// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#include "src/mips64/assembler-mips64.h"
#if V8_TARGET_ARCH_MIPS64
#include "src/base/cpu.h"
#include "src/mips64/assembler-mips64-inl.h"
namespace v8 {
namespace internal {
// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
// can be defined to enable FPU instructions when building the
// snapshot.
static unsigned CpuFeaturesImpliedByCompiler() {
unsigned answer = 0;
#ifdef CAN_USE_FPU_INSTRUCTIONS
answer |= 1u << FPU;
#endif // def CAN_USE_FPU_INSTRUCTIONS
// If the compiler is allowed to use FPU then we can use FPU too in our code
// generation even when generating snapshots. This won't work for cross
// compilation.
#if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
answer |= 1u << FPU;
#endif
return answer;
}
void CpuFeatures::ProbeImpl(bool cross_compile) {
supported_ |= CpuFeaturesImpliedByCompiler();
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
// If the compiler is allowed to use fpu then we can use fpu too in our
// code generation.
#ifndef __mips__
// For the simulator build, use FPU.
supported_ |= 1u << FPU;
#else
// Probe for additional features at runtime.
base::CPU cpu;
if (cpu.has_fpu()) supported_ |= 1u << FPU;
#endif
}
void CpuFeatures::PrintTarget() { }
void CpuFeatures::PrintFeatures() { }
int ToNumber(Register reg) {
DCHECK(reg.is_valid());
const int kNumbers[] = {
0, // zero_reg
1, // at
2, // v0
3, // v1
4, // a0
5, // a1
6, // a2
7, // a3
8, // a4
9, // a5
10, // a6
11, // a7
12, // t0
13, // t1
14, // t2
15, // t3
16, // s0
17, // s1
18, // s2
19, // s3
20, // s4
21, // s5
22, // s6
23, // s7
24, // t8
25, // t9
26, // k0
27, // k1
28, // gp
29, // sp
30, // fp
31, // ra
};
return kNumbers[reg.code()];
}
Register ToRegister(int num) {
DCHECK(num >= 0 && num < kNumRegisters);
const Register kRegisters[] = {
zero_reg,
at,
v0, v1,
a0, a1, a2, a3, a4, a5, a6, a7,
t0, t1, t2, t3,
s0, s1, s2, s3, s4, s5, s6, s7,
t8, t9,
k0, k1,
gp,
sp,
fp,
ra
};
return kRegisters[num];
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo.
const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask |
1 << RelocInfo::INTERNAL_REFERENCE |
1 << RelocInfo::INTERNAL_REFERENCE_ENCODED;
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on MIPS means that it is a lui/ori instruction, and that is
// always the case inside code objects.
return true;
}
bool RelocInfo::IsInConstantPool() {
return false;
}
// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand.
// See assembler-mips-inl.h for inlined constructors.
Operand::Operand(Handle<Object> handle) {
AllowDeferredHandleDereference using_raw_address;
rm_ = no_reg;
// Verify all Objects referred by code are NOT in new space.
Object* obj = *handle;
if (obj->IsHeapObject()) {
DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
imm64_ = reinterpret_cast<intptr_t>(handle.location());
rmode_ = RelocInfo::EMBEDDED_OBJECT;
} else {
// No relocation needed.
imm64_ = reinterpret_cast<intptr_t>(obj);
rmode_ = RelocInfo::NONE64;
}
}
MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
offset_ = offset;
}
MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
OffsetAddend offset_addend)
: Operand(rm) {
offset_ = unit * multiplier + offset_addend;
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
static const int kNegOffset = 0x00008000;
// daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
const Instr kPopInstruction = DADDIU | (Register::kCode_sp << kRsShift) |
(Register::kCode_sp << kRtShift) |
(kPointerSize & kImm16Mask); // NOLINT
// daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
const Instr kPushInstruction = DADDIU | (Register::kCode_sp << kRsShift) |
(Register::kCode_sp << kRtShift) |
(-kPointerSize & kImm16Mask); // NOLINT
// sd(r, MemOperand(sp, 0))
const Instr kPushRegPattern =
SD | (Register::kCode_sp << kRsShift) | (0 & kImm16Mask); // NOLINT
// ld(r, MemOperand(sp, 0))
const Instr kPopRegPattern =
LD | (Register::kCode_sp << kRsShift) | (0 & kImm16Mask); // NOLINT
const Instr kLwRegFpOffsetPattern =
LW | (Register::kCode_fp << kRsShift) | (0 & kImm16Mask); // NOLINT
const Instr kSwRegFpOffsetPattern =
SW | (Register::kCode_fp << kRsShift) | (0 & kImm16Mask); // NOLINT
const Instr kLwRegFpNegOffsetPattern = LW | (Register::kCode_fp << kRsShift) |
(kNegOffset & kImm16Mask); // NOLINT
const Instr kSwRegFpNegOffsetPattern = SW | (Register::kCode_fp << kRsShift) |
(kNegOffset & kImm16Mask); // NOLINT
// A mask for the Rt register for push, pop, lw, sw instructions.
const Instr kRtMask = kRtFieldMask;
const Instr kLwSwInstrTypeMask = 0xffe00000;
const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
const Instr kLwSwOffsetMask = kImm16Mask;
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
: AssemblerBase(isolate, buffer, buffer_size),
recorded_ast_id_(TypeFeedbackId::None()),
positions_recorder_(this) {
reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
last_trampoline_pool_end_ = 0;
no_trampoline_pool_before_ = 0;
trampoline_pool_blocked_nesting_ = 0;
// We leave space (16 * kTrampolineSlotsSize)
// for BlockTrampolinePoolScope buffer.
next_buffer_check_ = FLAG_force_long_branches
? kMaxInt : kMaxBranchOffset - kTrampolineSlotsSize * 16;
internal_trampoline_exception_ = false;
last_bound_pos_ = 0;
trampoline_emitted_ = FLAG_force_long_branches;
unbound_labels_count_ = 0;
block_buffer_growth_ = false;
ClearRecordedAstId();
}
void Assembler::GetCode(CodeDesc* desc) {
EmitForbiddenSlotInstruction();
DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
// Set up code descriptor.
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size =
static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer.pos());
desc->origin = this;
desc->constant_pool_size = 0;
}
void Assembler::Align(int m) {
DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
EmitForbiddenSlotInstruction();
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CodeTargetAlign() {
// No advantage to aligning branch/call targets to more than
// single instruction, that I am aware of.
Align(4);
}
Register Assembler::GetRtReg(Instr instr) {
Register rt;
rt.reg_code = (instr & kRtFieldMask) >> kRtShift;
return rt;
}
Register Assembler::GetRsReg(Instr instr) {
Register rs;
rs.reg_code = (instr & kRsFieldMask) >> kRsShift;
return rs;
}
Register Assembler::GetRdReg(Instr instr) {
Register rd;
rd.reg_code = (instr & kRdFieldMask) >> kRdShift;
return rd;
}
uint32_t Assembler::GetRt(Instr instr) {
return (instr & kRtFieldMask) >> kRtShift;
}
uint32_t Assembler::GetRtField(Instr instr) {
return instr & kRtFieldMask;
}
uint32_t Assembler::GetRs(Instr instr) {
return (instr & kRsFieldMask) >> kRsShift;
}
uint32_t Assembler::GetRsField(Instr instr) {
return instr & kRsFieldMask;
}
uint32_t Assembler::GetRd(Instr instr) {
return (instr & kRdFieldMask) >> kRdShift;
}
uint32_t Assembler::GetRdField(Instr instr) {
return instr & kRdFieldMask;
}
uint32_t Assembler::GetSa(Instr instr) {
return (instr & kSaFieldMask) >> kSaShift;
}
uint32_t Assembler::GetSaField(Instr instr) {
return instr & kSaFieldMask;
}
uint32_t Assembler::GetOpcodeField(Instr instr) {
return instr & kOpcodeMask;
}
uint32_t Assembler::GetFunction(Instr instr) {
return (instr & kFunctionFieldMask) >> kFunctionShift;
}
uint32_t Assembler::GetFunctionField(Instr instr) {
return instr & kFunctionFieldMask;
}
uint32_t Assembler::GetImmediate16(Instr instr) {
return instr & kImm16Mask;
}
uint32_t Assembler::GetLabelConst(Instr instr) {
return instr & ~kImm16Mask;
}
bool Assembler::IsPop(Instr instr) {
return (instr & ~kRtMask) == kPopRegPattern;
}
bool Assembler::IsPush(Instr instr) {
return (instr & ~kRtMask) == kPushRegPattern;
}
bool Assembler::IsSwRegFpOffset(Instr instr) {
return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
}
bool Assembler::IsLwRegFpOffset(Instr instr) {
return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
}
bool Assembler::IsSwRegFpNegOffset(Instr instr) {
return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
kSwRegFpNegOffsetPattern);
}
bool Assembler::IsLwRegFpNegOffset(Instr instr) {
return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
kLwRegFpNegOffsetPattern);
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.
// The link chain is terminated by a value in the instruction of -1,
// which is an otherwise illegal value (branch -1 is inf loop).
// The instruction 16-bit offset field addresses 32-bit words, but in
// code is conv to an 18-bit value addressing bytes, hence the -4 value.
const int kEndOfChain = -4;
// Determines the end of the Jump chain (a subset of the label link chain).
const int kEndOfJumpChain = 0;
bool Assembler::IsBranch(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rs_field = GetRsField(instr);
// Checks if the instruction is a branch.
bool isBranch =
opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
(opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
rt_field == BLTZAL || rt_field == BGEZAL)) ||
(opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
(opcode == COP1 && rs_field == BC1EQZ) ||
(opcode == COP1 && rs_field == BC1NEZ);
if (!isBranch && kArchVariant == kMips64r6) {
// All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
// POP30 (BNVC, BNEC, BNEZALC) are branch ops.
isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
opcode == BALC ||
(opcode == POP66 && rs_field != 0) || // BEQZC
(opcode == POP76 && rs_field != 0); // BNEZC
}
return isBranch;
}
bool Assembler::IsBc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a BC or BALC.
return opcode == BC || opcode == BALC;
}
bool Assembler::IsBzc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is BEQZC or BNEZC.
return (opcode == POP66 && GetRsField(instr) != 0) ||
(opcode == POP76 && GetRsField(instr) != 0);
}
bool Assembler::IsEmittedConstant(Instr instr) {
uint32_t label_constant = GetLabelConst(instr);
return label_constant == 0; // Emitted label const in reg-exp engine.
}
bool Assembler::IsBeq(Instr instr) {
return GetOpcodeField(instr) == BEQ;
}
bool Assembler::IsBne(Instr instr) {
return GetOpcodeField(instr) == BNE;
}
bool Assembler::IsBeqzc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
return opcode == POP66 && GetRsField(instr) != 0;
}
bool Assembler::IsBnezc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
return opcode == POP76 && GetRsField(instr) != 0;
}
bool Assembler::IsBeqc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
uint32_t rt = GetRtField(instr);
return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
}
bool Assembler::IsBnec(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
uint32_t rt = GetRtField(instr);
return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
}
bool Assembler::IsJump(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rd_field = GetRdField(instr);
uint32_t function_field = GetFunctionField(instr);
// Checks if the instruction is a jump.
return opcode == J || opcode == JAL ||
(opcode == SPECIAL && rt_field == 0 &&
((function_field == JALR) || (rd_field == 0 && (function_field == JR))));
}
bool Assembler::IsJ(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a jump.
return opcode == J;
}
bool Assembler::IsJal(Instr instr) {
return GetOpcodeField(instr) == JAL;
}
bool Assembler::IsJr(Instr instr) {
return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
}
bool Assembler::IsJalr(Instr instr) {
return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
}
bool Assembler::IsLui(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a load upper immediate.
return opcode == LUI;
}
bool Assembler::IsOri(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a load upper immediate.
return opcode == ORI;
}
bool Assembler::IsNop(Instr instr, unsigned int type) {
// See Assembler::nop(type).
DCHECK(type < 32);
uint32_t opcode = GetOpcodeField(instr);
uint32_t function = GetFunctionField(instr);
uint32_t rt = GetRt(instr);
uint32_t rd = GetRd(instr);
uint32_t sa = GetSa(instr);
// Traditional mips nop == sll(zero_reg, zero_reg, 0)
// When marking non-zero type, use sll(zero_reg, at, type)
// to avoid use of mips ssnop and ehb special encodings
// of the sll instruction.
Register nop_rt_reg = (type == 0) ? zero_reg : at;
bool ret = (opcode == SPECIAL && function == SLL &&
rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) &&
sa == type);
return ret;
}
int32_t Assembler::GetBranchOffset(Instr instr) {
DCHECK(IsBranch(instr));
return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
}
bool Assembler::IsLw(Instr instr) {
return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
}
int16_t Assembler::GetLwOffset(Instr instr) {
DCHECK(IsLw(instr));
return ((instr & kImm16Mask));
}
Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
DCHECK(IsLw(instr));
// We actually create a new lw instruction based on the original one.
Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask)
| (offset & kImm16Mask);
return temp_instr;
}
bool Assembler::IsSw(Instr instr) {
return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
}
Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
DCHECK(IsSw(instr));
return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}
bool Assembler::IsAddImmediate(Instr instr) {
return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
}
Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
DCHECK(IsAddImmediate(instr));
return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}
bool Assembler::IsAndImmediate(Instr instr) {
return GetOpcodeField(instr) == ANDI;
}
static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
if (kArchVariant == kMips64r6) {
if (Assembler::IsBc(instr)) {
return Assembler::OffsetSize::kOffset26;
} else if (Assembler::IsBzc(instr)) {
return Assembler::OffsetSize::kOffset21;
}
}
return Assembler::OffsetSize::kOffset16;
}
static inline int32_t AddBranchOffset(int pos, Instr instr) {
int bits = OffsetSizeInBits(instr);
const int32_t mask = (1 << bits) - 1;
bits = 32 - bits;
// Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
// the compiler uses arithmetic shifts for signed integers.
int32_t imm = ((instr & mask) << bits) >> (bits - 2);
if (imm == kEndOfChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
return pos + Assembler::kBranchPCOffset + imm;
}
}
int Assembler::target_at(int pos, bool is_internal) {
if (is_internal) {
int64_t* p = reinterpret_cast<int64_t*>(buffer_ + pos);
int64_t address = *p;
if (address == kEndOfJumpChain) {
return kEndOfChain;
} else {
int64_t instr_address = reinterpret_cast<int64_t>(p);
DCHECK(instr_address - address < INT_MAX);
int delta = static_cast<int>(instr_address - address);
DCHECK(pos > delta);
return pos - delta;
}
}
Instr instr = instr_at(pos);
if ((instr & ~kImm16Mask) == 0) {
// Emitted label constant, not part of a branch.
if (instr == 0) {
return kEndOfChain;
} else {
int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
return (imm18 + pos);
}
}
// Check we have a branch or jump instruction.
DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr));
// Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
// the compiler uses arithmetic shifts for signed integers.
if (IsBranch(instr)) {
return AddBranchOffset(pos, instr);
} else if (IsLui(instr)) {
Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize);
Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize);
Instr instr_ori2 = instr_at(pos + 3 * Assembler::kInstrSize);
DCHECK(IsOri(instr_ori));
DCHECK(IsOri(instr_ori2));
// TODO(plind) create named constants for shift values.
int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
// Sign extend address;
imm >>= 16;
if (imm == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
uint64_t instr_address = reinterpret_cast<int64_t>(buffer_ + pos);
DCHECK(instr_address - imm < INT_MAX);
int delta = static_cast<int>(instr_address - imm);
DCHECK(pos > delta);
return pos - delta;
}
} else {
DCHECK(IsJ(instr) || IsJal(instr));
int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
if (imm28 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
// Sign extend 28-bit offset.
int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
return pos + delta;
}
}
}
static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
Instr instr) {
int32_t bits = OffsetSizeInBits(instr);
int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
DCHECK((imm & 3) == 0);
imm >>= 2;
const int32_t mask = (1 << bits) - 1;
instr &= ~mask;
DCHECK(is_intn(imm, bits));
return instr | (imm & mask);
}
void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
if (is_internal) {
uint64_t imm = reinterpret_cast<uint64_t>(buffer_) + target_pos;
*reinterpret_cast<uint64_t*>(buffer_ + pos) = imm;
return;
}
Instr instr = instr_at(pos);
if ((instr & ~kImm16Mask) == 0) {
DCHECK(target_pos == kEndOfChain || target_pos >= 0);
// Emitted label constant, not part of a branch.
// Make label relative to Code* of generated Code object.
instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
return;
}
if (IsBranch(instr)) {
instr = SetBranchOffset(pos, target_pos, instr);
instr_at_put(pos, instr);
} else if (IsLui(instr)) {
Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize);
Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize);
Instr instr_ori2 = instr_at(pos + 3 * Assembler::kInstrSize);
DCHECK(IsOri(instr_ori));
DCHECK(IsOri(instr_ori2));
uint64_t imm = reinterpret_cast<uint64_t>(buffer_) + target_pos;
DCHECK((imm & 3) == 0);
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
instr_ori2 &= ~kImm16Mask;
instr_at_put(pos + 0 * Assembler::kInstrSize,
instr_lui | ((imm >> 32) & kImm16Mask));
instr_at_put(pos + 1 * Assembler::kInstrSize,
instr_ori | ((imm >> 16) & kImm16Mask));
instr_at_put(pos + 3 * Assembler::kInstrSize,
instr_ori2 | (imm & kImm16Mask));
} else if (IsJ(instr) || IsJal(instr)) {
int32_t imm28 = target_pos - pos;
DCHECK((imm28 & 3) == 0);
uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
DCHECK(is_uint26(imm26));
// Place 26-bit signed offset with markings.
// When code is committed it will be resolved to j/jal.
int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
instr_at_put(pos, mark | (imm26 & kImm26Mask));
} else {
int32_t imm28 = target_pos - pos;
DCHECK((imm28 & 3) == 0);
uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
DCHECK(is_uint26(imm26));
// Place raw 26-bit signed offset.
// When code is committed it will be resolved to j/jal.
instr &= ~kImm26Mask;
instr_at_put(pos, instr | (imm26 & kImm26Mask));
}
}
void Assembler::print(Label* L) {
if (L->is_unused()) {
PrintF("unused label\n");
} else if (L->is_bound()) {
PrintF("bound label to %d\n", L->pos());
} else if (L->is_linked()) {
Label l = *L;
PrintF("unbound label");
while (l.is_linked()) {
PrintF("@ %d ", l.pos());
Instr instr = instr_at(l.pos());
if ((instr & ~kImm16Mask) == 0) {
PrintF("value\n");
} else {
PrintF("%d\n", instr);
}
next(&l, internal_reference_positions_.find(l.pos()) !=
internal_reference_positions_.end());
}
} else {
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
}
}
void Assembler::bind_to(Label* L, int pos) {
DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
int trampoline_pos = kInvalidSlotPos;
bool is_internal = false;
if (L->is_linked() && !trampoline_emitted_) {
unbound_labels_count_--;
next_buffer_check_ += kTrampolineSlotsSize;
}
while (L->is_linked()) {
int fixup_pos = L->pos();
int dist = pos - fixup_pos;
is_internal = internal_reference_positions_.find(fixup_pos) !=
internal_reference_positions_.end();
next(L, is_internal); // Call next before overwriting link with target at
// fixup_pos.
Instr instr = instr_at(fixup_pos);
if (is_internal) {
target_at_put(fixup_pos, pos, is_internal);
} else {
if (IsBranch(instr)) {
int branch_offset = BranchOffset(instr);
if (dist > branch_offset) {
if (trampoline_pos == kInvalidSlotPos) {
trampoline_pos = get_trampoline_entry(fixup_pos);
CHECK(trampoline_pos != kInvalidSlotPos);
}
CHECK((trampoline_pos - fixup_pos) <= branch_offset);
target_at_put(fixup_pos, trampoline_pos, false);
fixup_pos = trampoline_pos;
dist = pos - fixup_pos;
}
target_at_put(fixup_pos, pos, false);
} else {
DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
IsEmittedConstant(instr));
target_at_put(fixup_pos, pos, false);
}
}
}
L->bind_to(pos);
// Keep track of the last bound label so we don't eliminate any instructions
// before a bound label.
if (pos > last_bound_pos_)
last_bound_pos_ = pos;
}
void Assembler::bind(Label* L) {
DCHECK(!L->is_bound()); // Label can only be bound once.
bind_to(L, pc_offset());
}
void Assembler::next(Label* L, bool is_internal) {
DCHECK(L->is_linked());
int link = target_at(L->pos(), is_internal);
if (link == kEndOfChain) {
L->Unuse();
} else {
DCHECK(link >= 0);
L->link_to(link);
}
}
bool Assembler::is_near(Label* L) {
DCHECK(L->is_bound());
return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
}
bool Assembler::is_near(Label* L, OffsetSize bits) {
if (L == nullptr || !L->is_bound()) return true;
return ((pc_offset() - L->pos()) <
(1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
}
bool Assembler::is_near_branch(Label* L) {
DCHECK(L->is_bound());
return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
}
int Assembler::BranchOffset(Instr instr) {
// At pre-R6 and for other R6 branches the offset is 16 bits.
int bits = OffsetSize::kOffset16;
if (kArchVariant == kMips64r6) {
uint32_t opcode = GetOpcodeField(instr);
switch (opcode) {
// Checks BC or BALC.
case BC:
case BALC:
bits = OffsetSize::kOffset26;
break;
// Checks BEQZC or BNEZC.
case POP66:
case POP76:
if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
break;
default:
break;
}
}
return (1 << (bits + 2 - 1)) - 1;
}
// We have to use a temporary register for things that can be relocated even
// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
// space. There is no guarantee that the relocated location can be similarly
// encoded.
bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
return !RelocInfo::IsNone(rmode);
}
void Assembler::GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
Register rd,
uint16_t sa,
SecondaryField func) {
DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (sa << kSaShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
uint16_t msb,
uint16_t lsb,
SecondaryField func) {
DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (msb << kRdShift) | (lsb << kSaShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
SecondaryField fmt,
FPURegister ft,
FPURegister fs,
FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift)
| (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
FPURegister fr,
FPURegister ft,
FPURegister fs,
FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift)
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
SecondaryField fmt,
Register rt,
FPURegister fs,
FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
Instr instr = opcode | fmt | (rt.code() << kRtShift)
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
SecondaryField fmt,
Register rt,
FPUControlRegister fs,
SecondaryField func) {
DCHECK(fs.is_valid() && rt.is_valid());
Instr instr =
opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
emit(instr);
}
// Instructions with immediate value.
// Registers are in the order of the instruction encoding, from left to right.
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
| (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && (is_int21(offset21)));
Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
uint32_t offset21) {
DCHECK(rs.is_valid() && (is_uint21(offset21)));
Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
emit(instr);
}
void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
CompactBranchType is_compact_branch) {
DCHECK(is_int26(offset26));
Instr instr = opcode | (offset26 & kImm26Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrJump(Opcode opcode,
uint32_t address) {
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(is_uint26(address));
Instr instr = opcode | address;
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry(int32_t pos) {
int32_t trampoline_entry = kInvalidSlotPos;
if (!internal_trampoline_exception_) {
if (trampoline_.start() > pos) {
trampoline_entry = trampoline_.take_slot();
}
if (kInvalidSlotPos == trampoline_entry) {
internal_trampoline_exception_ = true;
}
}
return trampoline_entry;
}
uint64_t Assembler::jump_address(Label* L) {
int64_t target_pos;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset());
} else {
L->link_to(pc_offset());
return kEndOfJumpChain;
}
}
uint64_t imm = reinterpret_cast<uint64_t>(buffer_) + target_pos;
DCHECK((imm & 3) == 0);
return imm;
}
uint64_t Assembler::jump_offset(Label* L) {
int64_t target_pos;
int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset() + pad);
} else {
L->link_to(pc_offset() + pad);
return kEndOfJumpChain;
}
}
int64_t imm = target_pos - (pc_offset() + pad);
DCHECK((imm & 3) == 0);
return static_cast<uint64_t>(imm);
}
int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
int32_t target_pos;
int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos();
L->link_to(pc_offset() + pad);
} else {
L->link_to(pc_offset() + pad);
if (!trampoline_emitted_) {
unbound_labels_count_++;
next_buffer_check_ -= kTrampolineSlotsSize;
}
return kEndOfChain;
}
}
int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
DCHECK(is_intn(offset, bits + 2));
DCHECK((offset & 3) == 0);
return offset;
}
void Assembler::label_at_put(Label* L, int at_offset) {
int target_pos;
if (L->is_bound()) {
target_pos = L->pos();
instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
int32_t imm18 = target_pos - at_offset;
DCHECK((imm18 & 3) == 0);
int32_t imm16 = imm18 >> 2;
DCHECK(is_int16(imm16));
instr_at_put(at_offset, (imm16 & kImm16Mask));
} else {
target_pos = kEndOfChain;
instr_at_put(at_offset, 0);
if (!trampoline_emitted_) {
unbound_labels_count_++;
next_buffer_check_ -= kTrampolineSlotsSize;
}
}
L->link_to(at_offset);
}
}
//------- Branch and jump instructions --------
void Assembler::b(int16_t offset) {
beq(zero_reg, zero_reg, offset);
}
void Assembler::bal(int16_t offset) {
positions_recorder()->WriteRecordedPositions();
bgezal(zero_reg, offset);
}
void Assembler::bc(int32_t offset) {
DCHECK(kArchVariant == kMips64r6);
GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::balc(int32_t offset) {
DCHECK(kArchVariant == kMips64r6);
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beq(Register rs, Register rt, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BEQ, rs, rt, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgez(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZ, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgezc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
DCHECK(!(rt.is(zero_reg)));
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgec(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
DCHECK(!(rt.is(zero_reg)));
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezal(Register rs, int16_t offset) {
DCHECK(kArchVariant != kMips64r6 || rs.is(zero_reg));
BlockTrampolinePoolScope block_trampoline_pool(this);
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgtz(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BGTZ, rs, zero_reg, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgtzc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
GenInstrImmediate(BGTZL, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::blez(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BLEZ, rs, zero_reg, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::blezc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
GenInstrImmediate(BLEZL, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltzc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!rt.is(zero_reg));
GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
DCHECK(!(rt.is(zero_reg)));
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltc(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!rs.is(zero_reg));
DCHECK(!rt.is(zero_reg));
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltz(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BLTZ, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bltzal(Register rs, int16_t offset) {
DCHECK(kArchVariant != kMips64r6 || rs.is(zero_reg));
BlockTrampolinePoolScope block_trampoline_pool(this);
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bne(Register rs, Register rt, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BNE, rs, rt, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bovc(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
DCHECK(rs.code() >= rt.code());
GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
DCHECK(rs.code() >= rt.code());
GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::blezalc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(BLEZ, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezalc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezall(Register rs, int16_t offset) {
DCHECK(kArchVariant != kMips64r6);
DCHECK(!(rs.is(zero_reg)));
BlockTrampolinePoolScope block_trampoline_pool(this);
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bltzalc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgtzalc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(BGTZ, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beqzalc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(ADDI, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnezalc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rt.is(zero_reg)));
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(DADDI, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beqc(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
if (rs.code() < rt.code()) {
GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::beqzc(Register rs, int32_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnec(Register rs, Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
if (rs.code() < rt.code()) {
GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::bnezc(Register rs, int32_t offset) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(!(rs.is(zero_reg)));
GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::j(int64_t target) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrJump(J, static_cast<uint32_t>(target >> 2) & kImm26Mask);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::j(Label* target) {
uint64_t imm = jump_offset(target);
if (target->is_bound()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrJump(static_cast<Opcode>(kJRawMark),
static_cast<uint32_t>(imm >> 2) & kImm26Mask);
BlockTrampolinePoolFor(1); // For associated delay slot.
} else {
j(imm);
}
}
void Assembler::jal(Label* target) {
uint64_t imm = jump_offset(target);
if (target->is_bound()) {
BlockTrampolinePoolScope block_trampoline_pool(this);
positions_recorder()->WriteRecordedPositions();
GenInstrJump(static_cast<Opcode>(kJalRawMark),
static_cast<uint32_t>(imm >> 2) & kImm26Mask);
BlockTrampolinePoolFor(1); // For associated delay slot.
} else {
jal(imm);
}
}
void Assembler::jr(Register rs) {
if (kArchVariant != kMips64r6) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (rs.is(ra)) {
positions_recorder()->WriteRecordedPositions();
}
GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
BlockTrampolinePoolFor(1); // For associated delay slot.
} else {
jalr(rs, zero_reg);
}
}
void Assembler::jal(int64_t target) {
BlockTrampolinePoolScope block_trampoline_pool(this);
positions_recorder()->WriteRecordedPositions();
GenInstrJump(JAL, static_cast<uint32_t>(target >> 2) & kImm26Mask);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::jalr(Register rs, Register rd) {
DCHECK(rs.code() != rd.code());
BlockTrampolinePoolScope block_trampoline_pool(this);
positions_recorder()->WriteRecordedPositions();
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::jic(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
GenInstrImmediate(POP66, zero_reg, rt, offset);
}
void Assembler::jialc(Register rt, int16_t offset) {
DCHECK(kArchVariant == kMips64r6);
positions_recorder()->WriteRecordedPositions();
GenInstrImmediate(POP76, zero_reg, rt, offset);
}
// -------Data-processing-instructions---------
// Arithmetic.
void Assembler::addu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
}
void Assembler::addiu(Register rd, Register rs, int32_t j) {
GenInstrImmediate(ADDIU, rs, rd, j);
}
void Assembler::subu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
}
void Assembler::mul(Register rd, Register rs, Register rt) {
if (kArchVariant == kMips64r6) {
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
} else {
GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
}
}
void Assembler::muh(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
}
void Assembler::mulu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
}
void Assembler::muhu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
}
void Assembler::dmul(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
}
void Assembler::dmuh(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
}
void Assembler::dmulu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
}
void Assembler::dmuhu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
}
void Assembler::mult(Register rs, Register rt) {
DCHECK(kArchVariant != kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
}
void Assembler::multu(Register rs, Register rt) {
DCHECK(kArchVariant != kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
}
void Assembler::daddiu(Register rd, Register rs, int32_t j) {
GenInstrImmediate(DADDIU, rs, rd, j);
}
void Assembler::div(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
}
void Assembler::div(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
}
void Assembler::mod(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
}
void Assembler::divu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
}
void Assembler::divu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
}
void Assembler::modu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
}
void Assembler::daddu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
}
void Assembler::dsubu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
}
void Assembler::dmult(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
}
void Assembler::dmultu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
}
void Assembler::ddiv(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
}
void Assembler::ddiv(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
}
void Assembler::dmod(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
}
void Assembler::ddivu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
}
void Assembler::ddivu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
}
void Assembler::dmodu(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
}
// Logical.
void Assembler::and_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
}
void Assembler::andi(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(ANDI, rs, rt, j);
}
void Assembler::or_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
}
void Assembler::ori(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(ORI, rs, rt, j);
}
void Assembler::xor_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
}
void Assembler::xori(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(XORI, rs, rt, j);
}
void Assembler::nor(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
}
// Shifts.
void Assembler::sll(Register rd,
Register rt,
uint16_t sa,
bool coming_from_nop) {
// Don't allow nop instructions in the form sll zero_reg, zero_reg to be
// generated using the sll instruction. They must be generated using
// nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo
// instructions.
DCHECK(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg)));
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
}
void Assembler::sllv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
}
void Assembler::srl(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
}
void Assembler::srlv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
}
void Assembler::sra(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
}
void Assembler::srav(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
}
void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
// Should be called via MacroAssembler::Ror.
DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
emit(instr);
}
void Assembler::rotrv(Register rd, Register rt, Register rs) {
// Should be called via MacroAssembler::Ror.
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
emit(instr);
}
void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
}
void Assembler::dsllv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
}
void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
}
void Assembler::dsrlv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
}
void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
emit(instr);
}
void Assembler::drotrv(Register rd, Register rt, Register rs) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid() );
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
emit(instr);
}
void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
}
void Assembler::dsrav(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
}
void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
}
void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
}
void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
}
void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK(sa < 5 && sa > 0);
DCHECK(kArchVariant == kMips64r6);
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (sa - 1) << kSaShift | LSA;
emit(instr);
}
void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK(sa < 5 && sa > 0);
DCHECK(kArchVariant == kMips64r6);
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
(rd.code() << kRdShift) | (sa - 1) << kSaShift | DLSA;
emit(instr);
}
// ------------Memory-instructions-------------
// Helper for base-reg + offset, when offset is larger than int16.
void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) {
DCHECK(!src.rm().is(at));
DCHECK(is_int32(src.offset_));
daddiu(at, zero_reg, (src.offset_ >> kLuiShift) & kImm16Mask);
dsll(at, at, kLuiShift);
ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset.
daddu(at, at, src.rm()); // Add base register.
}
void Assembler::lb(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0));
}
}
void Assembler::lbu(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0));
}
}
void Assembler::lh(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0));
}
}
void Assembler::lhu(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0));
}
}
void Assembler::lw(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0));
}
}
void Assembler::lwu(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LWU, at, rd, 0); // Equiv to lwu(rd, MemOperand(at, 0));
}
}
void Assembler::lwl(Register rd, const MemOperand& rs) {
GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
}
void Assembler::lwr(Register rd, const MemOperand& rs) {
GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
}
void Assembler::sb(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to store.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0));
}
}
void Assembler::sh(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to store.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0));
}
}
void Assembler::sw(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to store.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0));
}
}
void Assembler::swl(Register rd, const MemOperand& rs) {
GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
}
void Assembler::swr(Register rd, const MemOperand& rs) {
GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
}
void Assembler::lui(Register rd, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(LUI, zero_reg, rd, j);
}
void Assembler::aui(Register rt, Register rs, int32_t j) {
// This instruction uses same opcode as 'lui'. The difference in encoding is
// 'lui' has zero reg. for rs field.
DCHECK(is_uint16(j));
GenInstrImmediate(LUI, rs, rt, j);
}
void Assembler::daui(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
DCHECK(!rs.is(zero_reg));
GenInstrImmediate(DAUI, rs, rt, j);
}
void Assembler::dahi(Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(REGIMM, rs, DAHI, j);
}
void Assembler::dati(Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(REGIMM, rs, DATI, j);
}
void Assembler::ldl(Register rd, const MemOperand& rs) {
GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
}
void Assembler::ldr(Register rd, const MemOperand& rs) {
GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
}
void Assembler::sdl(Register rd, const MemOperand& rs) {
GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
}
void Assembler::sdr(Register rd, const MemOperand& rs) {
GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
}
void Assembler::ld(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(LD, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0));
}
}
void Assembler::sd(Register rd, const MemOperand& rs) {
if (is_int16(rs.offset_)) {
GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
} else { // Offset > 16 bits, use multiple instructions to store.
LoadRegPlusOffsetToAt(rs);
GenInstrImmediate(SD, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0));
}
}
// ---------PC-Relative instructions-----------
void Assembler::addiupc(Register rs, int32_t imm19) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.is_valid() && is_int19(imm19));
uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::lwpc(Register rs, int32_t offset19) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.is_valid() && is_int19(offset19));
uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::lwupc(Register rs, int32_t offset19) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.is_valid() && is_int19(offset19));
uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::ldpc(Register rs, int32_t offset18) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.is_valid() && is_int18(offset18));
uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::auipc(Register rs, int16_t imm16) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.is_valid());
uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::aluipc(Register rs, int16_t imm16) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(rs.is_valid());
uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
// -------------Misc-instructions--------------
// Break / Trap instructions.
void Assembler::break_(uint32_t code, bool break_as_stop) {
DCHECK((code & ~0xfffff) == 0);
// We need to invalidate breaks that could be stops as well because the
// simulator expects a char pointer after the stop instruction.
// See constants-mips.h for explanation.
DCHECK((break_as_stop &&
code <= kMaxStopCode &&
code > kMaxWatchpointCode) ||
(!break_as_stop &&
(code > kMaxStopCode ||
code <= kMaxWatchpointCode)));
Instr break_instr = SPECIAL | BREAK | (code << 6);
emit(break_instr);
}
void Assembler::stop(const char* msg, uint32_t code) {
DCHECK(code > kMaxWatchpointCode);
DCHECK(code <= kMaxStopCode);
#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
break_(0x54321);
#else // V8_HOST_ARCH_MIPS
BlockTrampolinePoolFor(3);
// The Simulator will handle the stop instruction and get the message address.
// On MIPS stop() is just a special kind of break_().
break_(code, true);
emit(reinterpret_cast<uint64_t>(msg));
#endif
}
void Assembler::tge(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr = SPECIAL | TGE | rs.code() << kRsShift
| rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
| rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tlt(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tltu(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TLTU | rs.code() << kRsShift
| rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::teq(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tne(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
// Move from HI/LO register.
void Assembler::mfhi(Register rd) {
GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
}
void Assembler::mflo(Register rd) {
GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
}
// Set on less than instructions.
void Assembler::slt(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
}
void Assembler::sltu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
}
void Assembler::slti(Register rt, Register rs, int32_t j) {
GenInstrImmediate(SLTI, rs, rt, j);
}
void Assembler::sltiu(Register rt, Register rs, int32_t j) {
GenInstrImmediate(SLTIU, rs, rt, j);
}
// Conditional move.
void Assembler::movz(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
}
void Assembler::movn(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
}
void Assembler::movt(Register rd, Register rs, uint16_t cc) {
Register rt;
rt.reg_code = (cc & 0x0007) << 2 | 1;
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}
void Assembler::movf(Register rd, Register rs, uint16_t cc) {
Register rt;
rt.reg_code = (cc & 0x0007) << 2 | 0;
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}
void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
min(S, fd, fs, ft);
}
void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
min(D, fd, fs, ft);
}
void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
max(S, fd, fs, ft);
}
void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
max(D, fd, fs, ft);
}
void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
mina(S, fd, fs, ft);
}
void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
mina(D, fd, fs, ft);
}
void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
maxa(S, fd, fs, ft);
}
void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
maxa(D, fd, fs, ft);
}
void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
}
void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
}
// GPR.
void Assembler::seleqz(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
}
// GPR.
void Assembler::selnez(Register rd, Register rs, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
}
// Bit twiddling.
void Assembler::clz(Register rd, Register rs) {
if (kArchVariant != kMips64r6) {
// Clz instr requires same GPR number in 'rd' and 'rt' fields.
GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
} else {
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
}
}
void Assembler::dclz(Register rd, Register rs) {
if (kArchVariant != kMips64r6) {
// dclz instr requires same GPR number in 'rd' and 'rt' fields.
GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
} else {
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
}
}
void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Ins.
// Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
}
void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dins.
// Dext instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
}
void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Ext.
// Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
}
void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dext.
// Dext instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT);
}
void Assembler::dextm(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dextm.
// Dextm instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM);
}
void Assembler::dextu(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Dextu.
// Dext instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU);
}
void Assembler::bitswap(Register rd, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
}
void Assembler::dbitswap(Register rd, Register rt) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL);
}
void Assembler::pref(int32_t hint, const MemOperand& rs) {
DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
Instr instr = PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift)
| (rs.offset_);
emit(instr);
}
void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(is_uint3(bp));
uint16_t sa = (ALIGN << kBp2Bits) | bp;
GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
}
void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) {
DCHECK(kArchVariant == kMips64r6);
DCHECK(is_uint3(bp));
uint16_t sa = (DALIGN << kBp3Bits) | bp;
GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL);
}
// --------Coprocessor-instructions----------------
// Load, store, move.
void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
if (is_int16(src.offset_)) {
GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(src);
GenInstrImmediate(LWC1, at, fd, 0);
}
}
void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
DCHECK(!src.rm().is(at));
if (is_int16(src.offset_)) {
GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(src);
GenInstrImmediate(LDC1, at, fd, 0);
}
}
void Assembler::swc1(FPURegister fd, const MemOperand& src) {
if (is_int16(src.offset_)) {
GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(src);
GenInstrImmediate(SWC1, at, fd, 0);
}
}
void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
DCHECK(!src.rm().is(at));
if (is_int16(src.offset_)) {
GenInstrImmediate(SDC1, src.rm(), fd, src.offset_);
} else { // Offset > 16 bits, use multiple instructions to load.
LoadRegPlusOffsetToAt(src);
GenInstrImmediate(SDC1, at, fd, 0);
}
}
void Assembler::mtc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MTC1, rt, fs, f0);
}
void Assembler::mthc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MTHC1, rt, fs, f0);
}
void Assembler::dmtc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, DMTC1, rt, fs, f0);
}
void Assembler::mfc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MFC1, rt, fs, f0);
}
void Assembler::mfhc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MFHC1, rt, fs, f0);
}
void Assembler::dmfc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, DMFC1, rt, fs, f0);
}
void Assembler::ctc1(Register rt, FPUControlRegister fs) {
GenInstrRegister(COP1, CTC1, rt, fs);
}
void Assembler::cfc1(Register rt, FPUControlRegister fs) {
GenInstrRegister(COP1, CFC1, rt, fs);
}
void Assembler::DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
uint64_t i;
memcpy(&i, &d, 8);
*lo = i & 0xffffffff;
*hi = i >> 32;
}
void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
}
void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
sel(S, fd, fs, ft);
}
void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
sel(D, fd, fs, ft);
}
// FPR.
void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
}
void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
seleqz(D, fd, fs, ft);
}
void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
seleqz(S, fd, fs, ft);
}
void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
selnez(D, fd, fs, ft);
}
void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
selnez(S, fd, fs, ft);
}
void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(kArchVariant == kMips64r2);
GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
}
void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(kArchVariant == kMips64r2);
GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
}
void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(kArchVariant == kMips64r2);
FPURegister ft;
ft.reg_code = (cc & 0x0007) << 2 | 1;
GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
}
void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(kArchVariant == kMips64r2);
FPURegister ft;
ft.reg_code = (cc & 0x0007) << 2 | 1;
GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
}
void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(kArchVariant == kMips64r2);
FPURegister ft;
ft.reg_code = (cc & 0x0007) << 2 | 0;
GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
}
void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(kArchVariant == kMips64r2);
FPURegister ft;
ft.reg_code = (cc & 0x0007) << 2 | 0;
GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
}
void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(kArchVariant == kMips64r2);
GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
}
void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(kArchVariant == kMips64r2);
GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
}
// FPR.
void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
}
// Arithmetic.
void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, ADD_D);
}
void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
}
void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, SUB_D);
}
void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
}
void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, MUL_D);
}
void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
}
void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft) {
GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
}
void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, DIV_D);
}
void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
}
void Assembler::abs_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, ABS_D);
}
void Assembler::abs_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
}
void Assembler::mov_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
}
void Assembler::mov_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
}
void Assembler::neg_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, NEG_D);
}
void Assembler::neg_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
}
void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D);
}
void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
}
void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
}
void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
}
void Assembler::recip_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
}
void Assembler::recip_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
}
// Conversions.
void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
}
void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
}
void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
}
void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
}
void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
}
void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
}
void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
}
void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
}
void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
}
void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
}
void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
}
void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
}
void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
}
void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
}
void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
}
void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
}
void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
}
void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
}
void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
}
void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
}
void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
}
void Assembler::class_s(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
}
void Assembler::class_d(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r6);
GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
}
void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
}
void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
}
void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
}
void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
}
void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
}
void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
}
void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
}
void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
}
// Conditions for >= MIPSr6.
void Assembler::cmp(FPUCondition cond, SecondaryField fmt,
FPURegister fd, FPURegister fs, FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
DCHECK((fmt & ~(31 << kRsShift)) == 0);
Instr instr = COP1 | fmt | ft.code() << kFtShift |
fs.code() << kFsShift | fd.code() << kFdShift | (0 << 5) | cond;
emit(instr);
}
void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
FPURegister ft) {
cmp(cond, W, fd, fs, ft);
}
void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
FPURegister ft) {
cmp(cond, L, fd, fs, ft);
}
void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
emit(instr);
}
void Assembler::bc1nez(int16_t offset, FPURegister ft) {
DCHECK(kArchVariant == kMips64r6);
Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
emit(instr);
}
// Conditions for < MIPSr6.
void Assembler::c(FPUCondition cond, SecondaryField fmt,
FPURegister fs, FPURegister ft, uint16_t cc) {
DCHECK(kArchVariant != kMips64r6);
DCHECK(is_uint3(cc));
DCHECK(fmt == S || fmt == D);
DCHECK((fmt & ~(31 << kRsShift)) == 0);
Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift
| cc << 8 | 3 << 4 | cond;
emit(instr);
}
void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
uint16_t cc) {
c(cond, S, fs, ft, cc);
}
void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
uint16_t cc) {
c(cond, D, fs, ft, cc);
}
void Assembler::fcmp(FPURegister src1, const double src2,
FPUCondition cond) {
DCHECK(src2 == 0.0);
mtc1(zero_reg, f14);
cvt_d_w(f14, f14);
c(cond, D, src1, f14, 0);
}
void Assembler::bc1f(int16_t offset, uint16_t cc) {
DCHECK(is_uint3(cc));
Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
emit(instr);
}
void Assembler::bc1t(int16_t offset, uint16_t cc) {
DCHECK(is_uint3(cc));
Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
emit(instr);
}
int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
intptr_t pc_delta) {
if (RelocInfo::IsInternalReference(rmode)) {
int64_t* p = reinterpret_cast<int64_t*>(pc);
if (*p == kEndOfJumpChain) {
return 0; // Number of instructions patched.
}
*p += pc_delta;
return 2; // Number of instructions patched.
}
Instr instr = instr_at(pc);
DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
if (IsLui(instr)) {
Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize);
Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize);
Instr instr_ori2 = instr_at(pc + 3 * Assembler::kInstrSize);
DCHECK(IsOri(instr_ori));
DCHECK(IsOri(instr_ori2));
// TODO(plind): symbolic names for the shifts.
int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
// Sign extend address.
imm >>= 16;
if (imm == kEndOfJumpChain) {
return 0; // Number of instructions patched.
}
imm += pc_delta;
DCHECK((imm & 3) == 0);
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
instr_ori2 &= ~kImm16Mask;
instr_at_put(pc + 0 * Assembler::kInstrSize,
instr_lui | ((imm >> 32) & kImm16Mask));
instr_at_put(pc + 1 * Assembler::kInstrSize,
instr_ori | (imm >> 16 & kImm16Mask));
instr_at_put(pc + 3 * Assembler::kInstrSize,
instr_ori2 | (imm & kImm16Mask));
return 4; // Number of instructions patched.
} else if (IsJ(instr) || IsJal(instr)) {
// Regular j/jal relocation.
uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
imm28 += pc_delta;
imm28 &= kImm28Mask;
instr &= ~kImm26Mask;
DCHECK((imm28 & 3) == 0);
uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
instr_at_put(pc, instr | (imm26 & kImm26Mask));
return 1; // Number of instructions patched.
} else {
DCHECK(((instr & kJumpRawMask) == kJRawMark) ||
((instr & kJumpRawMask) == kJalRawMark));
// Unbox raw offset and emit j/jal.
int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
// Sign extend 28-bit offset to 32-bit.
imm28 = (imm28 << 4) >> 4;
uint64_t target =
static_cast<int64_t>(imm28) + reinterpret_cast<uint64_t>(pc);
target &= kImm28Mask;
DCHECK((imm28 & 3) == 0);
uint32_t imm26 = static_cast<uint32_t>(target >> 2);
// Check markings whether to emit j or jal.
uint32_t unbox = (instr & kJRawMark) ? J : JAL;
instr_at_put(pc, unbox | (imm26 & kImm26Mask));
return 1; // Number of instructions patched.
}
}
void Assembler::GrowBuffer() {
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // The new buffer.
if (buffer_size_ < 1 * MB) {
desc.buffer_size = 2*buffer_size_;
} else {
desc.buffer_size = buffer_size_ + 1*MB;
}
CHECK_GT(desc.buffer_size, 0); // No overflow.
// Set up new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.origin = this;
desc.instr_size = pc_offset();
desc.reloc_size =
static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer.pos());
// Copy the data.
intptr_t pc_delta = desc.buffer - buffer_;
intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
(buffer_ + buffer_size_);
MemMove(desc.buffer, buffer_, desc.instr_size);
MemMove(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.pos(), desc.reloc_size);
// Switch buffers.
DeleteArray(buffer_);
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// Relocate runtime entries.
for (RelocIterator it(desc); !it.done(); it.next()) {
RelocInfo::Mode rmode = it.rinfo()->rmode();
if (rmode == RelocInfo::INTERNAL_REFERENCE) {
byte* p = reinterpret_cast<byte*>(it.rinfo()->pc());
RelocateInternalReference(rmode, p, pc_delta);
}
}
DCHECK(!overflow());
}
void Assembler::db(uint8_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
void Assembler::dd(uint32_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
void Assembler::dq(uint64_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
void Assembler::dd(Label* label) {
uint64_t data;
CheckForEmitInForbiddenSlot();
if (label->is_bound()) {
data = reinterpret_cast<uint64_t>(buffer_ + label->pos());
} else {
data = jump_address(label);
internal_reference_positions_.insert(label->pos());
}
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
EmitHelper(data);
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
// We do not try to reuse pool constants.
RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
if (rmode >= RelocInfo::COMMENT &&
rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_CALL) {
// Adjust code for new modes.
DCHECK(RelocInfo::IsDebugBreakSlot(rmode)
|| RelocInfo::IsComment(rmode)
|| RelocInfo::IsPosition(rmode));
// These modes do not need an entry in the constant pool.
}
if (!RelocInfo::IsNone(rinfo.rmode())) {
// Don't record external references unless the heap will be serialized.
if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
!serializer_enabled() && !emit_debug_code()) {
return;
}
DCHECK(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here.
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
RelocInfo reloc_info_with_ast_id(isolate(), pc_, rmode,
RecordedAstId().ToInt(), NULL);
ClearRecordedAstId();
reloc_info_writer.Write(&reloc_info_with_ast_id);
} else {
reloc_info_writer.Write(&rinfo);
}
}
}
void Assembler::BlockTrampolinePoolFor(int instructions) {
CheckTrampolinePoolQuick(instructions);
BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
}
void Assembler::CheckTrampolinePool() {
// Some small sequences of instructions must not be broken up by the
// insertion of a trampoline pool; such sequences are protected by setting
// either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
// which are both checked here. Also, recursive calls to CheckTrampolinePool
// are blocked by trampoline_pool_blocked_nesting_.
if ((trampoline_pool_blocked_nesting_ > 0) ||
(pc_offset() < no_trampoline_pool_before_)) {
// Emission is currently blocked; make sure we try again as soon as
// possible.
if (trampoline_pool_blocked_nesting_ > 0) {
next_buffer_check_ = pc_offset() + kInstrSize;
} else {
next_buffer_check_ = no_trampoline_pool_before_;
}
return;
}
DCHECK(!trampoline_emitted_);
DCHECK(unbound_labels_count_ >= 0);
if (unbound_labels_count_ > 0) {
// First we emit jump (2 instructions), then we emit trampoline pool.
{ BlockTrampolinePoolScope block_trampoline_pool(this);
Label after_pool;
if (kArchVariant == kMips64r6) {
bc(&after_pool);
} else {
b(&after_pool);
nop();
}
EmitForbiddenSlotInstruction();
int pool_start = pc_offset();
for (int i = 0; i < unbound_labels_count_; i++) {
{ BlockGrowBufferScope block_buf_growth(this);
// Buffer growth (and relocation) must be blocked for internal
// references until associated instructions are emitted and available
// to be patched.
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
j(&after_pool);
}
nop();
}
bind(&after_pool);
trampoline_ = Trampoline(pool_start, unbound_labels_count_);
trampoline_emitted_ = true;
// As we are only going to emit trampoline once, we need to prevent any
// further emission.
next_buffer_check_ = kMaxInt;
}
} else {
// Number of branches to unbound label at this point is zero, so we can
// move next buffer check to maximum.
next_buffer_check_ = pc_offset() +
kMaxBranchOffset - kTrampolineSlotsSize * 16;
}
return;
}
Address Assembler::target_address_at(Address pc) {
Instr instr0 = instr_at(pc);
Instr instr1 = instr_at(pc + 1 * kInstrSize);
Instr instr3 = instr_at(pc + 3 * kInstrSize);
// Interpret 4 instructions for address generated by li: See listing in
// Assembler::set_target_address_at() just below.
if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
(GetOpcodeField(instr3) == ORI)) {
// Assemble the 48 bit value.
int64_t addr = static_cast<int64_t>(
((uint64_t)(GetImmediate16(instr0)) << 32) |
((uint64_t)(GetImmediate16(instr1)) << 16) |
((uint64_t)(GetImmediate16(instr3))));
// Sign extend to get canonical address.
addr = (addr << 16) >> 16;
return reinterpret_cast<Address>(addr);
}
// We should never get here, force a bad address if we do.
UNREACHABLE();
return (Address)0x0;
}
// MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32
// qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap
// snapshot generated on ia32, the resulting MIPS sNaN must be quieted.
// OS::nan_value() returns a qNaN.
void Assembler::QuietNaN(HeapObject* object) {
HeapNumber::cast(object)->set_value(std::numeric_limits<double>::quiet_NaN());
}
// On Mips64, a target address is stored in a 4-instruction sequence:
// 0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
// 1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
// 2: dsll(rd, rd, 16);
// 3: ori(rd, rd, j.imm32_ & kImm16Mask);
//
// Patching the address must replace all the lui & ori instructions,
// and flush the i-cache.
//
// There is an optimization below, which emits a nop when the address
// fits in just 16 bits. This is unlikely to help, and should be benchmarked,
// and possibly removed.
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
Address target,
ICacheFlushMode icache_flush_mode) {
// There is an optimization where only 4 instructions are used to load address
// in code on MIP64 because only 48-bits of address is effectively used.
// It relies on fact the upper [63:48] bits are not used for virtual address
// translation and they have to be set according to value of bit 47 in order
// get canonical address.
Instr instr1 = instr_at(pc + kInstrSize);
uint32_t rt_code = GetRt(instr1);
uint32_t* p = reinterpret_cast<uint32_t*>(pc);
uint64_t itarget = reinterpret_cast<uint64_t>(target);
#ifdef DEBUG
// Check we have the result from a li macro-instruction.
Instr instr0 = instr_at(pc);
Instr instr3 = instr_at(pc + kInstrSize * 3);
CHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
GetOpcodeField(instr3) == ORI));
#endif
// Must use 4 instructions to insure patchable code.
// lui rt, upper-16.
// ori rt, rt, lower-16.
// dsll rt, rt, 16.
// ori rt rt, lower-16.
*p = LUI | (rt_code << kRtShift) | ((itarget >> 32) & kImm16Mask);
*(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift)
| ((itarget >> 16) & kImm16Mask);
*(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift)
| (itarget & kImm16Mask);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate, pc, 4 * Assembler::kInstrSize);
}
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64