// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
// A lightweight X64 Assembler.
#ifndef V8_X64_ASSEMBLER_X64_H_
#define V8_X64_ASSEMBLER_X64_H_
#include <deque>
#include "src/assembler.h"
namespace v8 {
namespace internal {
// Utility functions
#define GENERAL_REGISTERS(V) \
V(rax) \
V(rcx) \
V(rdx) \
V(rbx) \
V(rsp) \
V(rbp) \
V(rsi) \
V(rdi) \
V(r8) \
V(r9) \
V(r10) \
V(r11) \
V(r12) \
V(r13) \
V(r14) \
V(r15)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(rax) \
V(rbx) \
V(rdx) \
V(rcx) \
V(rsi) \
V(rdi) \
V(r8) \
V(r9) \
V(r11) \
V(r12) \
V(r14) \
V(r15)
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kNumRegisters = Code::kAfterLast;
static Register from_code(int code) {
DCHECK(code >= 0);
DCHECK(code < kNumRegisters);
Register r = {code};
return r;
}
const char* ToString();
bool IsAllocatable() const;
bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
bool is(Register reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
bool is_byte_register() const { return reg_code <= 3; }
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const { return reg_code >> 3; }
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const { return reg_code & 0x7; }
// Unfortunately we can't make this private in a struct when initializing
// by assignment.
int reg_code;
};
#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const Register no_reg = {Register::kCode_no_reg};
#ifdef _WIN64
// Windows calling convention
const Register arg_reg_1 = {Register::kCode_rcx};
const Register arg_reg_2 = {Register::kCode_rdx};
const Register arg_reg_3 = {Register::kCode_r8};
const Register arg_reg_4 = {Register::kCode_r9};
#else
// AMD64 calling convention
const Register arg_reg_1 = {Register::kCode_rdi};
const Register arg_reg_2 = {Register::kCode_rsi};
const Register arg_reg_3 = {Register::kCode_rdx};
const Register arg_reg_4 = {Register::kCode_rcx};
#endif // _WIN64
#define DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7) \
V(xmm8) \
V(xmm9) \
V(xmm10) \
V(xmm11) \
V(xmm12) \
V(xmm13) \
V(xmm14) \
V(xmm15)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7) \
V(xmm8) \
V(xmm9) \
V(xmm10) \
V(xmm11) \
V(xmm12) \
V(xmm13) \
V(xmm14) \
V(xmm15)
struct DoubleRegister {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kMaxNumRegisters = Code::kAfterLast;
static DoubleRegister from_code(int code) {
DoubleRegister result = {code};
return result;
}
const char* ToString();
bool IsAllocatable() const;
bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const { return reg_code >> 3; }
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const { return reg_code & 0x7; }
// Unfortunately we can't make this private in a struct when initializing
// by assignment.
int reg_code;
};
#define DECLARE_REGISTER(R) \
const DoubleRegister R = {DoubleRegister::kCode_##R};
DOUBLE_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
typedef DoubleRegister XMMRegister;
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
overflow = 0,
no_overflow = 1,
below = 2,
above_equal = 3,
equal = 4,
not_equal = 5,
below_equal = 6,
above = 7,
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
// Fake conditions that are handled by the
// opcodes using them.
always = 16,
never = 17,
// aliases
carry = below,
not_carry = above_equal,
zero = equal,
not_zero = not_equal,
sign = negative,
not_sign = positive,
last_condition = greater
};
// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
return static_cast<Condition>(cc ^ 1);
}
// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cc) {
switch (cc) {
case below:
return above;
case above:
return below;
case above_equal:
return below_equal;
case below_equal:
return above_equal;
case less:
return greater;
case greater:
return less;
case greater_equal:
return less_equal;
case less_equal:
return greater_equal;
default:
return cc;
}
}
enum RoundingMode {
kRoundToNearest = 0x0,
kRoundDown = 0x1,
kRoundUp = 0x2,
kRoundToZero = 0x3
};
// -----------------------------------------------------------------------------
// Machine instruction Immediates
class Immediate BASE_EMBEDDED {
public:
explicit Immediate(int32_t value) : value_(value) {}
explicit Immediate(Smi* value) {
DCHECK(SmiValuesAre31Bits()); // Only available for 31-bit SMI.
value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
}
private:
int32_t value_;
friend class Assembler;
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
enum ScaleFactor {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_int_size = times_4,
times_pointer_size = (kPointerSize == 8) ? times_8 : times_4
};
class Operand BASE_EMBEDDED {
public:
// [base + disp/r]
Operand(Register base, int32_t disp);
// [base + index*scale + disp/r]
Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp);
// [index*scale + disp/r]
Operand(Register index,
ScaleFactor scale,
int32_t disp);
// Offset from existing memory operand.
// Offset is added to existing displacement as 32-bit signed values and
// this must not overflow.
Operand(const Operand& base, int32_t offset);
// [rip + disp/r]
explicit Operand(Label* label);
// Checks whether either base or index register is the given register.
// Does not check the "reg" part of the Operand.
bool AddressUsesRegister(Register reg) const;
// Queries related to the size of the generated instruction.
// Whether the generated instruction will have a REX prefix.
bool requires_rex() const { return rex_ != 0; }
// Size of the ModR/M, SIB and displacement parts of the generated
// instruction.
int operand_size() const { return len_; }
private:
byte rex_;
byte buf_[9];
// The number of bytes of buf_ in use.
byte len_;
// Set the ModR/M byte without an encoded 'reg' register. The
// register is encoded later as part of the emit_operand operation.
// set_modrm can be called before or after set_sib and set_disp*.
inline void set_modrm(int mod, Register rm);
// Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
inline void set_sib(ScaleFactor scale, Register index, Register base);
// Adds operand displacement fields (offsets added to the memory address).
// Needs to be called after set_sib, not before it.
inline void set_disp8(int disp);
inline void set_disp32(int disp);
inline void set_disp64(int64_t disp); // for labels.
friend class Assembler;
};
#define ASSEMBLER_INSTRUCTION_LIST(V) \
V(add) \
V(and) \
V(cmp) \
V(dec) \
V(idiv) \
V(div) \
V(imul) \
V(inc) \
V(lea) \
V(mov) \
V(movzxb) \
V(movzxw) \
V(neg) \
V(not) \
V(or) \
V(repmovs) \
V(sbb) \
V(sub) \
V(test) \
V(xchg) \
V(xor)
// Shift instructions on operands/registers with kPointerSize, kInt32Size and
// kInt64Size.
#define SHIFT_INSTRUCTION_LIST(V) \
V(rol, 0x0) \
V(ror, 0x1) \
V(rcl, 0x2) \
V(rcr, 0x3) \
V(shl, 0x4) \
V(shr, 0x5) \
V(sar, 0x7) \
class Assembler : public AssemblerBase {
private:
// We check before assembling an instruction that there is sufficient
// space to write an instruction and its relocation information.
// The relocation writer's position must be kGap bytes above the end of
// the generated instructions. This leaves enough space for the
// longest possible x64 instruction, 15 bytes, and the longest possible
// relocation information encoding, RelocInfoWriter::kMaxLength == 16.
// (There is a 15 byte limit on x64 instruction length that rules out some
// otherwise valid instructions.)
// This allows for a single, fast space check per instruction.
static const int kGap = 32;
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size);
virtual ~Assembler() { }
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Read/Modify the code target in the relative branch/call instruction at pc.
// On the x64 architecture, we use relative jumps with a 32-bit displacement
// to jump to other Code objects in the Code space in the heap.
// Jumps to C functions are done indirectly through a 64-bit register holding
// the absolute address of the target.
// These functions convert between absolute Addresses of Code objects and
// the relative displacements stored in the code.
static inline Address target_address_at(Address pc, Address constant_pool);
static inline void set_target_address_at(
Isolate* isolate, Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
static inline Address target_address_at(Address pc, Code* code) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
static inline void set_target_address_at(
Isolate* isolate, Address pc, Code* code, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target,
icache_flush_mode);
}
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
static inline Address target_address_from_return_address(Address pc);
// This sets the branch destination (which is in the instruction on x64).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code,
Address target) {
set_target_address_at(isolate, instruction_payload, code, target);
}
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
static inline RelocInfo::Mode RelocInfoNone() {
if (kPointerSize == kInt64Size) {
return RelocInfo::NONE64;
} else {
DCHECK(kPointerSize == kInt32Size);
return RelocInfo::NONE32;
}
}
inline Handle<Object> code_target_object_handle_at(Address pc);
inline Address runtime_entry_at(Address pc);
// Number of bytes taken up by the branch target in the code.
static const int kSpecialTargetSize = 4; // Use 32-bit displacement.
// Distance between the address of the code target in the call instruction
// and the return address pushed on the stack.
static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
// The length of call(kScratchRegister).
static const int kCallScratchRegisterInstructionLength = 3;
// The length of call(Immediate32).
static const int kShortCallInstructionLength = 5;
// The length of movq(kScratchRegister, address).
static const int kMoveAddressIntoScratchRegisterInstructionLength =
2 + kPointerSize;
// The length of movq(kScratchRegister, address) and call(kScratchRegister).
static const int kCallSequenceLength =
kMoveAddressIntoScratchRegisterInstructionLength +
kCallScratchRegisterInstructionLength;
// The debug break slot must be able to contain an indirect call sequence.
static const int kDebugBreakSlotLength = kCallSequenceLength;
// Distance between start of patched debug break slot and the emitted address
// to jump to.
static const int kPatchDebugBreakSlotAddressOffset =
kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize;
// One byte opcode for test eax,0xXXXXXXXX.
static const byte kTestEaxByte = 0xA9;
// One byte opcode for test al, 0xXX.
static const byte kTestAlByte = 0xA8;
// One byte opcode for nop.
static const byte kNopByte = 0x90;
// One byte prefix for a short conditional jump.
static const byte kJccShortPrefix = 0x70;
static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
static const byte kJcShortOpcode = kJccShortPrefix | carry;
static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
static const byte kJzShortOpcode = kJccShortPrefix | zero;
// VEX prefix encodings.
enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
// ---------------------------------------------------------------------------
// Code generation
//
// Function names correspond one-to-one to x64 instruction mnemonics.
// Unless specified otherwise, instructions operate on 64-bit operands.
//
// If we need versions of an assembly instruction that operate on different
// width arguments, we add a single-letter suffix specifying the width.
// This is done for the following instructions: mov, cmp, inc, dec,
// add, sub, and test.
// There are no versions of these instructions without the suffix.
// - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
// - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
// - Instructions on 32-bit (doubleword) operands/registers use 'l'.
// - Instructions on 64-bit (quadword) operands/registers use 'q'.
// - Instructions on operands/registers with pointer size use 'p'.
STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
#define DECLARE_INSTRUCTION(instruction) \
template<class P1> \
void instruction##p(P1 p1) { \
emit_##instruction(p1, kPointerSize); \
} \
\
template<class P1> \
void instruction##l(P1 p1) { \
emit_##instruction(p1, kInt32Size); \
} \
\
template<class P1> \
void instruction##q(P1 p1) { \
emit_##instruction(p1, kInt64Size); \
} \
\
template<class P1, class P2> \
void instruction##p(P1 p1, P2 p2) { \
emit_##instruction(p1, p2, kPointerSize); \
} \
\
template<class P1, class P2> \
void instruction##l(P1 p1, P2 p2) { \
emit_##instruction(p1, p2, kInt32Size); \
} \
\
template<class P1, class P2> \
void instruction##q(P1 p1, P2 p2) { \
emit_##instruction(p1, p2, kInt64Size); \
} \
\
template<class P1, class P2, class P3> \
void instruction##p(P1 p1, P2 p2, P3 p3) { \
emit_##instruction(p1, p2, p3, kPointerSize); \
} \
\
template<class P1, class P2, class P3> \
void instruction##l(P1 p1, P2 p2, P3 p3) { \
emit_##instruction(p1, p2, p3, kInt32Size); \
} \
\
template<class P1, class P2, class P3> \
void instruction##q(P1 p1, P2 p2, P3 p3) { \
emit_##instruction(p1, p2, p3, kInt64Size); \
}
ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
#undef DECLARE_INSTRUCTION
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m, where m must be a power of 2.
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
void Nop(int bytes = 1);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Stack
void pushfq();
void popfq();
void pushq(Immediate value);
// Push a 32 bit integer, and guarantee that it is actually pushed as a
// 32 bit value, the normal push will optimize the 8 bit case.
void pushq_imm32(int32_t imm32);
void pushq(Register src);
void pushq(const Operand& src);
void popq(Register dst);
void popq(const Operand& dst);
void enter(Immediate size);
void leave();
// Moves
void movb(Register dst, const Operand& src);
void movb(Register dst, Immediate imm);
void movb(const Operand& dst, Register src);
void movb(const Operand& dst, Immediate imm);
// Move the low 16 bits of a 64-bit register value to a 16-bit
// memory location.
void movw(Register dst, const Operand& src);
void movw(const Operand& dst, Register src);
void movw(const Operand& dst, Immediate imm);
// Move the offset of the label location relative to the current
// position (after the move) to the destination.
void movl(const Operand& dst, Label* src);
// Loads a pointer into a register with a relocation mode.
void movp(Register dst, void* ptr, RelocInfo::Mode rmode);
// Loads a 64-bit immediate into a register.
void movq(Register dst, int64_t value);
void movq(Register dst, uint64_t value);
void movsxbl(Register dst, Register src);
void movsxbl(Register dst, const Operand& src);
void movsxbq(Register dst, const Operand& src);
void movsxwl(Register dst, Register src);
void movsxwl(Register dst, const Operand& src);
void movsxwq(Register dst, const Operand& src);
void movsxlq(Register dst, Register src);
void movsxlq(Register dst, const Operand& src);
// Repeated moves.
void repmovsb();
void repmovsw();
void repmovsp() { emit_repmovs(kPointerSize); }
void repmovsl() { emit_repmovs(kInt32Size); }
void repmovsq() { emit_repmovs(kInt64Size); }
// Instruction to load from an immediate 64-bit pointer into RAX.
void load_rax(void* ptr, RelocInfo::Mode rmode);
void load_rax(ExternalReference ext);
// Conditional moves.
void cmovq(Condition cc, Register dst, Register src);
void cmovq(Condition cc, Register dst, const Operand& src);
void cmovl(Condition cc, Register dst, Register src);
void cmovl(Condition cc, Register dst, const Operand& src);
void cmpb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x7, dst, src);
}
void cmpb_al(Immediate src);
void cmpb(Register dst, Register src) {
arithmetic_op_8(0x3A, dst, src);
}
void cmpb(Register dst, const Operand& src) {
arithmetic_op_8(0x3A, dst, src);
}
void cmpb(const Operand& dst, Register src) {
arithmetic_op_8(0x38, src, dst);
}
void cmpb(const Operand& dst, Immediate src) {
immediate_arithmetic_op_8(0x7, dst, src);
}
void cmpw(const Operand& dst, Immediate src) {
immediate_arithmetic_op_16(0x7, dst, src);
}
void cmpw(Register dst, Immediate src) {
immediate_arithmetic_op_16(0x7, dst, src);
}
void cmpw(Register dst, const Operand& src) {
arithmetic_op_16(0x3B, dst, src);
}
void cmpw(Register dst, Register src) {
arithmetic_op_16(0x3B, dst, src);
}
void cmpw(const Operand& dst, Register src) {
arithmetic_op_16(0x39, src, dst);
}
void andb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x4, dst, src);
}
void decb(Register dst);
void decb(const Operand& dst);
// Sign-extends rax into rdx:rax.
void cqo();
// Sign-extends eax into edx:eax.
void cdq();
// Multiply eax by src, put the result in edx:eax.
void mull(Register src);
void mull(const Operand& src);
// Multiply rax by src, put the result in rdx:rax.
void mulq(Register src);
#define DECLARE_SHIFT_INSTRUCTION(instruction, subcode) \
void instruction##p(Register dst, Immediate imm8) { \
shift(dst, imm8, subcode, kPointerSize); \
} \
\
void instruction##l(Register dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt32Size); \
} \
\
void instruction##q(Register dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt64Size); \
} \
\
void instruction##p(Operand dst, Immediate imm8) { \
shift(dst, imm8, subcode, kPointerSize); \
} \
\
void instruction##l(Operand dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt32Size); \
} \
\
void instruction##q(Operand dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt64Size); \
} \
\
void instruction##p_cl(Register dst) { shift(dst, subcode, kPointerSize); } \
\
void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); } \
\
void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); } \
\
void instruction##p_cl(Operand dst) { shift(dst, subcode, kPointerSize); } \
\
void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); } \
\
void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
#undef DECLARE_SHIFT_INSTRUCTION
// Shifts dst:src left by cl bits, affecting only dst.
void shld(Register dst, Register src);
// Shifts src:dst right by cl bits, affecting only dst.
void shrd(Register dst, Register src);
void store_rax(void* dst, RelocInfo::Mode mode);
void store_rax(ExternalReference ref);
void subb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x5, dst, src);
}
void testb(Register dst, Register src);
void testb(Register reg, Immediate mask);
void testb(const Operand& op, Immediate mask);
void testb(const Operand& op, Register reg);
// Bit operations.
void bt(const Operand& dst, Register src);
void bts(const Operand& dst, Register src);
void bsrq(Register dst, Register src);
void bsrq(Register dst, const Operand& src);
void bsrl(Register dst, Register src);
void bsrl(Register dst, const Operand& src);
void bsfq(Register dst, Register src);
void bsfq(Register dst, const Operand& src);
void bsfl(Register dst, Register src);
void bsfl(Register dst, const Operand& src);
// Miscellaneous
void clc();
void cld();
void cpuid();
void hlt();
void int3();
void nop();
void ret(int imm16);
void ud2();
void setcc(Condition cc, Register reg);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Calls
// Call near relative 32-bit displacement, relative to next instruction.
void call(Label* L);
void call(Address entry, RelocInfo::Mode rmode);
void call(Handle<Code> target,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// Calls directly to the given address using a relative offset.
// Should only ever be used in Code objects for calls within the
// same Code object. Should not be used when generating new code (use labels),
// but only when patching existing code.
void call(Address target);
// Call near absolute indirect, address in register
void call(Register adr);
// Jumps
// Jump short or near relative.
// Use a 32-bit signed displacement.
// Unconditional jump to L
void jmp(Label* L, Label::Distance distance = Label::kFar);
void jmp(Address entry, RelocInfo::Mode rmode);
void jmp(Handle<Code> target, RelocInfo::Mode rmode);
// Jump near absolute indirect (r64)
void jmp(Register adr);
void jmp(const Operand& src);
// Conditional jumps
void j(Condition cc,
Label* L,
Label::Distance distance = Label::kFar);
void j(Condition cc, Address entry, RelocInfo::Mode rmode);
void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
// Floating-point operations
void fld(int i);
void fld1();
void fldz();
void fldpi();
void fldln2();
void fld_s(const Operand& adr);
void fld_d(const Operand& adr);
void fstp_s(const Operand& adr);
void fstp_d(const Operand& adr);
void fstp(int index);
void fild_s(const Operand& adr);
void fild_d(const Operand& adr);
void fist_s(const Operand& adr);
void fistp_s(const Operand& adr);
void fistp_d(const Operand& adr);
void fisttp_s(const Operand& adr);
void fisttp_d(const Operand& adr);
void fabs();
void fchs();
void fadd(int i);
void fsub(int i);
void fmul(int i);
void fdiv(int i);
void fisub_s(const Operand& adr);
void faddp(int i = 1);
void fsubp(int i = 1);
void fsubrp(int i = 1);
void fmulp(int i = 1);
void fdivp(int i = 1);
void fprem();
void fprem1();
void fxch(int i = 1);
void fincstp();
void ffree(int i = 0);
void ftst();
void fucomp(int i);
void fucompp();
void fucomi(int i);
void fucomip();
void fcompp();
void fnstsw_ax();
void fwait();
void fnclex();
void fsin();
void fcos();
void fptan();
void fyl2x();
void f2xm1();
void fscale();
void fninit();
void frndint();
void sahf();
// SSE instructions
void addss(XMMRegister dst, XMMRegister src);
void addss(XMMRegister dst, const Operand& src);
void subss(XMMRegister dst, XMMRegister src);
void subss(XMMRegister dst, const Operand& src);
void mulss(XMMRegister dst, XMMRegister src);
void mulss(XMMRegister dst, const Operand& src);
void divss(XMMRegister dst, XMMRegister src);
void divss(XMMRegister dst, const Operand& src);
void maxss(XMMRegister dst, XMMRegister src);
void maxss(XMMRegister dst, const Operand& src);
void minss(XMMRegister dst, XMMRegister src);
void minss(XMMRegister dst, const Operand& src);
void sqrtss(XMMRegister dst, XMMRegister src);
void sqrtss(XMMRegister dst, const Operand& src);
void ucomiss(XMMRegister dst, XMMRegister src);
void ucomiss(XMMRegister dst, const Operand& src);
void movaps(XMMRegister dst, XMMRegister src);
// Don't use this unless it's important to keep the
// top half of the destination register unchanged.
// Use movaps when moving float values and movd for integer
// values in xmm registers.
void movss(XMMRegister dst, XMMRegister src);
void movss(XMMRegister dst, const Operand& src);
void movss(const Operand& dst, XMMRegister src);
void shufps(XMMRegister dst, XMMRegister src, byte imm8);
void cvttss2si(Register dst, const Operand& src);
void cvttss2si(Register dst, XMMRegister src);
void cvtlsi2ss(XMMRegister dst, Register src);
void andps(XMMRegister dst, XMMRegister src);
void andps(XMMRegister dst, const Operand& src);
void orps(XMMRegister dst, XMMRegister src);
void orps(XMMRegister dst, const Operand& src);
void xorps(XMMRegister dst, XMMRegister src);
void xorps(XMMRegister dst, const Operand& src);
void addps(XMMRegister dst, XMMRegister src);
void addps(XMMRegister dst, const Operand& src);
void subps(XMMRegister dst, XMMRegister src);
void subps(XMMRegister dst, const Operand& src);
void mulps(XMMRegister dst, XMMRegister src);
void mulps(XMMRegister dst, const Operand& src);
void divps(XMMRegister dst, XMMRegister src);
void divps(XMMRegister dst, const Operand& src);
void movmskps(Register dst, XMMRegister src);
// SSE2 instructions
void movd(XMMRegister dst, Register src);
void movd(XMMRegister dst, const Operand& src);
void movd(Register dst, XMMRegister src);
void movq(XMMRegister dst, Register src);
void movq(Register dst, XMMRegister src);
void movq(XMMRegister dst, XMMRegister src);
// Don't use this unless it's important to keep the
// top half of the destination register unchanged.
// Use movapd when moving double values and movq for integer
// values in xmm registers.
void movsd(XMMRegister dst, XMMRegister src);
void movsd(const Operand& dst, XMMRegister src);
void movsd(XMMRegister dst, const Operand& src);
void movdqa(const Operand& dst, XMMRegister src);
void movdqa(XMMRegister dst, const Operand& src);
void movdqu(const Operand& dst, XMMRegister src);
void movdqu(XMMRegister dst, const Operand& src);
void movapd(XMMRegister dst, XMMRegister src);
void psllq(XMMRegister reg, byte imm8);
void psrlq(XMMRegister reg, byte imm8);
void pslld(XMMRegister reg, byte imm8);
void psrld(XMMRegister reg, byte imm8);
void cvttsd2si(Register dst, const Operand& src);
void cvttsd2si(Register dst, XMMRegister src);
void cvttss2siq(Register dst, XMMRegister src);
void cvttss2siq(Register dst, const Operand& src);
void cvttsd2siq(Register dst, XMMRegister src);
void cvttsd2siq(Register dst, const Operand& src);
void cvtlsi2sd(XMMRegister dst, const Operand& src);
void cvtlsi2sd(XMMRegister dst, Register src);
void cvtqsi2ss(XMMRegister dst, const Operand& src);
void cvtqsi2ss(XMMRegister dst, Register src);
void cvtqsi2sd(XMMRegister dst, const Operand& src);
void cvtqsi2sd(XMMRegister dst, Register src);
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtss2sd(XMMRegister dst, const Operand& src);
void cvtsd2ss(XMMRegister dst, XMMRegister src);
void cvtsd2ss(XMMRegister dst, const Operand& src);
void cvtsd2si(Register dst, XMMRegister src);
void cvtsd2siq(Register dst, XMMRegister src);
void addsd(XMMRegister dst, XMMRegister src);
void addsd(XMMRegister dst, const Operand& src);
void subsd(XMMRegister dst, XMMRegister src);
void subsd(XMMRegister dst, const Operand& src);
void mulsd(XMMRegister dst, XMMRegister src);
void mulsd(XMMRegister dst, const Operand& src);
void divsd(XMMRegister dst, XMMRegister src);
void divsd(XMMRegister dst, const Operand& src);
void maxsd(XMMRegister dst, XMMRegister src);
void maxsd(XMMRegister dst, const Operand& src);
void minsd(XMMRegister dst, XMMRegister src);
void minsd(XMMRegister dst, const Operand& src);
void andpd(XMMRegister dst, XMMRegister src);
void orpd(XMMRegister dst, XMMRegister src);
void xorpd(XMMRegister dst, XMMRegister src);
void sqrtsd(XMMRegister dst, XMMRegister src);
void sqrtsd(XMMRegister dst, const Operand& src);
void ucomisd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, const Operand& src);
void cmpltsd(XMMRegister dst, XMMRegister src);
void pcmpeqd(XMMRegister dst, XMMRegister src);
void movmskpd(Register dst, XMMRegister src);
void punpckldq(XMMRegister dst, XMMRegister src);
void punpckhdq(XMMRegister dst, XMMRegister src);
// SSE 4.1 instruction
void extractps(Register dst, XMMRegister src, byte imm8);
void pextrd(Register dst, XMMRegister src, int8_t imm8);
void pinsrd(XMMRegister dst, Register src, int8_t imm8);
void pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
// AVX instruction
void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0x99, dst, src1, src2);
}
void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xa9, dst, src1, src2);
}
void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xb9, dst, src1, src2);
}
void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0x99, dst, src1, src2);
}
void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xa9, dst, src1, src2);
}
void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xb9, dst, src1, src2);
}
void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0x9b, dst, src1, src2);
}
void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xab, dst, src1, src2);
}
void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xbb, dst, src1, src2);
}
void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0x9b, dst, src1, src2);
}
void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xab, dst, src1, src2);
}
void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xbb, dst, src1, src2);
}
void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0x9d, dst, src1, src2);
}
void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xad, dst, src1, src2);
}
void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xbd, dst, src1, src2);
}
void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0x9d, dst, src1, src2);
}
void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xad, dst, src1, src2);
}
void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xbd, dst, src1, src2);
}
void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0x9f, dst, src1, src2);
}
void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xaf, dst, src1, src2);
}
void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmasd(0xbf, dst, src1, src2);
}
void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0x9f, dst, src1, src2);
}
void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xaf, dst, src1, src2);
}
void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmasd(0xbf, dst, src1, src2);
}
void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0x99, dst, src1, src2);
}
void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xa9, dst, src1, src2);
}
void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xb9, dst, src1, src2);
}
void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0x99, dst, src1, src2);
}
void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xa9, dst, src1, src2);
}
void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xb9, dst, src1, src2);
}
void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0x9b, dst, src1, src2);
}
void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xab, dst, src1, src2);
}
void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xbb, dst, src1, src2);
}
void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0x9b, dst, src1, src2);
}
void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xab, dst, src1, src2);
}
void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xbb, dst, src1, src2);
}
void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0x9d, dst, src1, src2);
}
void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xad, dst, src1, src2);
}
void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xbd, dst, src1, src2);
}
void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0x9d, dst, src1, src2);
}
void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xad, dst, src1, src2);
}
void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xbd, dst, src1, src2);
}
void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0x9f, dst, src1, src2);
}
void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xaf, dst, src1, src2);
}
void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vfmass(0xbf, dst, src1, src2);
}
void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0x9f, dst, src1, src2);
}
void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xaf, dst, src1, src2);
}
void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vfmass(0xbf, dst, src1, src2);
}
void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
void vmovd(XMMRegister dst, Register src);
void vmovd(XMMRegister dst, const Operand& src);
void vmovd(Register dst, XMMRegister src);
void vmovq(XMMRegister dst, Register src);
void vmovq(XMMRegister dst, const Operand& src);
void vmovq(Register dst, XMMRegister src);
void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vsd(0x10, dst, src1, src2);
}
void vmovsd(XMMRegister dst, const Operand& src) {
vsd(0x10, dst, xmm0, src);
}
void vmovsd(const Operand& dst, XMMRegister src) {
vsd(0x11, src, xmm0, dst);
}
#define AVX_SP_3(instr, opcode) \
AVX_S_3(instr, opcode) \
AVX_P_3(instr, opcode)
#define AVX_S_3(instr, opcode) \
AVX_3(instr##ss, opcode, vss) \
AVX_3(instr##sd, opcode, vsd)
#define AVX_P_3(instr, opcode) \
AVX_3(instr##ps, opcode, vps) \
AVX_3(instr##pd, opcode, vpd)
#define AVX_3(instr, opcode, impl) \
void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
impl(opcode, dst, src1, src2); \
} \
void instr(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
impl(opcode, dst, src1, src2); \
}
AVX_SP_3(vsqrt, 0x51);
AVX_SP_3(vadd, 0x58);
AVX_SP_3(vsub, 0x5c);
AVX_SP_3(vmul, 0x59);
AVX_SP_3(vdiv, 0x5e);
AVX_SP_3(vmin, 0x5d);
AVX_SP_3(vmax, 0x5f);
AVX_P_3(vand, 0x54);
AVX_P_3(vor, 0x56);
AVX_P_3(vxor, 0x57);
AVX_3(vpcmpeqd, 0x76, vpd);
AVX_3(vcvtsd2ss, 0x5a, vsd);
#undef AVX_3
#undef AVX_S_3
#undef AVX_P_3
#undef AVX_SP_3
void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
XMMRegister iop = {2};
vpd(0x73, iop, dst, src);
emit(imm8);
}
void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
XMMRegister iop = {6};
vpd(0x73, iop, dst, src);
emit(imm8);
}
void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vsd(0x5a, dst, src1, src2, kF3, k0F, kWIG);
}
void vcvtss2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vsd(0x5a, dst, src1, src2, kF3, k0F, kWIG);
}
void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = {src2.code()};
vsd(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
}
void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vsd(0x2a, dst, src1, src2, kF2, k0F, kW0);
}
void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = {src2.code()};
vsd(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
}
void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vsd(0x2a, dst, src1, src2, kF3, k0F, kW1);
}
void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = {src2.code()};
vsd(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
}
void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
vsd(0x2a, dst, src1, src2, kF2, k0F, kW1);
}
void vcvttsd2si(Register dst, XMMRegister src) {
XMMRegister idst = {dst.code()};
vsd(0x2c, idst, xmm0, src, kF2, k0F, kW0);
}
void vcvttsd2si(Register dst, const Operand& src) {
XMMRegister idst = {dst.code()};
vsd(0x2c, idst, xmm0, src, kF2, k0F, kW0);
}
void vcvttss2siq(Register dst, XMMRegister src) {
XMMRegister idst = {dst.code()};
vsd(0x2c, idst, xmm0, src, kF3, k0F, kW1);
}
void vcvttss2siq(Register dst, const Operand& src) {
XMMRegister idst = {dst.code()};
vsd(0x2c, idst, xmm0, src, kF3, k0F, kW1);
}
void vcvttsd2siq(Register dst, XMMRegister src) {
XMMRegister idst = {dst.code()};
vsd(0x2c, idst, xmm0, src, kF2, k0F, kW1);
}
void vcvttsd2siq(Register dst, const Operand& src) {
XMMRegister idst = {dst.code()};
vsd(0x2c, idst, xmm0, src, kF2, k0F, kW1);
}
void vcvtsd2si(Register dst, XMMRegister src) {
XMMRegister idst = {dst.code()};
vsd(0x2d, idst, xmm0, src, kF2, k0F, kW0);
}
void vucomisd(XMMRegister dst, XMMRegister src) {
vsd(0x2e, dst, xmm0, src, k66, k0F, kWIG);
}
void vucomisd(XMMRegister dst, const Operand& src) {
vsd(0x2e, dst, xmm0, src, k66, k0F, kWIG);
}
void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
RoundingMode mode) {
vsd(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
emit(static_cast<byte>(mode) | 0x8); // Mask precision exception.
}
void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
RoundingMode mode) {
vsd(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
emit(static_cast<byte>(mode) | 0x8); // Mask precision exception.
}
void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vsd(op, dst, src1, src2, kF2, k0F, kWIG);
}
void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2) {
vsd(op, dst, src1, src2, kF2, k0F, kWIG);
}
void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
SIMDPrefix pp, LeadingOpcode m, VexW w);
void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2,
SIMDPrefix pp, LeadingOpcode m, VexW w);
void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vss(0x10, dst, src1, src2);
}
void vmovss(XMMRegister dst, const Operand& src) {
vss(0x10, dst, xmm0, src);
}
void vmovss(const Operand& dst, XMMRegister src) {
vss(0x11, src, xmm0, dst);
}
void vucomiss(XMMRegister dst, XMMRegister src);
void vucomiss(XMMRegister dst, const Operand& src);
void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
void vmovmskpd(Register dst, XMMRegister src) {
XMMRegister idst = {dst.code()};
vpd(0x50, idst, xmm0, src);
}
void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
// BMI instruction
void andnq(Register dst, Register src1, Register src2) {
bmi1q(0xf2, dst, src1, src2);
}
void andnq(Register dst, Register src1, const Operand& src2) {
bmi1q(0xf2, dst, src1, src2);
}
void andnl(Register dst, Register src1, Register src2) {
bmi1l(0xf2, dst, src1, src2);
}
void andnl(Register dst, Register src1, const Operand& src2) {
bmi1l(0xf2, dst, src1, src2);
}
void bextrq(Register dst, Register src1, Register src2) {
bmi1q(0xf7, dst, src2, src1);
}
void bextrq(Register dst, const Operand& src1, Register src2) {
bmi1q(0xf7, dst, src2, src1);
}
void bextrl(Register dst, Register src1, Register src2) {
bmi1l(0xf7, dst, src2, src1);
}
void bextrl(Register dst, const Operand& src1, Register src2) {
bmi1l(0xf7, dst, src2, src1);
}
void blsiq(Register dst, Register src) {
Register ireg = {3};
bmi1q(0xf3, ireg, dst, src);
}
void blsiq(Register dst, const Operand& src) {
Register ireg = {3};
bmi1q(0xf3, ireg, dst, src);
}
void blsil(Register dst, Register src) {
Register ireg = {3};
bmi1l(0xf3, ireg, dst, src);
}
void blsil(Register dst, const Operand& src) {
Register ireg = {3};
bmi1l(0xf3, ireg, dst, src);
}
void blsmskq(Register dst, Register src) {
Register ireg = {2};
bmi1q(0xf3, ireg, dst, src);
}
void blsmskq(Register dst, const Operand& src) {
Register ireg = {2};
bmi1q(0xf3, ireg, dst, src);
}
void blsmskl(Register dst, Register src) {
Register ireg = {2};
bmi1l(0xf3, ireg, dst, src);
}
void blsmskl(Register dst, const Operand& src) {
Register ireg = {2};
bmi1l(0xf3, ireg, dst, src);
}
void blsrq(Register dst, Register src) {
Register ireg = {1};
bmi1q(0xf3, ireg, dst, src);
}
void blsrq(Register dst, const Operand& src) {
Register ireg = {1};
bmi1q(0xf3, ireg, dst, src);
}
void blsrl(Register dst, Register src) {
Register ireg = {1};
bmi1l(0xf3, ireg, dst, src);
}
void blsrl(Register dst, const Operand& src) {
Register ireg = {1};
bmi1l(0xf3, ireg, dst, src);
}
void tzcntq(Register dst, Register src);
void tzcntq(Register dst, const Operand& src);
void tzcntl(Register dst, Register src);
void tzcntl(Register dst, const Operand& src);
void lzcntq(Register dst, Register src);
void lzcntq(Register dst, const Operand& src);
void lzcntl(Register dst, Register src);
void lzcntl(Register dst, const Operand& src);
void popcntq(Register dst, Register src);
void popcntq(Register dst, const Operand& src);
void popcntl(Register dst, Register src);
void popcntl(Register dst, const Operand& src);
void bzhiq(Register dst, Register src1, Register src2) {
bmi2q(kNone, 0xf5, dst, src2, src1);
}
void bzhiq(Register dst, const Operand& src1, Register src2) {
bmi2q(kNone, 0xf5, dst, src2, src1);
}
void bzhil(Register dst, Register src1, Register src2) {
bmi2l(kNone, 0xf5, dst, src2, src1);
}
void bzhil(Register dst, const Operand& src1, Register src2) {
bmi2l(kNone, 0xf5, dst, src2, src1);
}
void mulxq(Register dst1, Register dst2, Register src) {
bmi2q(kF2, 0xf6, dst1, dst2, src);
}
void mulxq(Register dst1, Register dst2, const Operand& src) {
bmi2q(kF2, 0xf6, dst1, dst2, src);
}
void mulxl(Register dst1, Register dst2, Register src) {
bmi2l(kF2, 0xf6, dst1, dst2, src);
}
void mulxl(Register dst1, Register dst2, const Operand& src) {
bmi2l(kF2, 0xf6, dst1, dst2, src);
}
void pdepq(Register dst, Register src1, Register src2) {
bmi2q(kF2, 0xf5, dst, src1, src2);
}
void pdepq(Register dst, Register src1, const Operand& src2) {
bmi2q(kF2, 0xf5, dst, src1, src2);
}
void pdepl(Register dst, Register src1, Register src2) {
bmi2l(kF2, 0xf5, dst, src1, src2);
}
void pdepl(Register dst, Register src1, const Operand& src2) {
bmi2l(kF2, 0xf5, dst, src1, src2);
}
void pextq(Register dst, Register src1, Register src2) {
bmi2q(kF3, 0xf5, dst, src1, src2);
}
void pextq(Register dst, Register src1, const Operand& src2) {
bmi2q(kF3, 0xf5, dst, src1, src2);
}
void pextl(Register dst, Register src1, Register src2) {
bmi2l(kF3, 0xf5, dst, src1, src2);
}
void pextl(Register dst, Register src1, const Operand& src2) {
bmi2l(kF3, 0xf5, dst, src1, src2);
}
void sarxq(Register dst, Register src1, Register src2) {
bmi2q(kF3, 0xf7, dst, src2, src1);
}
void sarxq(Register dst, const Operand& src1, Register src2) {
bmi2q(kF3, 0xf7, dst, src2, src1);
}
void sarxl(Register dst, Register src1, Register src2) {
bmi2l(kF3, 0xf7, dst, src2, src1);
}
void sarxl(Register dst, const Operand& src1, Register src2) {
bmi2l(kF3, 0xf7, dst, src2, src1);
}
void shlxq(Register dst, Register src1, Register src2) {
bmi2q(k66, 0xf7, dst, src2, src1);
}
void shlxq(Register dst, const Operand& src1, Register src2) {
bmi2q(k66, 0xf7, dst, src2, src1);
}
void shlxl(Register dst, Register src1, Register src2) {
bmi2l(k66, 0xf7, dst, src2, src1);
}
void shlxl(Register dst, const Operand& src1, Register src2) {
bmi2l(k66, 0xf7, dst, src2, src1);
}
void shrxq(Register dst, Register src1, Register src2) {
bmi2q(kF2, 0xf7, dst, src2, src1);
}
void shrxq(Register dst, const Operand& src1, Register src2) {
bmi2q(kF2, 0xf7, dst, src2, src1);
}
void shrxl(Register dst, Register src1, Register src2) {
bmi2l(kF2, 0xf7, dst, src2, src1);
}
void shrxl(Register dst, const Operand& src1, Register src2) {
bmi2l(kF2, 0xf7, dst, src2, src1);
}
void rorxq(Register dst, Register src, byte imm8);
void rorxq(Register dst, const Operand& src, byte imm8);
void rorxl(Register dst, Register src, byte imm8);
void rorxl(Register dst, const Operand& src, byte imm8);
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Mark generator continuation.
void RecordGeneratorContinuation();
// Mark address of a debug break slot.
void RecordDebugBreakSlot(RelocInfo::Mode mode);
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg);
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(const int reason, const SourcePosition position);
void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
// No embedded constant pool support.
UNREACHABLE();
}
// Writes a single word of data in the code stream.
// Used for inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data) { dq(data); }
void dq(Label* label);
PositionsRecorder* positions_recorder() { return &positions_recorder_; }
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool buffer_overflow() const {
return pc_ >= reloc_info_writer.pos() - kGap;
}
// Get the number of bytes available in the buffer.
inline int available_space() const {
return static_cast<int>(reloc_info_writer.pos() - pc_);
}
static bool IsNop(Address addr);
// Avoid overflows for displacements etc.
static const int kMaximalBufferSize = 512*MB;
byte byte_at(int pos) { return buffer_[pos]; }
void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
protected:
// Call near indirect
void call(const Operand& operand);
private:
byte* addr_at(int pos) { return buffer_ + pos; }
uint32_t long_at(int pos) {
return *reinterpret_cast<uint32_t*>(addr_at(pos));
}
void long_at_put(int pos, uint32_t x) {
*reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
}
// code emission
void GrowBuffer();
void emit(byte x) { *pc_++ = x; }
inline void emitl(uint32_t x);
inline void emitp(void* x, RelocInfo::Mode rmode);
inline void emitq(uint64_t x);
inline void emitw(uint16_t x);
inline void emit_code_target(Handle<Code> target,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id = TypeFeedbackId::None());
inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
void emit(Immediate x) { emitl(x.value_); }
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of both register codes.
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is set.
inline void emit_rex_64(XMMRegister reg, Register rm_reg);
inline void emit_rex_64(Register reg, XMMRegister rm_reg);
inline void emit_rex_64(Register reg, Register rm_reg);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the destination, index, and base register codes.
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is set.
inline void emit_rex_64(Register reg, const Operand& op);
inline void emit_rex_64(XMMRegister reg, const Operand& op);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the register code.
// The high bit of register is used for REX.B.
// REX.W is set and REX.R and REX.X are clear.
inline void emit_rex_64(Register rm_reg);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the index and base register codes.
// The high bit of op's base register is used for REX.B, and the high
// bit of op's index register is used for REX.X.
// REX.W is set and REX.R clear.
inline void emit_rex_64(const Operand& op);
// Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
void emit_rex_64() { emit(0x48); }
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is clear.
inline void emit_rex_32(Register reg, Register rm_reg);
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is cleared.
inline void emit_rex_32(Register reg, const Operand& op);
// High bit of rm_reg goes to REX.B.
// REX.W, REX.R and REX.X are clear.
inline void emit_rex_32(Register rm_reg);
// High bit of base goes to REX.B and high bit of index to REX.X.
// REX.W and REX.R are clear.
inline void emit_rex_32(const Operand& op);
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is cleared. If no REX bits are set, no byte is emitted.
inline void emit_optional_rex_32(Register reg, Register rm_reg);
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
// is emitted.
inline void emit_optional_rex_32(Register reg, const Operand& op);
// As for emit_optional_rex_32(Register, Register), except that
// the registers are XMM registers.
inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
// As for emit_optional_rex_32(Register, Register), except that
// one of the registers is an XMM registers.
inline void emit_optional_rex_32(XMMRegister reg, Register base);
// As for emit_optional_rex_32(Register, Register), except that
// one of the registers is an XMM registers.
inline void emit_optional_rex_32(Register reg, XMMRegister base);
// As for emit_optional_rex_32(Register, const Operand&), except that
// the register is an XMM register.
inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
// Optionally do as emit_rex_32(Register) if the register number has
// the high bit set.
inline void emit_optional_rex_32(Register rm_reg);
inline void emit_optional_rex_32(XMMRegister rm_reg);
// Optionally do as emit_rex_32(const Operand&) if the operand register
// numbers have a high bit set.
inline void emit_optional_rex_32(const Operand& op);
void emit_rex(int size) {
if (size == kInt64Size) {
emit_rex_64();
} else {
DCHECK(size == kInt32Size);
}
}
template<class P1>
void emit_rex(P1 p1, int size) {
if (size == kInt64Size) {
emit_rex_64(p1);
} else {
DCHECK(size == kInt32Size);
emit_optional_rex_32(p1);
}
}
template<class P1, class P2>
void emit_rex(P1 p1, P2 p2, int size) {
if (size == kInt64Size) {
emit_rex_64(p1, p2);
} else {
DCHECK(size == kInt32Size);
emit_optional_rex_32(p1, p2);
}
}
// Emit vex prefix
void emit_vex2_byte0() { emit(0xc5); }
inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
SIMDPrefix pp);
void emit_vex3_byte0() { emit(0xc4); }
inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
inline void emit_vex3_byte1(XMMRegister reg, const Operand& rm,
LeadingOpcode m);
inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
SIMDPrefix pp);
inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
inline void emit_vex_prefix(Register reg, Register v, Register rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, const Operand& rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
inline void emit_vex_prefix(Register reg, Register v, const Operand& rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
// Emit the ModR/M byte, and optionally the SIB byte and
// 1- or 4-byte offset for a memory operand. Also encodes
// the second operand of the operation, a register or operation
// subcode, into the reg field of the ModR/M byte.
void emit_operand(Register reg, const Operand& adr) {
emit_operand(reg.low_bits(), adr);
}
// Emit the ModR/M byte, and optionally the SIB byte and
// 1- or 4-byte offset for a memory operand. Also used to encode
// a three-bit opcode extension into the ModR/M byte.
void emit_operand(int rm, const Operand& adr);
// Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
void emit_modrm(Register reg, Register rm_reg) {
emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
}
// Emit a ModR/M byte with an operation subcode in the reg field and
// a register in the rm_reg field.
void emit_modrm(int code, Register rm_reg) {
DCHECK(is_uint3(code));
emit(0xC0 | code << 3 | rm_reg.low_bits());
}
// Emit the code-object-relative offset of the label's position
inline void emit_code_relative_offset(Label* label);
// The first argument is the reg field, the second argument is the r/m field.
void emit_sse_operand(XMMRegister dst, XMMRegister src);
void emit_sse_operand(XMMRegister reg, const Operand& adr);
void emit_sse_operand(Register reg, const Operand& adr);
void emit_sse_operand(XMMRegister dst, Register src);
void emit_sse_operand(Register dst, XMMRegister src);
// Emit machine code for one of the operations ADD, ADC, SUB, SBC,
// AND, OR, XOR, or CMP. The encodings of these operations are all
// similar, differing just in the opcode or in the reg field of the
// ModR/M byte.
void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg);
void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
// Operate on operands/registers with pointer size, 32-bit or 64-bit size.
void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
void arithmetic_op(byte opcode,
Register reg,
const Operand& rm_reg,
int size);
// Operate on a byte in memory or register.
void immediate_arithmetic_op_8(byte subcode,
Register dst,
Immediate src);
void immediate_arithmetic_op_8(byte subcode,
const Operand& dst,
Immediate src);
// Operate on a word in memory or register.
void immediate_arithmetic_op_16(byte subcode,
Register dst,
Immediate src);
void immediate_arithmetic_op_16(byte subcode,
const Operand& dst,
Immediate src);
// Operate on operands/registers with pointer size, 32-bit or 64-bit size.
void immediate_arithmetic_op(byte subcode,
Register dst,
Immediate src,
int size);
void immediate_arithmetic_op(byte subcode,
const Operand& dst,
Immediate src,
int size);
// Emit machine code for a shift operation.
void shift(Operand dst, Immediate shift_amount, int subcode, int size);
void shift(Register dst, Immediate shift_amount, int subcode, int size);
// Shift dst by cl % 64 bits.
void shift(Register dst, int subcode, int size);
void shift(Operand dst, int subcode, int size);
void emit_farith(int b1, int b2, int i);
// labels
// void print(Label* L);
void bind_to(Label* L, int pos);
// record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
// Arithmetics
void emit_add(Register dst, Register src, int size) {
arithmetic_op(0x03, dst, src, size);
}
void emit_add(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x0, dst, src, size);
}
void emit_add(Register dst, const Operand& src, int size) {
arithmetic_op(0x03, dst, src, size);
}
void emit_add(const Operand& dst, Register src, int size) {
arithmetic_op(0x1, src, dst, size);
}
void emit_add(const Operand& dst, Immediate src, int size) {
immediate_arithmetic_op(0x0, dst, src, size);
}
void emit_and(Register dst, Register src, int size) {
arithmetic_op(0x23, dst, src, size);
}
void emit_and(Register dst, const Operand& src, int size) {
arithmetic_op(0x23, dst, src, size);
}
void emit_and(const Operand& dst, Register src, int size) {
arithmetic_op(0x21, src, dst, size);
}
void emit_and(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x4, dst, src, size);
}
void emit_and(const Operand& dst, Immediate src, int size) {
immediate_arithmetic_op(0x4, dst, src, size);
}
void emit_cmp(Register dst, Register src, int size) {
arithmetic_op(0x3B, dst, src, size);
}
void emit_cmp(Register dst, const Operand& src, int size) {
arithmetic_op(0x3B, dst, src, size);
}
void emit_cmp(const Operand& dst, Register src, int size) {
arithmetic_op(0x39, src, dst, size);
}
void emit_cmp(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x7, dst, src, size);
}
void emit_cmp(const Operand& dst, Immediate src, int size) {
immediate_arithmetic_op(0x7, dst, src, size);
}
void emit_dec(Register dst, int size);
void emit_dec(const Operand& dst, int size);
// Divide rdx:rax by src. Quotient in rax, remainder in rdx when size is 64.
// Divide edx:eax by lower 32 bits of src. Quotient in eax, remainder in edx
// when size is 32.
void emit_idiv(Register src, int size);
void emit_div(Register src, int size);
// Signed multiply instructions.
// rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
void emit_imul(Register src, int size);
void emit_imul(const Operand& src, int size);
void emit_imul(Register dst, Register src, int size);
void emit_imul(Register dst, const Operand& src, int size);
void emit_imul(Register dst, Register src, Immediate imm, int size);
void emit_imul(Register dst, const Operand& src, Immediate imm, int size);
void emit_inc(Register dst, int size);
void emit_inc(const Operand& dst, int size);
void emit_lea(Register dst, const Operand& src, int size);
void emit_mov(Register dst, const Operand& src, int size);
void emit_mov(Register dst, Register src, int size);
void emit_mov(const Operand& dst, Register src, int size);
void emit_mov(Register dst, Immediate value, int size);
void emit_mov(const Operand& dst, Immediate value, int size);
void emit_movzxb(Register dst, const Operand& src, int size);
void emit_movzxb(Register dst, Register src, int size);
void emit_movzxw(Register dst, const Operand& src, int size);
void emit_movzxw(Register dst, Register src, int size);
void emit_neg(Register dst, int size);
void emit_neg(const Operand& dst, int size);
void emit_not(Register dst, int size);
void emit_not(const Operand& dst, int size);
void emit_or(Register dst, Register src, int size) {
arithmetic_op(0x0B, dst, src, size);
}
void emit_or(Register dst, const Operand& src, int size) {
arithmetic_op(0x0B, dst, src, size);
}
void emit_or(const Operand& dst, Register src, int size) {
arithmetic_op(0x9, src, dst, size);
}
void emit_or(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x1, dst, src, size);
}
void emit_or(const Operand& dst, Immediate src, int size) {
immediate_arithmetic_op(0x1, dst, src, size);
}
void emit_repmovs(int size);
void emit_sbb(Register dst, Register src, int size) {
arithmetic_op(0x1b, dst, src, size);
}
void emit_sub(Register dst, Register src, int size) {
arithmetic_op(0x2B, dst, src, size);
}
void emit_sub(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x5, dst, src, size);
}
void emit_sub(Register dst, const Operand& src, int size) {
arithmetic_op(0x2B, dst, src, size);
}
void emit_sub(const Operand& dst, Register src, int size) {
arithmetic_op(0x29, src, dst, size);
}
void emit_sub(const Operand& dst, Immediate src, int size) {
immediate_arithmetic_op(0x5, dst, src, size);
}
void emit_test(Register dst, Register src, int size);
void emit_test(Register reg, Immediate mask, int size);
void emit_test(const Operand& op, Register reg, int size);
void emit_test(const Operand& op, Immediate mask, int size);
void emit_test(Register reg, const Operand& op, int size) {
return emit_test(op, reg, size);
}
void emit_xchg(Register dst, Register src, int size);
void emit_xchg(Register dst, const Operand& src, int size);
void emit_xor(Register dst, Register src, int size) {
if (size == kInt64Size && dst.code() == src.code()) {
// 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
// there is no need to make this a 64 bit operation.
arithmetic_op(0x33, dst, src, kInt32Size);
} else {
arithmetic_op(0x33, dst, src, size);
}
}
void emit_xor(Register dst, const Operand& src, int size) {
arithmetic_op(0x33, dst, src, size);
}
void emit_xor(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x6, dst, src, size);
}
void emit_xor(const Operand& dst, Immediate src, int size) {
immediate_arithmetic_op(0x6, dst, src, size);
}
void emit_xor(const Operand& dst, Register src, int size) {
arithmetic_op(0x31, src, dst, size);
}
// Most BMI instructions are similiar.
void bmi1q(byte op, Register reg, Register vreg, Register rm);
void bmi1q(byte op, Register reg, Register vreg, const Operand& rm);
void bmi1l(byte op, Register reg, Register vreg, Register rm);
void bmi1l(byte op, Register reg, Register vreg, const Operand& rm);
void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg,
const Operand& rm);
void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg,
const Operand& rm);
friend class CodePatcher;
friend class EnsureSpace;
friend class RegExpMacroAssemblerX64;
// code generation
RelocInfoWriter reloc_info_writer;
// Internal reference positions, required for (potential) patching in
// GrowBuffer(); contains only those internal references whose labels
// are already bound.
std::deque<int> internal_reference_positions_;
List< Handle<Code> > code_targets_;
PositionsRecorder positions_recorder_;
friend class PositionsRecorder;
};
// Helper class that ensures that there is enough space for generating
// instructions and relocation information. The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
space_before_ = assembler_->available_space();
#endif
}
#ifdef DEBUG
~EnsureSpace() {
int bytes_generated = space_before_ - assembler_->available_space();
DCHECK(bytes_generated < assembler_->kGap);
}
#endif
private:
Assembler* assembler_;
#ifdef DEBUG
int space_before_;
#endif
};
} // namespace internal
} // namespace v8
#endif // V8_X64_ASSEMBLER_X64_H_