Note that the thread signal masks are an implicit part of SCSS,
which is why this routine is allowed to mess with them.
*/
static
void do_setmask ( ThreadId tid,
Int how,
vki_sigset_t* newset,
vki_sigset_t* oldset )
{
if (VG_(clo_trace_signals))
VG_(dmsg)("do_setmask: tid = %u how = %d (%s), newset = %p (%s)\n",
tid, how,
how==VKI_SIG_BLOCK ? "SIG_BLOCK" : (
how==VKI_SIG_UNBLOCK ? "SIG_UNBLOCK" : (
how==VKI_SIG_SETMASK ? "SIG_SETMASK" : "???")),
newset, newset ? format_sigset(newset) : "NULL" );
/* Just do this thread. */
vg_assert(VG_(is_valid_tid)(tid));
if (oldset) {
*oldset = VG_(threads)[tid].sig_mask;
if (VG_(clo_trace_signals))
VG_(dmsg)("\toldset=%p %s\n", oldset, format_sigset(oldset));
}
if (newset) {
do_sigprocmask_bitops (how, &VG_(threads)[tid].sig_mask, newset );
VG_(sigdelset)(&VG_(threads)[tid].sig_mask, VKI_SIGKILL);
VG_(sigdelset)(&VG_(threads)[tid].sig_mask, VKI_SIGSTOP);
VG_(threads)[tid].tmp_sig_mask = VG_(threads)[tid].sig_mask;
}
}
SysRes VG_(do_sys_sigprocmask) ( ThreadId tid,
Int how,
vki_sigset_t* set,
vki_sigset_t* oldset )
{
switch(how) {
case VKI_SIG_BLOCK:
case VKI_SIG_UNBLOCK:
case VKI_SIG_SETMASK:
vg_assert(VG_(is_valid_tid)(tid));
do_setmask ( tid, how, set, oldset );
return VG_(mk_SysRes_Success)( 0 );
default:
VG_(dmsg)("sigprocmask: unknown 'how' field %d\n", how);
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
}
/* ---------------------------------------------------------------------
LOW LEVEL STUFF TO DO WITH SIGNALS: IMPLEMENTATION
------------------------------------------------------------------ */
/* ---------------------------------------------------------------------
Handy utilities to block/restore all host signals.
------------------------------------------------------------------ */
/* Block all host signals, dumping the old mask in *saved_mask. */
static void block_all_host_signals ( /* OUT */ vki_sigset_t* saved_mask )
{
Int ret;
vki_sigset_t block_procmask;
VG_(sigfillset)(&block_procmask);
ret = VG_(sigprocmask)
(VKI_SIG_SETMASK, &block_procmask, saved_mask);
vg_assert(ret == 0);
}
/* Restore the blocking mask using the supplied saved one. */
static void restore_all_host_signals ( /* IN */ vki_sigset_t* saved_mask )
{
Int ret;
ret = VG_(sigprocmask)(VKI_SIG_SETMASK, saved_mask, NULL);
vg_assert(ret == 0);
}
void VG_(clear_out_queued_signals)( ThreadId tid, vki_sigset_t* saved_mask )
{
block_all_host_signals(saved_mask);
if (VG_(threads)[tid].sig_queue != NULL) {
VG_(free)(VG_(threads)[tid].sig_queue);
VG_(threads)[tid].sig_queue = NULL;
}
restore_all_host_signals(saved_mask);
}
/* ---------------------------------------------------------------------
The signal simulation proper. A simplified version of what the
Linux kernel does.
------------------------------------------------------------------ */
/* Set up a stack frame (VgSigContext) for the client's signal
handler. */
static
void push_signal_frame ( ThreadId tid, const vki_siginfo_t *siginfo,
const struct vki_ucontext *uc )
{
Bool on_altstack;
Addr esp_top_of_frame;
ThreadState* tst;
Int sigNo = siginfo->si_signo;
vg_assert(sigNo >= 1 && sigNo <= VG_(max_signal));
vg_assert(VG_(is_valid_tid)(tid));
tst = & VG_(threads)[tid];
if (VG_(clo_trace_signals)) {
VG_(dmsg)("push_signal_frame (thread %u): signal %d\n", tid, sigNo);
VG_(get_and_pp_StackTrace)(tid, 10);
}
if (/* this signal asked to run on an alt stack */
(scss.scss_per_sig[sigNo].scss_flags & VKI_SA_ONSTACK )
&& /* there is a defined and enabled alt stack, which we're not
already using. Logic from get_sigframe in
arch/i386/kernel/signal.c. */
sas_ss_flags(tid, VG_(get_SP)(tid)) == 0
) {
on_altstack = True;
esp_top_of_frame
= (Addr)(tst->altstack.ss_sp) + tst->altstack.ss_size;
if (VG_(clo_trace_signals))
VG_(dmsg)("delivering signal %d (%s) to thread %u: "
"on ALT STACK (%p-%p; %ld bytes)\n",
sigNo, VG_(signame)(sigNo), tid, tst->altstack.ss_sp,
(UChar *)tst->altstack.ss_sp + tst->altstack.ss_size,
(Word)tst->altstack.ss_size );
} else {
on_altstack = False;
esp_top_of_frame = VG_(get_SP)(tid) - VG_STACK_REDZONE_SZB;
}
/* Signal delivery to tools */
VG_TRACK( pre_deliver_signal, tid, sigNo, on_altstack );
vg_assert(scss.scss_per_sig[sigNo].scss_handler != VKI_SIG_IGN);
vg_assert(scss.scss_per_sig[sigNo].scss_handler != VKI_SIG_DFL);
/* This may fail if the client stack is busted; if that happens,
the whole process will exit rather than simply calling the
signal handler. */
VG_(sigframe_create) (tid, on_altstack, esp_top_of_frame, siginfo, uc,
scss.scss_per_sig[sigNo].scss_handler,
scss.scss_per_sig[sigNo].scss_flags,
&tst->sig_mask,
scss.scss_per_sig[sigNo].scss_restorer);
}
const HChar *VG_(signame)(Int sigNo)
{
static HChar buf[20]; // large enough
switch(sigNo) {
case VKI_SIGHUP: return "SIGHUP";
case VKI_SIGINT: return "SIGINT";
case VKI_SIGQUIT: return "SIGQUIT";
case VKI_SIGILL: return "SIGILL";
case VKI_SIGTRAP: return "SIGTRAP";
case VKI_SIGABRT: return "SIGABRT";
case VKI_SIGBUS: return "SIGBUS";
case VKI_SIGFPE: return "SIGFPE";
case VKI_SIGKILL: return "SIGKILL";
case VKI_SIGUSR1: return "SIGUSR1";
case VKI_SIGUSR2: return "SIGUSR2";
case VKI_SIGSEGV: return "SIGSEGV";
case VKI_SIGSYS: return "SIGSYS";
case VKI_SIGPIPE: return "SIGPIPE";
case VKI_SIGALRM: return "SIGALRM";
case VKI_SIGTERM: return "SIGTERM";
# if defined(VKI_SIGSTKFLT)
case VKI_SIGSTKFLT: return "SIGSTKFLT";
# endif
case VKI_SIGCHLD: return "SIGCHLD";
case VKI_SIGCONT: return "SIGCONT";
case VKI_SIGSTOP: return "SIGSTOP";
case VKI_SIGTSTP: return "SIGTSTP";
case VKI_SIGTTIN: return "SIGTTIN";
case VKI_SIGTTOU: return "SIGTTOU";
case VKI_SIGURG: return "SIGURG";
case VKI_SIGXCPU: return "SIGXCPU";
case VKI_SIGXFSZ: return "SIGXFSZ";
case VKI_SIGVTALRM: return "SIGVTALRM";
case VKI_SIGPROF: return "SIGPROF";
case VKI_SIGWINCH: return "SIGWINCH";
case VKI_SIGIO: return "SIGIO";
# if defined(VKI_SIGPWR)
case VKI_SIGPWR: return "SIGPWR";
# endif
# if defined(VKI_SIGUNUSED) && (VKI_SIGUNUSED != VKI_SIGSYS)
case VKI_SIGUNUSED: return "SIGUNUSED";
# endif
/* Solaris-specific signals. */
# if defined(VKI_SIGEMT)
case VKI_SIGEMT: return "SIGEMT";
# endif
# if defined(VKI_SIGWAITING)
case VKI_SIGWAITING: return "SIGWAITING";
# endif
# if defined(VKI_SIGLWP)
case VKI_SIGLWP: return "SIGLWP";
# endif
# if defined(VKI_SIGFREEZE)
case VKI_SIGFREEZE: return "SIGFREEZE";
# endif
# if defined(VKI_SIGTHAW)
case VKI_SIGTHAW: return "SIGTHAW";
# endif
# if defined(VKI_SIGCANCEL)
case VKI_SIGCANCEL: return "SIGCANCEL";
# endif
# if defined(VKI_SIGLOST)
case VKI_SIGLOST: return "SIGLOST";
# endif
# if defined(VKI_SIGXRES)
case VKI_SIGXRES: return "SIGXRES";
# endif
# if defined(VKI_SIGJVM1)
case VKI_SIGJVM1: return "SIGJVM1";
# endif
# if defined(VKI_SIGJVM2)
case VKI_SIGJVM2: return "SIGJVM2";
# endif
# if defined(VKI_SIGRTMIN) && defined(VKI_SIGRTMAX)
case VKI_SIGRTMIN ... VKI_SIGRTMAX:
VG_(sprintf)(buf, "SIGRT%d", sigNo-VKI_SIGRTMIN);
return buf;
# endif
default:
VG_(sprintf)(buf, "SIG%d", sigNo);
return buf;
}
}
/* Hit ourselves with a signal using the default handler */
void VG_(kill_self)(Int sigNo)
{
Int r;
vki_sigset_t mask, origmask;
vki_sigaction_toK_t sa, origsa2;
vki_sigaction_fromK_t origsa;
sa.ksa_handler = VKI_SIG_DFL;
sa.sa_flags = 0;
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
sa.sa_restorer = 0;
# endif
VG_(sigemptyset)(&sa.sa_mask);
VG_(sigaction)(sigNo, &sa, &origsa);
VG_(sigemptyset)(&mask);
VG_(sigaddset)(&mask, sigNo);
VG_(sigprocmask)(VKI_SIG_UNBLOCK, &mask, &origmask);
r = VG_(kill)(VG_(getpid)(), sigNo);
# if !defined(VGO_darwin)
/* This sometimes fails with EPERM on Darwin. I don't know why. */
vg_assert(r == 0);
# endif
VG_(convert_sigaction_fromK_to_toK)( &origsa, &origsa2 );
VG_(sigaction)(sigNo, &origsa2, NULL);
VG_(sigprocmask)(VKI_SIG_SETMASK, &origmask, NULL);
}
// The si_code describes where the signal came from. Some come from the
// kernel, eg.: seg faults, illegal opcodes. Some come from the user, eg.:
// from kill() (SI_USER), or timer_settime() (SI_TIMER), or an async I/O
// request (SI_ASYNCIO). There's lots of implementation-defined leeway in
// POSIX, but the user vs. kernal distinction is what we want here. We also
// pass in some other details that can help when si_code is unreliable.
static Bool is_signal_from_kernel(ThreadId tid, int signum, int si_code)
{
# if defined(VGO_linux) || defined(VGO_solaris)
// On Linux, SI_USER is zero, negative values are from the user, positive
// values are from the kernel. There are SI_FROMUSER and SI_FROMKERNEL
// macros but we don't use them here because other platforms don't have
// them.
return ( si_code > VKI_SI_USER ? True : False );
# elif defined(VGO_darwin)
// On Darwin 9.6.0, the si_code is completely unreliable. It should be the
// case that 0 means "user", and >0 means "kernel". But:
// - For SIGSEGV, it seems quite reliable.
// - For SIGBUS, it's always 2.
// - For SIGFPE, it's often 0, even for kernel ones (eg.
// div-by-integer-zero always gives zero).
// - For SIGILL, it's unclear.
// - For SIGTRAP, it's always 1.
// You can see the "NOTIMP" (not implemented) status of a number of the
// sub-cases in sys/signal.h. Hopefully future versions of Darwin will
// get this right.
// If we're blocked waiting on a syscall, it must be a user signal, because
// the kernel won't generate sync signals within syscalls.
if (VG_(threads)[tid].status == VgTs_WaitSys) {
return False;
// If it's a SIGSEGV, use the proper condition, since it's fairly reliable.
} else if (SIGSEGV == signum) {
return ( si_code > 0 ? True : False );
// If it's anything else, assume it's kernel-generated. Reason being that
// kernel-generated sync signals are more common, and it's probable that
// misdiagnosing a user signal as a kernel signal is better than the
// opposite.
} else {
return True;
}
# else
# error Unknown OS
# endif
}
/*
Perform the default action of a signal. If the signal is fatal, it
marks all threads as needing to exit, but it doesn't actually kill
the process or thread.
If we're not being quiet, then print out some more detail about
fatal signals (esp. core dumping signals).
*/
static void default_action(const vki_siginfo_t *info, ThreadId tid)
{
Int sigNo = info->si_signo;
Bool terminate = False; /* kills process */
Bool core = False; /* kills process w/ core */
struct vki_rlimit corelim;
Bool could_core;
vg_assert(VG_(is_running_thread)(tid));
switch(sigNo) {
case VKI_SIGQUIT: /* core */
case VKI_SIGILL: /* core */
case VKI_SIGABRT: /* core */
case VKI_SIGFPE: /* core */
case VKI_SIGSEGV: /* core */
case VKI_SIGBUS: /* core */
case VKI_SIGTRAP: /* core */
case VKI_SIGSYS: /* core */
case VKI_SIGXCPU: /* core */
case VKI_SIGXFSZ: /* core */
/* Solaris-specific signals. */
# if defined(VKI_SIGEMT)
case VKI_SIGEMT: /* core */
# endif
terminate = True;
core = True;
break;
case VKI_SIGHUP: /* term */
case VKI_SIGINT: /* term */
case VKI_SIGKILL: /* term - we won't see this */
case VKI_SIGPIPE: /* term */
case VKI_SIGALRM: /* term */
case VKI_SIGTERM: /* term */
case VKI_SIGUSR1: /* term */
case VKI_SIGUSR2: /* term */
case VKI_SIGIO: /* term */
# if defined(VKI_SIGPWR)
case VKI_SIGPWR: /* term */
# endif
case VKI_SIGPROF: /* term */
case VKI_SIGVTALRM: /* term */
# if defined(VKI_SIGRTMIN) && defined(VKI_SIGRTMAX)
case VKI_SIGRTMIN ... VKI_SIGRTMAX: /* term */
# endif
/* Solaris-specific signals. */
# if defined(VKI_SIGLOST)
case VKI_SIGLOST: /* term */
# endif
terminate = True;
break;
}
vg_assert(!core || (core && terminate));
if (VG_(clo_trace_signals))
VG_(dmsg)("delivering %d (code %d) to default handler; action: %s%s\n",
sigNo, info->si_code, terminate ? "terminate" : "ignore",
core ? "+core" : "");
if (!terminate)
return; /* nothing to do */
could_core = core;
if (core) {
/* If they set the core-size limit to zero, don't generate a
core file */
VG_(getrlimit)(VKI_RLIMIT_CORE, &corelim);
if (corelim.rlim_cur == 0)
core = False;
}
if ( (VG_(clo_verbosity) >= 1 ||
(could_core && is_signal_from_kernel(tid, sigNo, info->si_code))
) &&
!VG_(clo_xml) ) {
VG_(umsg)(
"\n"
"Process terminating with default action of signal %d (%s)%s\n",
sigNo, VG_(signame)(sigNo), core ? ": dumping core" : "");
/* Be helpful - decode some more details about this fault */
if (is_signal_from_kernel(tid, sigNo, info->si_code)) {
const HChar *event = NULL;
Bool haveaddr = True;
switch(sigNo) {
case VKI_SIGSEGV:
switch(info->si_code) {
case VKI_SEGV_MAPERR: event = "Access not within mapped region";
break;
case VKI_SEGV_ACCERR: event = "Bad permissions for mapped region";
break;
case VKI_SEGV_MADE_UP_GPF:
/* General Protection Fault: The CPU/kernel
isn't telling us anything useful, but this
is commonly the result of exceeding a
segment limit. */
event = "General Protection Fault";
haveaddr = False;
break;
}
#if 0
{
HChar buf[50]; // large enough
VG_(am_show_nsegments)(0,"post segfault");
VG_(sprintf)(buf, "/bin/cat /proc/%d/maps", VG_(getpid)());
VG_(system)(buf);
}
#endif
break;
case VKI_SIGILL:
switch(info->si_code) {
case VKI_ILL_ILLOPC: event = "Illegal opcode"; break;
case VKI_ILL_ILLOPN: event = "Illegal operand"; break;
case VKI_ILL_ILLADR: event = "Illegal addressing mode"; break;
case VKI_ILL_ILLTRP: event = "Illegal trap"; break;
case VKI_ILL_PRVOPC: event = "Privileged opcode"; break;
case VKI_ILL_PRVREG: event = "Privileged register"; break;
case VKI_ILL_COPROC: event = "Coprocessor error"; break;
case VKI_ILL_BADSTK: event = "Internal stack error"; break;
}
break;
case VKI_SIGFPE:
switch (info->si_code) {
case VKI_FPE_INTDIV: event = "Integer divide by zero"; break;
case VKI_FPE_INTOVF: event = "Integer overflow"; break;
case VKI_FPE_FLTDIV: event = "FP divide by zero"; break;
case VKI_FPE_FLTOVF: event = "FP overflow"; break;
case VKI_FPE_FLTUND: event = "FP underflow"; break;
case VKI_FPE_FLTRES: event = "FP inexact"; break;
case VKI_FPE_FLTINV: event = "FP invalid operation"; break;
case VKI_FPE_FLTSUB: event = "FP subscript out of range"; break;
/* Solaris-specific codes. */
# if defined(VKI_FPE_FLTDEN)
case VKI_FPE_FLTDEN: event = "FP denormalize"; break;
# endif
}
break;
case VKI_SIGBUS:
switch (info->si_code) {
case VKI_BUS_ADRALN: event = "Invalid address alignment"; break;
case VKI_BUS_ADRERR: event = "Non-existent physical address"; break;
case VKI_BUS_OBJERR: event = "Hardware error"; break;
}
break;
} /* switch (sigNo) */
if (event != NULL) {
if (haveaddr)
VG_(umsg)(" %s at address %p\n",
event, info->VKI_SIGINFO_si_addr);
else
VG_(umsg)(" %s\n", event);
}
}
/* Print a stack trace. Be cautious if the thread's SP is in an
obviously stupid place (not mapped readable) that would
likely cause a segfault. */
if (VG_(is_valid_tid)(tid)) {
Word first_ip_delta = 0;
#if defined(VGO_linux) || defined(VGO_solaris)
/* Make sure that the address stored in the stack pointer is
located in a mapped page. That is not necessarily so. E.g.
consider the scenario where the stack pointer was decreased
and now has a value that is just below the end of a page that has
not been mapped yet. In that case VG_(am_is_valid_for_client)
will consider the address of the stack pointer invalid and that
would cause a back-trace of depth 1 to be printed, instead of a
full back-trace. */
if (tid == 1) { // main thread
Addr esp = VG_(get_SP)(tid);
Addr base = VG_PGROUNDDN(esp - VG_STACK_REDZONE_SZB);
if (VG_(am_addr_is_in_extensible_client_stack)(base) &&
VG_(extend_stack)(tid, base)) {
if (VG_(clo_trace_signals))
VG_(dmsg)(" -> extended stack base to %#lx\n",
VG_PGROUNDDN(esp));
}
}
#endif
#if defined(VGA_s390x)
if (sigNo == VKI_SIGILL) {
/* The guest instruction address has been adjusted earlier to
point to the insn following the one that could not be decoded.
When printing the back-trace here we need to undo that
adjustment so the first line in the back-trace reports the
correct address. */
Addr addr = (Addr)info->VKI_SIGINFO_si_addr;
UChar byte = ((UChar *)addr)[0];
Int insn_length = ((((byte >> 6) + 1) >> 1) + 1) << 1;
first_ip_delta = -insn_length;
}
#endif
ExeContext* ec = VG_(am_is_valid_for_client)
(VG_(get_SP)(tid), sizeof(Addr), VKI_PROT_READ)
? VG_(record_ExeContext)( tid, first_ip_delta )
: VG_(record_depth_1_ExeContext)( tid,
first_ip_delta );
vg_assert(ec);
VG_(pp_ExeContext)( ec );
}
if (sigNo == VKI_SIGSEGV
&& is_signal_from_kernel(tid, sigNo, info->si_code)
&& info->si_code == VKI_SEGV_MAPERR) {
VG_(umsg)(" If you believe this happened as a result of a stack\n" );
VG_(umsg)(" overflow in your program's main thread (unlikely but\n");
VG_(umsg)(" possible), you can try to increase the size of the\n" );
VG_(umsg)(" main thread stack using the --main-stacksize= flag.\n" );
// FIXME: assumes main ThreadId == 1
if (VG_(is_valid_tid)(1)) {
VG_(umsg)(
" The main thread stack size used in this run was %lu.\n",
VG_(threads)[1].client_stack_szB);
}
}
}
if (VG_(clo_vgdb) != Vg_VgdbNo
&& VG_(dyn_vgdb_error) <= VG_(get_n_errs_shown)() + 1) {
/* Note: we add + 1 to n_errs_shown as the fatal signal was not
reported through error msg, and so was not counted. */
VG_(gdbserver_report_fatal_signal) (info, tid);
}
if (core) {
static const struct vki_rlimit zero = { 0, 0 };
VG_(make_coredump)(tid, info, corelim.rlim_cur);
/* Make sure we don't get a confusing kernel-generated
coredump when we finally exit */
VG_(setrlimit)(VKI_RLIMIT_CORE, &zero);
}
/* stash fatal signal in main thread */
// what's this for?
//VG_(threads)[VG_(master_tid)].os_state.fatalsig = sigNo;
/* everyone dies */
VG_(nuke_all_threads_except)(tid, VgSrc_FatalSig);
VG_(threads)[tid].exitreason = VgSrc_FatalSig;
VG_(threads)[tid].os_state.fatalsig = sigNo;
}
/*
This does the business of delivering a signal to a thread. It may
be called from either a real signal handler, or from normal code to
cause the thread to enter the signal handler.
This updates the thread state, but it does not set it to be
Runnable.
*/
static void deliver_signal ( ThreadId tid, const vki_siginfo_t *info,
const struct vki_ucontext *uc )
{
Int sigNo = info->si_signo;
SCSS_Per_Signal *handler = &scss.scss_per_sig[sigNo];
void *handler_fn;
ThreadState *tst = VG_(get_ThreadState)(tid);
if (VG_(clo_trace_signals))
VG_(dmsg)("delivering signal %d (%s):%d to thread %u\n",
sigNo, VG_(signame)(sigNo), info->si_code, tid );
if (sigNo == VG_SIGVGKILL) {
/* If this is a SIGVGKILL, we're expecting it to interrupt any
blocked syscall. It doesn't matter whether the VCPU state is
set to restart or not, because we don't expect it will
execute any more client instructions. */
vg_assert(VG_(is_exiting)(tid));
return;
}
/* If the client specifies SIG_IGN, treat it as SIG_DFL.
If deliver_signal() is being called on a thread, we want
the signal to get through no matter what; if they're ignoring
it, then we do this override (this is so we can send it SIGSEGV,
etc). */
handler_fn = handler->scss_handler;
if (handler_fn == VKI_SIG_IGN)
handler_fn = VKI_SIG_DFL;
vg_assert(handler_fn != VKI_SIG_IGN);
if (handler_fn == VKI_SIG_DFL) {
default_action(info, tid);
} else {
/* Create a signal delivery frame, and set the client's %ESP and
%EIP so that when execution continues, we will enter the
signal handler with the frame on top of the client's stack,
as it expects.
Signal delivery can fail if the client stack is too small or
missing, and we can't push the frame. If that happens,
push_signal_frame will cause the whole process to exit when
we next hit the scheduler.
*/
vg_assert(VG_(is_valid_tid)(tid));
push_signal_frame ( tid, info, uc );
if (handler->scss_flags & VKI_SA_ONESHOT) {
/* Do the ONESHOT thing. */
handler->scss_handler = VKI_SIG_DFL;
handle_SCSS_change( False /* lazy update */ );
}
/* At this point:
tst->sig_mask is the current signal mask
tst->tmp_sig_mask is the same as sig_mask, unless we're in sigsuspend
handler->scss_mask is the mask set by the handler
Handler gets a mask of tmp_sig_mask|handler_mask|signo
*/
tst->sig_mask = tst->tmp_sig_mask;
if (!(handler->scss_flags & VKI_SA_NOMASK)) {
VG_(sigaddset_from_set)(&tst->sig_mask, &handler->scss_mask);
VG_(sigaddset)(&tst->sig_mask, sigNo);
tst->tmp_sig_mask = tst->sig_mask;
}
}
/* Thread state is ready to go - just add Runnable */
}
static void resume_scheduler(ThreadId tid)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
vg_assert(tst->os_state.lwpid == VG_(gettid)());
if (tst->sched_jmpbuf_valid) {
/* Can't continue; must longjmp back to the scheduler and thus
enter the sighandler immediately. */
VG_MINIMAL_LONGJMP(tst->sched_jmpbuf);
}
}
static void synth_fault_common(ThreadId tid, Addr addr, Int si_code)
{
vki_siginfo_t info;
vg_assert(VG_(threads)[tid].status == VgTs_Runnable);
VG_(memset)(&info, 0, sizeof(info));
info.si_signo = VKI_SIGSEGV;
info.si_code = si_code;
info.VKI_SIGINFO_si_addr = (void*)addr;
/* Even if gdbserver indicates to ignore the signal, we must deliver it.
So ignore the return value of VG_(gdbserver_report_signal). */
(void) VG_(gdbserver_report_signal) (&info, tid);
/* If they're trying to block the signal, force it to be delivered */
if (VG_(sigismember)(&VG_(threads)[tid].sig_mask, VKI_SIGSEGV))
VG_(set_default_handler)(VKI_SIGSEGV);
deliver_signal(tid, &info, NULL);
}
// Synthesize a fault where the address is OK, but the page
// permissions are bad.
void VG_(synth_fault_perms)(ThreadId tid, Addr addr)
{
synth_fault_common(tid, addr, VKI_SEGV_ACCERR);
}
// Synthesize a fault where the address there's nothing mapped at the address.
void VG_(synth_fault_mapping)(ThreadId tid, Addr addr)
{
synth_fault_common(tid, addr, VKI_SEGV_MAPERR);
}
// Synthesize a misc memory fault.
void VG_(synth_fault)(ThreadId tid)
{
synth_fault_common(tid, 0, VKI_SEGV_MADE_UP_GPF);
}
// Synthesise a SIGILL.
void VG_(synth_sigill)(ThreadId tid, Addr addr)
{
vki_siginfo_t info;
vg_assert(VG_(threads)[tid].status == VgTs_Runnable);
VG_(memset)(&info, 0, sizeof(info));
info.si_signo = VKI_SIGILL;
info.si_code = VKI_ILL_ILLOPC; /* jrs: no idea what this should be */
info.VKI_SIGINFO_si_addr = (void*)addr;
if (VG_(gdbserver_report_signal) (&info, tid)) {
resume_scheduler(tid);
deliver_signal(tid, &info, NULL);
}
else
resume_scheduler(tid);
}
// Synthesise a SIGBUS.
void VG_(synth_sigbus)(ThreadId tid)
{
vki_siginfo_t info;
vg_assert(VG_(threads)[tid].status == VgTs_Runnable);
VG_(memset)(&info, 0, sizeof(info));
info.si_signo = VKI_SIGBUS;
/* There are several meanings to SIGBUS (as per POSIX, presumably),
but the most widely understood is "invalid address alignment",
so let's use that. */
info.si_code = VKI_BUS_ADRALN;
/* If we knew the invalid address in question, we could put it
in .si_addr. Oh well. */
/* info.VKI_SIGINFO_si_addr = (void*)addr; */
if (VG_(gdbserver_report_signal) (&info, tid)) {
resume_scheduler(tid);
deliver_signal(tid, &info, NULL);
}
else
resume_scheduler(tid);
}
// Synthesise a SIGTRAP.
void VG_(synth_sigtrap)(ThreadId tid)
{
vki_siginfo_t info;
struct vki_ucontext uc;
# if defined(VGP_x86_darwin)
struct __darwin_mcontext32 mc;
# elif defined(VGP_amd64_darwin)
struct __darwin_mcontext64 mc;
# endif
vg_assert(VG_(threads)[tid].status == VgTs_Runnable);
VG_(memset)(&info, 0, sizeof(info));
VG_(memset)(&uc, 0, sizeof(uc));
info.si_signo = VKI_SIGTRAP;
info.si_code = VKI_TRAP_BRKPT; /* tjh: only ever called for a brkpt ins */
# if defined(VGP_x86_linux) || defined(VGP_amd64_linux)
uc.uc_mcontext.trapno = 3; /* tjh: this is the x86 trap number
for a breakpoint trap... */
uc.uc_mcontext.err = 0; /* tjh: no error code for x86
breakpoint trap... */
# elif defined(VGP_x86_darwin) || defined(VGP_amd64_darwin)
/* the same thing, but using Darwin field/struct names */
VG_(memset)(&mc, 0, sizeof(mc));
uc.uc_mcontext = &mc;
uc.uc_mcontext->__es.__trapno = 3;
uc.uc_mcontext->__es.__err = 0;
# elif defined(VGP_x86_solaris)
uc.uc_mcontext.gregs[VKI_ERR] = 0;
uc.uc_mcontext.gregs[VKI_TRAPNO] = VKI_T_BPTFLT;
# endif
/* fixs390: do we need to do anything here for s390 ? */
if (VG_(gdbserver_report_signal) (&info, tid)) {
resume_scheduler(tid);
deliver_signal(tid, &info, &uc);
}
else
resume_scheduler(tid);
}
// Synthesise a SIGFPE.
void VG_(synth_sigfpe)(ThreadId tid, UInt code)
{
// Only tested on mips32 and mips64
#if !defined(VGA_mips32) && !defined(VGA_mips64)
vg_assert(0);
#else
vki_siginfo_t info;
struct vki_ucontext uc;
vg_assert(VG_(threads)[tid].status == VgTs_Runnable);
VG_(memset)(&info, 0, sizeof(info));
VG_(memset)(&uc, 0, sizeof(uc));
info.si_signo = VKI_SIGFPE;
info.si_code = code;
if (VG_(gdbserver_report_signal) (VKI_SIGFPE, tid)) {
resume_scheduler(tid);
deliver_signal(tid, &info, &uc);
}
else
resume_scheduler(tid);
#endif
}
/* Make a signal pending for a thread, for later delivery.
VG_(poll_signals) will arrange for it to be delivered at the right
time.
tid==0 means add it to the process-wide queue, and not sent it to a
specific thread.
*/
static
void queue_signal(ThreadId tid, const vki_siginfo_t *si)
{
ThreadState *tst;
SigQueue *sq;
vki_sigset_t savedmask;
tst = VG_(get_ThreadState)(tid);
/* Protect the signal queue against async deliveries */
block_all_host_signals(&savedmask);
if (tst->sig_queue == NULL) {
tst->sig_queue = VG_(malloc)("signals.qs.1", sizeof(*tst->sig_queue));
VG_(memset)(tst->sig_queue, 0, sizeof(*tst->sig_queue));
}
sq = tst->sig_queue;
if (VG_(clo_trace_signals))
VG_(dmsg)("Queueing signal %d (idx %d) to thread %u\n",
si->si_signo, sq->next, tid);
/* Add signal to the queue. If the queue gets overrun, then old
queued signals may get lost.
XXX We should also keep a sigset of pending signals, so that at
least a non-siginfo signal gets deliviered.
*/
if (sq->sigs[sq->next].si_signo != 0)
VG_(umsg)("Signal %d being dropped from thread %u's queue\n",
sq->sigs[sq->next].si_signo, tid);
sq->sigs[sq->next] = *si;
sq->next = (sq->next+1) % N_QUEUED_SIGNALS;
restore_all_host_signals(&savedmask);
}
/*
Returns the next queued signal for thread tid which is in "set".
tid==0 means process-wide signal. Set si_signo to 0 when the
signal has been delivered.
Must be called with all signals blocked, to protect against async
deliveries.
*/
static vki_siginfo_t *next_queued(ThreadId tid, const vki_sigset_t *set)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
SigQueue *sq;
Int idx;
vki_siginfo_t *ret = NULL;
sq = tst->sig_queue;
if (sq == NULL)
goto out;
idx = sq->next;
do {
if (0)
VG_(printf)("idx=%d si_signo=%d inset=%d\n", idx,
sq->sigs[idx].si_signo,
VG_(sigismember)(set, sq->sigs[idx].si_signo));
if (sq->sigs[idx].si_signo != 0
&& VG_(sigismember)(set, sq->sigs[idx].si_signo)) {
if (VG_(clo_trace_signals))
VG_(dmsg)("Returning queued signal %d (idx %d) for thread %u\n",
sq->sigs[idx].si_signo, idx, tid);
ret = &sq->sigs[idx];
goto out;
}
idx = (idx + 1) % N_QUEUED_SIGNALS;
} while(idx != sq->next);
out:
return ret;
}
static int sanitize_si_code(int si_code)
{
#if defined(VGO_linux)
/* The linux kernel uses the top 16 bits of si_code for it's own
use and only exports the bottom 16 bits to user space - at least
that is the theory, but it turns out that there are some kernels
around that forget to mask out the top 16 bits so we do it here.
The kernel treats the bottom 16 bits as signed and (when it does
mask them off) sign extends them when exporting to user space so
we do the same thing here. */
return (Short)si_code;
#elif defined(VGO_darwin) || defined(VGO_solaris)
return si_code;
#else
# error Unknown OS
#endif
}
#if defined(VGO_solaris)
/* Following function is used to switch Valgrind from a client stack back onto
a Valgrind stack. It is used only when the door_return call was invoked by
the client because this is the only syscall which is executed directly on
the client stack (see syscall-{x86,amd64}-solaris.S). The switch onto the
Valgrind stack has to be made as soon as possible because there is no
guarantee that there is enough space on the client stack to run the
complete signal machinery. Also, Valgrind has to be switched back onto its
stack before a simulated signal frame is created because that will
overwrite the real sigframe built by the kernel. */
static void async_signalhandler_solaris_preprocess(ThreadId tid, Int *signo,
vki_siginfo_t *info,
struct vki_ucontext *uc)
{
# define RECURSION_BIT 0x1000
Addr sp;
vki_sigframe_t *frame;
ThreadState *tst = VG_(get_ThreadState)(tid);
Int rec_signo;
/* If not doing door_return then return instantly. */
if (!tst->os_state.in_door_return)
return;
/* Check for the recursion:
v ...
| async_signalhandler - executed on the client stack
v async_signalhandler_solaris_preprocess - first call switches the
| stacks and sets the RECURSION_BIT flag
v async_signalhandler - executed on the Valgrind stack
| async_signalhandler_solaris_preprocess - the RECURSION_BIT flag is
v set, clear it and return
*/
if (*signo & RECURSION_BIT) {
*signo &= ~RECURSION_BIT;
return;
}
rec_signo = *signo | RECURSION_BIT;
# if defined(VGP_x86_solaris)
/* Register %ebx/%rbx points to the top of the original V stack. */
sp = uc->uc_mcontext.gregs[VKI_EBX];
# elif defined(VGP_amd64_solaris)
sp = uc->uc_mcontext.gregs[VKI_REG_RBX];
# else
# error "Unknown platform"
# endif
/* Build a fake signal frame, similarly as in sigframe-solaris.c. */
/* Calculate a new stack pointer. */
sp -= sizeof(vki_sigframe_t);
sp = VG_ROUNDDN(sp, 16) - sizeof(UWord);
/* Fill in the frame. */
frame = (vki_sigframe_t*)sp;
/* Set a bogus return address. */
frame->return_addr = (void*)~0UL;
frame->a1_signo = rec_signo;
/* The first parameter has to be 16-byte aligned, resembling a function
call. */
{
/* Using
vg_assert(VG_IS_16_ALIGNED(&frame->a1_signo));
seems to get miscompiled on amd64 with GCC 4.7.2. */
Addr signo_addr = (Addr)&frame->a1_signo;
vg_assert(VG_IS_16_ALIGNED(signo_addr));
}
frame->a2_siginfo = &frame->siginfo;
frame->siginfo = *info;
frame->ucontext = *uc;
# if defined(VGP_x86_solaris)
frame->a3_ucontext = &frame->ucontext;
/* Switch onto the V stack and restart the signal processing. */
__asm__ __volatile__(
"xorl %%ebp, %%ebp\n"
"movl %[sp], %%esp\n"
"jmp async_signalhandler\n"
:
: [sp] "a" (sp)
: /*"ebp"*/);
# elif defined(VGP_amd64_solaris)
__asm__ __volatile__(
"xorq %%rbp, %%rbp\n"
"movq %[sp], %%rsp\n"
"jmp async_signalhandler\n"
:
: [sp] "a" (sp), "D" (rec_signo), "S" (&frame->siginfo),
"d" (&frame->ucontext)
: /*"rbp"*/);
# else
# error "Unknown platform"
# endif
/* We should never get here. */
vg_assert(0);
# undef RECURSION_BIT
}
#endif
/*
Receive an async signal from the kernel.
This should only happen when the thread is blocked in a syscall,
since that's the only time this set of signals is unblocked.
*/
static
void async_signalhandler ( Int sigNo,
vki_siginfo_t *info, struct vki_ucontext *uc )
{
ThreadId tid = VG_(lwpid_to_vgtid)(VG_(gettid)());
ThreadState* tst = VG_(get_ThreadState)(tid);
SysRes sres;
vg_assert(tst->status == VgTs_WaitSys);
# if defined(VGO_solaris)
async_signalhandler_solaris_preprocess(tid, &sigNo, info, uc);
# endif
/* The thread isn't currently running, make it so before going on */
VG_(acquire_BigLock)(tid, "async_signalhandler");
info->si_code = sanitize_si_code(info->si_code);
if (VG_(clo_trace_signals))
VG_(dmsg)("async signal handler: signal=%d, tid=%u, si_code=%d\n",
sigNo, tid, info->si_code);
/* Update thread state properly. The signal can only have been
delivered whilst we were in
coregrind/m_syswrap/syscall-<PLAT>.S, and only then in the
window between the two sigprocmask calls, since at all other
times, we run with async signals on the host blocked. Hence
make enquiries on the basis that we were in or very close to a
syscall, and attempt to fix up the guest state accordingly.
(normal async signals occurring during computation are blocked,
but periodically polled for using VG_(sigtimedwait_zero), and
delivered at a point convenient for us. Hence this routine only
deals with signals that are delivered to a thread during a
syscall.) */
/* First, extract a SysRes from the ucontext_t* given to this
handler. If it is subsequently established by
VG_(fixup_guest_state_after_syscall_interrupted) that the
syscall was complete but the results had not been committed yet
to the guest state, then it'll have to commit the results itself
"by hand", and so we need to extract the SysRes. Of course if
the thread was not in that particular window then the
SysRes will be meaningless, but that's OK too because
VG_(fixup_guest_state_after_syscall_interrupted) will detect
that the thread was not in said window and ignore the SysRes. */
/* To make matters more complex still, on Darwin we need to know
the "class" of the syscall under consideration in order to be
able to extract the a correct SysRes. The class will have been
saved just before the syscall, by VG_(client_syscall), into this
thread's tst->arch.vex.guest_SC_CLASS. Hence: */
# if defined(VGO_darwin)
sres = VG_UCONTEXT_SYSCALL_SYSRES(uc, tst->arch.vex.guest_SC_CLASS);
# else
sres = VG_UCONTEXT_SYSCALL_SYSRES(uc);
# endif
/* (1) */
VG_(fixup_guest_state_after_syscall_interrupted)(
tid,
VG_UCONTEXT_INSTR_PTR(uc),
sres,
!!(scss.scss_per_sig[sigNo].scss_flags & VKI_SA_RESTART),
uc
);
/* (2) */
/* Set up the thread's state to deliver a signal */
if (!is_sig_ign(info, tid))
deliver_signal(tid, info, uc);
/* It's crucial that (1) and (2) happen in the order (1) then (2)
and not the other way around. (1) fixes up the guest thread
state to reflect the fact that the syscall was interrupted --
either to restart the syscall or to return EINTR. (2) then sets
up the thread state to deliver the signal. Then we resume
execution. First, the signal handler is run, since that's the
second adjustment we made to the thread state. If that returns,
then we resume at the guest state created by (1), viz, either
the syscall returns EINTR or is restarted.
If (2) was done before (1) the outcome would be completely
different, and wrong. */
/* longjmp back to the thread's main loop to start executing the
handler. */
resume_scheduler(tid);
VG_(core_panic)("async_signalhandler: got unexpected signal "
"while outside of scheduler");
}
/* Extend the stack of thread #tid to cover addr. It is expected that
addr either points into an already mapped anonymous segment or into a
reservation segment abutting the stack segment. Everything else is a bug.
Returns True on success, False on failure.
Succeeds without doing anything if addr is already within a segment.
Failure could be caused by:
- addr not below a growable segment
- new stack size would exceed the stack limit for the given thread
- mmap failed for some other reason
*/
Bool VG_(extend_stack)(ThreadId tid, Addr addr)
{
SizeT udelta;
/* Get the segment containing addr. */
const NSegment* seg = VG_(am_find_nsegment)(addr);
vg_assert(seg != NULL);
/* TODO: the test "seg->kind == SkAnonC" is really inadequate,
because although it tests whether the segment is mapped
_somehow_, it doesn't check that it has the right permissions
(r,w, maybe x) ? */
if (seg->kind == SkAnonC)
/* addr is already mapped. Nothing to do. */
return True;
const NSegment* seg_next = VG_(am_next_nsegment)( seg, True/*fwds*/ );
vg_assert(seg_next != NULL);
udelta = VG_PGROUNDUP(seg_next->start - addr);
VG_(debugLog)(1, "signals",
"extending a stack base 0x%lx down by %lu\n",
seg_next->start, udelta);
Bool overflow;
if (! VG_(am_extend_into_adjacent_reservation_client)
( seg_next->start, -(SSizeT)udelta, &overflow )) {
Addr new_stack_base = seg_next->start - udelta;
if (overflow)
VG_(umsg)("Stack overflow in thread #%u: can't grow stack to %#lx\n",
tid, new_stack_base);
else
VG_(umsg)("Cannot map memory to grow the stack for thread #%u "
"to %#lx\n", tid, new_stack_base);
return False;
}
/* When we change the main stack, we have to let the stack handling
code know about it. */
VG_(change_stack)(VG_(clstk_id), addr, VG_(clstk_end));
if (VG_(clo_sanity_level) > 2)
VG_(sanity_check_general)(False);
return True;
}
static fault_catcher_t fault_catcher = NULL;
fault_catcher_t VG_(set_fault_catcher)(fault_catcher_t catcher)
{
fault_catcher_t prev_catcher = fault_catcher;
fault_catcher = catcher;
return prev_catcher;
}
static
void sync_signalhandler_from_user ( ThreadId tid,
Int sigNo, vki_siginfo_t *info, struct vki_ucontext *uc )
{
ThreadId qtid;
/* If some user-process sent us a sync signal (ie. it's not the result
of a faulting instruction), then how we treat it depends on when it
arrives... */
if (VG_(threads)[tid].status == VgTs_WaitSys
# if defined(VGO_solaris)
/* Check if the signal was really received while doing a blocking
syscall. Only then the async_signalhandler() path can be used. */
&& VG_(is_ip_in_blocking_syscall)(tid, VG_UCONTEXT_INSTR_PTR(uc))
# endif
) {
/* Signal arrived while we're blocked in a syscall. This means that
the client's signal mask was applied. In other words, so we can't
get here unless the client wants this signal right now. This means
we can simply use the async_signalhandler. */
if (VG_(clo_trace_signals))
VG_(dmsg)("Delivering user-sent sync signal %d as async signal\n",
sigNo);
async_signalhandler(sigNo, info, uc);
VG_(core_panic)("async_signalhandler returned!?\n");
} else {
/* Signal arrived while in generated client code, or while running
Valgrind core code. That means that every thread has these signals
unblocked, so we can't rely on the kernel to route them properly, so
we need to queue them manually. */
if (VG_(clo_trace_signals))
VG_(dmsg)("Routing user-sent sync signal %d via queue\n", sigNo);
# if defined(VGO_linux)
/* On Linux, first we have to do a sanity check of the siginfo. */
if (info->VKI_SIGINFO_si_pid == 0) {
/* There's a per-user limit of pending siginfo signals. If
you exceed this, by having more than that number of
pending signals with siginfo, then new signals are
delivered without siginfo. This condition can be caused
by any unrelated program you're running at the same time
as Valgrind, if it has a large number of pending siginfo
signals which it isn't taking delivery of.
Since we depend on siginfo to work out why we were sent a
signal and what we should do about it, we really can't
continue unless we get it. */
VG_(umsg)("Signal %d (%s) appears to have lost its siginfo; "
"I can't go on.\n", sigNo, VG_(signame)(sigNo));
VG_(printf)(
" This may be because one of your programs has consumed your ration of\n"
" siginfo structures. For more information, see:\n"
" http://kerneltrap.org/mailarchive/1/message/25599/thread\n"
" Basically, some program on your system is building up a large queue of\n"
" pending signals, and this causes the siginfo data for other signals to\n"
" be dropped because it's exceeding a system limit. However, Valgrind\n"
" absolutely needs siginfo for SIGSEGV. A workaround is to track down the\n"
" offending program and avoid running it while using Valgrind, but there\n"
" is no easy way to do this. Apparently the problem was fixed in kernel\n"
" 2.6.12.\n");
/* It's a fatal signal, so we force the default handler. */
VG_(set_default_handler)(sigNo);
deliver_signal(tid, info, uc);
resume_scheduler(tid);
VG_(exit)(99); /* If we can't resume, then just exit */
}
# endif
qtid = 0; /* shared pending by default */
# if defined(VGO_linux)
if (info->si_code == VKI_SI_TKILL)
qtid = tid; /* directed to us specifically */
# endif
queue_signal(qtid, info);
}
}
/* Returns the reported fault address for an exact address */
static Addr fault_mask(Addr in)
{
/* We have to use VG_PGROUNDDN because faults on s390x only deliver
the page address but not the address within a page.
*/
# if defined(VGA_s390x)
return VG_PGROUNDDN(in);
# else
return in;
#endif
}
/* Returns True if the sync signal was due to the stack requiring extension
and the extension was successful.
*/
static Bool extend_stack_if_appropriate(ThreadId tid, vki_siginfo_t* info)
{
Addr fault;
Addr esp;
NSegment const *seg, *seg_next;
if (info->si_signo != VKI_SIGSEGV)
return False;
fault = (Addr)info->VKI_SIGINFO_si_addr;
esp = VG_(get_SP)(tid);
seg = VG_(am_find_nsegment)(fault);
seg_next = seg ? VG_(am_next_nsegment)( seg, True/*fwds*/ )
: NULL;
if (VG_(clo_trace_signals)) {
if (seg == NULL)
VG_(dmsg)("SIGSEGV: si_code=%d faultaddr=%#lx tid=%u ESP=%#lx "
"seg=NULL\n",
info->si_code, fault, tid, esp);
else
VG_(dmsg)("SIGSEGV: si_code=%d faultaddr=%#lx tid=%u ESP=%#lx "
"seg=%#lx-%#lx\n",
info->si_code, fault, tid, esp, seg->start, seg->end);
}
if (info->si_code == VKI_SEGV_MAPERR
&& seg
&& seg->kind == SkResvn
&& seg->smode == SmUpper
&& seg_next
&& seg_next->kind == SkAnonC
&& fault >= fault_mask(esp - VG_STACK_REDZONE_SZB)) {
/* If the fault address is above esp but below the current known
stack segment base, and it was a fault because there was
nothing mapped there (as opposed to a permissions fault),
then extend the stack segment.
*/
Addr base = VG_PGROUNDDN(esp - VG_STACK_REDZONE_SZB);
if (VG_(am_addr_is_in_extensible_client_stack)(base) &&
VG_(extend_stack)(tid, base)) {
if (VG_(clo_trace_signals))
VG_(dmsg)(" -> extended stack base to %#lx\n",
VG_PGROUNDDN(fault));
return True;
} else {
return False;
}
} else {
return False;
}
}
static
void sync_signalhandler_from_kernel ( ThreadId tid,
Int sigNo, vki_siginfo_t *info, struct vki_ucontext *uc )
{
/* Check to see if some part of Valgrind itself is interested in faults.
The fault catcher should never be set whilst we're in generated code, so
check for that. AFAIK the only use of the catcher right now is
memcheck's leak detector. */
if (fault_catcher) {
vg_assert(VG_(in_generated_code) == False);
(*fault_catcher)(sigNo, (Addr)info->VKI_SIGINFO_si_addr);
/* If the catcher returns, then it didn't handle the fault,
so carry on panicking. */
}
if (extend_stack_if_appropriate(tid, info)) {
/* Stack extension occurred, so we don't need to do anything else; upon
returning from this function, we'll restart the host (hence guest)
instruction. */
} else {
/* OK, this is a signal we really have to deal with. If it came
from the client's code, then we can jump back into the scheduler
and have it delivered. Otherwise it's a Valgrind bug. */
ThreadState *tst = VG_(get_ThreadState)(tid);
if (VG_(sigismember)(&tst->sig_mask, sigNo)) {
/* signal is blocked, but they're not allowed to block faults */
VG_(set_default_handler)(sigNo);
}
if (VG_(in_generated_code)) {
if (VG_(gdbserver_report_signal) (info, tid)
|| VG_(sigismember)(&tst->sig_mask, sigNo)) {
/* Can't continue; must longjmp back to the scheduler and thus
enter the sighandler immediately. */
deliver_signal(tid, info, uc);
resume_scheduler(tid);
}
else
resume_scheduler(tid);
}
/* If resume_scheduler returns or its our fault, it means we
don't have longjmp set up, implying that we weren't running
client code, and therefore it was actually generated by
Valgrind internally.
*/
VG_(dmsg)("VALGRIND INTERNAL ERROR: Valgrind received "
"a signal %d (%s) - exiting\n",
sigNo, VG_(signame)(sigNo));
VG_(dmsg)("si_code=%d; Faulting address: %p; sp: %#lx\n",
info->si_code, info->VKI_SIGINFO_si_addr,
VG_UCONTEXT_STACK_PTR(uc));
if (0)
VG_(kill_self)(sigNo); /* generate a core dump */
//if (tid == 0) /* could happen after everyone has exited */
// tid = VG_(master_tid);
vg_assert(tid != 0);
UnwindStartRegs startRegs;
VG_(memset)(&startRegs, 0, sizeof(startRegs));
VG_UCONTEXT_TO_UnwindStartRegs(&startRegs, uc);
VG_(core_panic_at)("Killed by fatal signal", &startRegs);
}
}
/*
Receive a sync signal from the host.
*/
static
void sync_signalhandler ( Int sigNo,
vki_siginfo_t *info, struct vki_ucontext *uc )
{
ThreadId tid = VG_(lwpid_to_vgtid)(VG_(gettid)());
Bool from_user;
if (0)
VG_(printf)("sync_sighandler(%d, %p, %p)\n", sigNo, info, uc);
vg_assert(info != NULL);
vg_assert(info->si_signo == sigNo);
vg_assert(sigNo == VKI_SIGSEGV ||
sigNo == VKI_SIGBUS ||
sigNo == VKI_SIGFPE ||
sigNo == VKI_SIGILL ||
sigNo == VKI_SIGTRAP);
info->si_code = sanitize_si_code(info->si_code);
from_user = !is_signal_from_kernel(tid, sigNo, info->si_code);
if (VG_(clo_trace_signals)) {
VG_(dmsg)("sync signal handler: "
"signal=%d, si_code=%d, EIP=%#lx, eip=%#lx, from %s\n",
sigNo, info->si_code, VG_(get_IP)(tid),
VG_UCONTEXT_INSTR_PTR(uc),
( from_user ? "user" : "kernel" ));
}
vg_assert(sigNo >= 1 && sigNo <= VG_(max_signal));
/* // debug code:
if (0) {
VG_(printf)("info->si_signo %d\n", info->si_signo);
VG_(printf)("info->si_errno %d\n", info->si_errno);
VG_(printf)("info->si_code %d\n", info->si_code);
VG_(printf)("info->si_pid %d\n", info->si_pid);
VG_(printf)("info->si_uid %d\n", info->si_uid);
VG_(printf)("info->si_status %d\n", info->si_status);
VG_(printf)("info->si_addr %p\n", info->si_addr);
}
*/
/* Figure out if the signal is being sent from outside the process.
(Why do we care?) If the signal is from the user rather than the
kernel, then treat it more like an async signal than a sync signal --
that is, merely queue it for later delivery. */
if (from_user) {
sync_signalhandler_from_user( tid, sigNo, info, uc);
} else {
sync_signalhandler_from_kernel(tid, sigNo, info, uc);
}
# if defined(VGO_solaris)
/* On Solaris we have to return from signal handler manually. */
VG_(do_syscall2)(__NR_context, VKI_SETCONTEXT, (UWord)uc);
# endif
}
/*
Kill this thread. Makes it leave any syscall it might be currently
blocked in, and return to the scheduler. This doesn't mark the thread
as exiting; that's the caller's job.
*/
static void sigvgkill_handler(int signo, vki_siginfo_t *si,
struct vki_ucontext *uc)
{
ThreadId tid = VG_(lwpid_to_vgtid)(VG_(gettid)());
ThreadStatus at_signal = VG_(threads)[tid].status;
if (VG_(clo_trace_signals))
VG_(dmsg)("sigvgkill for lwp %d tid %u\n", VG_(gettid)(), tid);
VG_(acquire_BigLock)(tid, "sigvgkill_handler");
vg_assert(signo == VG_SIGVGKILL);
vg_assert(si->si_signo == signo);
/* jrs 2006 August 3: the following assertion seems incorrect to
me, and fails on AIX. sigvgkill could be sent to a thread which
is runnable - see VG_(nuke_all_threads_except) in the scheduler.
Hence comment these out ..
vg_assert(VG_(threads)[tid].status == VgTs_WaitSys);
VG_(post_syscall)(tid);
and instead do:
*/
if (at_signal == VgTs_WaitSys)
VG_(post_syscall)(tid);
/* jrs 2006 August 3 ends */
resume_scheduler(tid);
VG_(core_panic)("sigvgkill_handler couldn't return to the scheduler\n");
}
static __attribute((unused))
void pp_ksigaction ( vki_sigaction_toK_t* sa )
{
Int i;
VG_(printf)("pp_ksigaction: handler %p, flags 0x%x, restorer %p\n",
sa->ksa_handler,
(UInt)sa->sa_flags,
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
sa->sa_restorer
# else
(void*)0
# endif
);
VG_(printf)("pp_ksigaction: { ");
for (i = 1; i <= VG_(max_signal); i++)
if (VG_(sigismember(&(sa->sa_mask),i)))
VG_(printf)("%d ", i);
VG_(printf)("}\n");
}
/*
Force signal handler to default
*/
void VG_(set_default_handler)(Int signo)
{
vki_sigaction_toK_t sa;
sa.ksa_handler = VKI_SIG_DFL;
sa.sa_flags = 0;
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
sa.sa_restorer = 0;
# endif
VG_(sigemptyset)(&sa.sa_mask);
VG_(do_sys_sigaction)(signo, &sa, NULL);
}
/*
Poll for pending signals, and set the next one up for delivery.
*/
void VG_(poll_signals)(ThreadId tid)
{
vki_siginfo_t si, *sip;
vki_sigset_t pollset;
ThreadState *tst = VG_(get_ThreadState)(tid);
vki_sigset_t saved_mask;
/* look for all the signals this thread isn't blocking */
/* pollset = ~tst->sig_mask */
VG_(sigcomplementset)( &pollset, &tst->sig_mask );
block_all_host_signals(&saved_mask); // protect signal queue
/* First look for any queued pending signals */
sip = next_queued(tid, &pollset); /* this thread */
if (sip == NULL)
sip = next_queued(0, &pollset); /* process-wide */
/* If there was nothing queued, ask the kernel for a pending signal */
if (sip == NULL && VG_(sigtimedwait_zero)(&pollset, &si) > 0) {
if (VG_(clo_trace_signals))
VG_(dmsg)("poll_signals: got signal %d for thread %u\n",
si.si_signo, tid);
sip = &si;
}
if (sip != NULL) {
/* OK, something to do; deliver it */
if (VG_(clo_trace_signals))
VG_(dmsg)("Polling found signal %d for tid %u\n", sip->si_signo, tid);
if (!is_sig_ign(sip, tid))
deliver_signal(tid, sip, NULL);
else if (VG_(clo_trace_signals))
VG_(dmsg)(" signal %d ignored\n", sip->si_signo);
sip->si_signo = 0; /* remove from signal queue, if that's
where it came from */
}
restore_all_host_signals(&saved_mask);
}
/* At startup, copy the process' real signal state to the SCSS.
Whilst doing this, block all real signals. Then calculate SKSS and
set the kernel to that. Also initialise DCSS.
*/
void VG_(sigstartup_actions) ( void )
{
Int i, ret, vKI_SIGRTMIN;
vki_sigset_t saved_procmask;
vki_sigaction_fromK_t sa;
VG_(memset)(&scss, 0, sizeof(scss));
VG_(memset)(&skss, 0, sizeof(skss));
# if defined(VKI_SIGRTMIN)
vKI_SIGRTMIN = VKI_SIGRTMIN;
# else
vKI_SIGRTMIN = 0; /* eg Darwin */
# endif
/* VG_(printf)("SIGSTARTUP\n"); */
/* Block all signals. saved_procmask remembers the previous mask,
which the first thread inherits.
*/
block_all_host_signals( &saved_procmask );
/* Copy per-signal settings to SCSS. */
for (i = 1; i <= _VKI_NSIG; i++) {
/* Get the old host action */
ret = VG_(sigaction)(i, NULL, &sa);
# if defined(VGP_x86_darwin) || defined(VGP_amd64_darwin)
/* apparently we may not even ask about the disposition of these
signals, let alone change them */
if (ret != 0 && (i == VKI_SIGKILL || i == VKI_SIGSTOP))
continue;
# endif
if (ret != 0)
break;
/* Try setting it back to see if this signal is really
available */
if (vKI_SIGRTMIN > 0 /* it actually exists on this platform */
&& i >= vKI_SIGRTMIN) {
vki_sigaction_toK_t tsa, sa2;
tsa.ksa_handler = (void *)sync_signalhandler;
tsa.sa_flags = VKI_SA_SIGINFO;
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
tsa.sa_restorer = 0;
# endif
VG_(sigfillset)(&tsa.sa_mask);
/* try setting it to some arbitrary handler */
if (VG_(sigaction)(i, &tsa, NULL) != 0) {
/* failed - not really usable */
break;
}
VG_(convert_sigaction_fromK_to_toK)( &sa, &sa2 );
ret = VG_(sigaction)(i, &sa2, NULL);
vg_assert(ret == 0);
}
VG_(max_signal) = i;
if (VG_(clo_trace_signals) && VG_(clo_verbosity) > 2)
VG_(printf)("snaffling handler 0x%lx for signal %d\n",
(Addr)(sa.ksa_handler), i );
scss.scss_per_sig[i].scss_handler = sa.ksa_handler;
scss.scss_per_sig[i].scss_flags = sa.sa_flags;
scss.scss_per_sig[i].scss_mask = sa.sa_mask;
scss.scss_per_sig[i].scss_restorer = NULL;
# if !defined(VGP_x86_darwin) && !defined(VGP_amd64_darwin) && \
!defined(VGO_solaris)
scss.scss_per_sig[i].scss_restorer = sa.sa_restorer;
# endif
scss.scss_per_sig[i].scss_sa_tramp = NULL;
# if defined(VGP_x86_darwin) || defined(VGP_amd64_darwin)
scss.scss_per_sig[i].scss_sa_tramp = NULL;
/*sa.sa_tramp;*/
/* We can't know what it was, because Darwin's sys_sigaction
doesn't tell us. */
# endif
}
if (VG_(clo_trace_signals))
VG_(dmsg)("Max kernel-supported signal is %d\n", VG_(max_signal));
/* Our private internal signals are treated as ignored */
scss.scss_per_sig[VG_SIGVGKILL].scss_handler = VKI_SIG_IGN;
scss.scss_per_sig[VG_SIGVGKILL].scss_flags = VKI_SA_SIGINFO;
VG_(sigfillset)(&scss.scss_per_sig[VG_SIGVGKILL].scss_mask);
/* Copy the process' signal mask into the root thread. */
vg_assert(VG_(threads)[1].status == VgTs_Init);
for (i = 2; i < VG_N_THREADS; i++)
vg_assert(VG_(threads)[i].status == VgTs_Empty);
VG_(threads)[1].sig_mask = saved_procmask;
VG_(threads)[1].tmp_sig_mask = saved_procmask;
/* Calculate SKSS and apply it. This also sets the initial kernel
mask we need to run with. */
handle_SCSS_change( True /* forced update */ );
/* Leave with all signals still blocked; the thread scheduler loop
will set the appropriate mask at the appropriate time. */
}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/