// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/runtime/runtime-utils.h"
#include "src/arguments.h"
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/conversions-inl.h"
#include "src/factory.h"
// Implement Atomic accesses to SharedArrayBuffers as defined in the
// SharedArrayBuffer draft spec, found here
// https://github.com/lars-t-hansen/ecmascript_sharedmem
namespace v8 {
namespace internal {
namespace {
inline bool AtomicIsLockFree(uint32_t size) {
return size == 1 || size == 2 || size == 4;
}
#if V8_CC_GNU
template <typename T>
inline T CompareExchangeSeqCst(T* p, T oldval, T newval) {
(void)__atomic_compare_exchange_n(p, &oldval, newval, 0, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST);
return oldval;
}
template <typename T>
inline T LoadSeqCst(T* p) {
T result;
__atomic_load(p, &result, __ATOMIC_SEQ_CST);
return result;
}
template <typename T>
inline void StoreSeqCst(T* p, T value) {
__atomic_store_n(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T AddSeqCst(T* p, T value) {
return __atomic_fetch_add(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T SubSeqCst(T* p, T value) {
return __atomic_fetch_sub(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T AndSeqCst(T* p, T value) {
return __atomic_fetch_and(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T OrSeqCst(T* p, T value) {
return __atomic_fetch_or(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T XorSeqCst(T* p, T value) {
return __atomic_fetch_xor(p, value, __ATOMIC_SEQ_CST);
}
template <typename T>
inline T ExchangeSeqCst(T* p, T value) {
return __atomic_exchange_n(p, value, __ATOMIC_SEQ_CST);
}
#elif V8_CC_MSVC
#define InterlockedCompareExchange32 _InterlockedCompareExchange
#define InterlockedExchange32 _InterlockedExchange
#define InterlockedExchangeAdd32 _InterlockedExchangeAdd
#define InterlockedAnd32 _InterlockedAnd
#define InterlockedOr32 _InterlockedOr
#define InterlockedXor32 _InterlockedXor
#define InterlockedExchangeAdd16 _InterlockedExchangeAdd16
#define InterlockedCompareExchange8 _InterlockedCompareExchange8
#define InterlockedExchangeAdd8 _InterlockedExchangeAdd8
#define ATOMIC_OPS(type, suffix, vctype) \
inline type AddSeqCst(type* p, type value) { \
return InterlockedExchangeAdd##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type SubSeqCst(type* p, type value) { \
return InterlockedExchangeAdd##suffix(reinterpret_cast<vctype*>(p), \
-bit_cast<vctype>(value)); \
} \
inline type AndSeqCst(type* p, type value) { \
return InterlockedAnd##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type OrSeqCst(type* p, type value) { \
return InterlockedOr##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type XorSeqCst(type* p, type value) { \
return InterlockedXor##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
inline type ExchangeSeqCst(type* p, type value) { \
return InterlockedExchange##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
} \
\
inline type CompareExchangeSeqCst(type* p, type oldval, type newval) { \
return InterlockedCompareExchange##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(newval), \
bit_cast<vctype>(oldval)); \
} \
inline type LoadSeqCst(type* p) { return *p; } \
inline void StoreSeqCst(type* p, type value) { \
InterlockedExchange##suffix(reinterpret_cast<vctype*>(p), \
bit_cast<vctype>(value)); \
}
ATOMIC_OPS(int8_t, 8, char)
ATOMIC_OPS(uint8_t, 8, char)
ATOMIC_OPS(int16_t, 16, short) /* NOLINT(runtime/int) */
ATOMIC_OPS(uint16_t, 16, short) /* NOLINT(runtime/int) */
ATOMIC_OPS(int32_t, 32, long) /* NOLINT(runtime/int) */
ATOMIC_OPS(uint32_t, 32, long) /* NOLINT(runtime/int) */
#undef ATOMIC_OPS_INTEGER
#undef ATOMIC_OPS
#undef InterlockedCompareExchange32
#undef InterlockedExchange32
#undef InterlockedExchangeAdd32
#undef InterlockedAnd32
#undef InterlockedOr32
#undef InterlockedXor32
#undef InterlockedExchangeAdd16
#undef InterlockedCompareExchange8
#undef InterlockedExchangeAdd8
#else
#error Unsupported platform!
#endif
template <typename T>
T FromObject(Handle<Object> number);
template <>
inline uint8_t FromObject<uint8_t>(Handle<Object> number) {
return NumberToUint32(*number);
}
template <>
inline int8_t FromObject<int8_t>(Handle<Object> number) {
return NumberToInt32(*number);
}
template <>
inline uint16_t FromObject<uint16_t>(Handle<Object> number) {
return NumberToUint32(*number);
}
template <>
inline int16_t FromObject<int16_t>(Handle<Object> number) {
return NumberToInt32(*number);
}
template <>
inline uint32_t FromObject<uint32_t>(Handle<Object> number) {
return NumberToUint32(*number);
}
template <>
inline int32_t FromObject<int32_t>(Handle<Object> number) {
return NumberToInt32(*number);
}
inline Object* ToObject(Isolate* isolate, int8_t t) { return Smi::FromInt(t); }
inline Object* ToObject(Isolate* isolate, uint8_t t) { return Smi::FromInt(t); }
inline Object* ToObject(Isolate* isolate, int16_t t) { return Smi::FromInt(t); }
inline Object* ToObject(Isolate* isolate, uint16_t t) {
return Smi::FromInt(t);
}
inline Object* ToObject(Isolate* isolate, int32_t t) {
return *isolate->factory()->NewNumber(t);
}
inline Object* ToObject(Isolate* isolate, uint32_t t) {
return *isolate->factory()->NewNumber(t);
}
template <typename T>
inline Object* DoCompareExchange(Isolate* isolate, void* buffer, size_t index,
Handle<Object> oldobj, Handle<Object> newobj) {
T oldval = FromObject<T>(oldobj);
T newval = FromObject<T>(newobj);
T result =
CompareExchangeSeqCst(static_cast<T*>(buffer) + index, oldval, newval);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoLoad(Isolate* isolate, void* buffer, size_t index) {
T result = LoadSeqCst(static_cast<T*>(buffer) + index);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoStore(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
StoreSeqCst(static_cast<T*>(buffer) + index, value);
return *obj;
}
template <typename T>
inline Object* DoAdd(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = AddSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoSub(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = SubSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoAnd(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = AndSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoOr(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = OrSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoXor(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = XorSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
template <typename T>
inline Object* DoExchange(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
T value = FromObject<T>(obj);
T result = ExchangeSeqCst(static_cast<T*>(buffer) + index, value);
return ToObject(isolate, result);
}
// Uint8Clamped functions
uint8_t ClampToUint8(int32_t value) {
if (value < 0) return 0;
if (value > 255) return 255;
return value;
}
inline Object* DoCompareExchangeUint8Clamped(Isolate* isolate, void* buffer,
size_t index,
Handle<Object> oldobj,
Handle<Object> newobj) {
typedef int32_t convert_type;
uint8_t oldval = ClampToUint8(FromObject<convert_type>(oldobj));
uint8_t newval = ClampToUint8(FromObject<convert_type>(newobj));
uint8_t result = CompareExchangeSeqCst(static_cast<uint8_t*>(buffer) + index,
oldval, newval);
return ToObject(isolate, result);
}
inline Object* DoStoreUint8Clamped(Isolate* isolate, void* buffer, size_t index,
Handle<Object> obj) {
typedef int32_t convert_type;
uint8_t value = ClampToUint8(FromObject<convert_type>(obj));
StoreSeqCst(static_cast<uint8_t*>(buffer) + index, value);
return *obj;
}
#define DO_UINT8_CLAMPED_OP(name, op) \
inline Object* Do##name##Uint8Clamped(Isolate* isolate, void* buffer, \
size_t index, Handle<Object> obj) { \
typedef int32_t convert_type; \
uint8_t* p = static_cast<uint8_t*>(buffer) + index; \
convert_type operand = FromObject<convert_type>(obj); \
uint8_t expected; \
uint8_t result; \
do { \
expected = *p; \
result = ClampToUint8(static_cast<convert_type>(expected) op operand); \
} while (CompareExchangeSeqCst(p, expected, result) != expected); \
return ToObject(isolate, expected); \
}
DO_UINT8_CLAMPED_OP(Add, +)
DO_UINT8_CLAMPED_OP(Sub, -)
DO_UINT8_CLAMPED_OP(And, &)
DO_UINT8_CLAMPED_OP(Or, | )
DO_UINT8_CLAMPED_OP(Xor, ^)
#undef DO_UINT8_CLAMPED_OP
inline Object* DoExchangeUint8Clamped(Isolate* isolate, void* buffer,
size_t index, Handle<Object> obj) {
typedef int32_t convert_type;
uint8_t* p = static_cast<uint8_t*>(buffer) + index;
uint8_t result = ClampToUint8(FromObject<convert_type>(obj));
uint8_t expected;
do {
expected = *p;
} while (CompareExchangeSeqCst(p, expected, result) != expected);
return ToObject(isolate, expected);
}
} // anonymous namespace
// Duplicated from objects.h
// V has parameters (Type, type, TYPE, C type, element_size)
#define INTEGER_TYPED_ARRAYS(V) \
V(Uint8, uint8, UINT8, uint8_t, 1) \
V(Int8, int8, INT8, int8_t, 1) \
V(Uint16, uint16, UINT16, uint16_t, 2) \
V(Int16, int16, INT16, int16_t, 2) \
V(Uint32, uint32, UINT32, uint32_t, 4) \
V(Int32, int32, INT32, int32_t, 4)
RUNTIME_FUNCTION(Runtime_AtomicsCompareExchange) {
HandleScope scope(isolate);
DCHECK(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(oldobj, 2);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(newobj, 3);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoCompareExchange<ctype>(isolate, source, index, oldobj, newobj);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoCompareExchangeUint8Clamped(isolate, source, index, oldobj,
newobj);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsLoad) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoLoad<ctype>(isolate, source, index);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoLoad<uint8_t>(isolate, source, index);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsStore) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoStore<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoStoreUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsAdd) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoAdd<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoAddUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsSub) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoSub<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoSubUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsAnd) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoAnd<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoAndUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsOr) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoOr<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoOrUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsXor) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoXor<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoXorUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsExchange) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, sta, 0);
CONVERT_SIZE_ARG_CHECKED(index, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);
RUNTIME_ASSERT(sta->GetBuffer()->is_shared());
RUNTIME_ASSERT(index < NumberToSize(isolate, sta->length()));
uint8_t* source = static_cast<uint8_t*>(sta->GetBuffer()->backing_store()) +
NumberToSize(isolate, sta->byte_offset());
switch (sta->type()) {
#define TYPED_ARRAY_CASE(Type, typeName, TYPE, ctype, size) \
case kExternal##Type##Array: \
return DoExchange<ctype>(isolate, source, index, value);
INTEGER_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
case kExternalUint8ClampedArray:
return DoExchangeUint8Clamped(isolate, source, index, value);
default:
break;
}
UNREACHABLE();
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_AtomicsIsLockFree) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(size, 0);
uint32_t usize = NumberToUint32(*size);
return isolate->heap()->ToBoolean(AtomicIsLockFree(usize));
}
} // namespace internal
} // namespace v8