HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.0
|
7.0.0_r31
下载
查看原文件
收藏
根目录
external
v8
src
heap
heap.cc
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/heap.h" #include "src/accessors.h" #include "src/api.h" #include "src/ast/scopeinfo.h" #include "src/base/bits.h" #include "src/base/once.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/heap/array-buffer-tracker.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/memory-reducer.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/scavenge-job.h" #include "src/heap/scavenger-inl.h" #include "src/heap/store-buffer.h" #include "src/interpreter/interpreter.h" #include "src/profiler/cpu-profiler.h" #include "src/regexp/jsregexp.h" #include "src/runtime-profiler.h" #include "src/snapshot/natives.h" #include "src/snapshot/serialize.h" #include "src/snapshot/snapshot.h" #include "src/type-feedback-vector.h" #include "src/utils.h" #include "src/v8.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { struct Heap::StrongRootsList { Object** start; Object** end; StrongRootsList* next; }; class IdleScavengeObserver : public InlineAllocationObserver { public: IdleScavengeObserver(Heap& heap, intptr_t step_size) : InlineAllocationObserver(step_size), heap_(heap) {} void Step(int bytes_allocated, Address, size_t) override { heap_.ScheduleIdleScavengeIfNeeded(bytes_allocated); } private: Heap& heap_; }; Heap::Heap() : amount_of_external_allocated_memory_(0), amount_of_external_allocated_memory_at_last_global_gc_(0), isolate_(NULL), code_range_size_(0), // semispace_size_ should be a power of 2 and old_generation_size_ should // be a multiple of Page::kPageSize. reserved_semispace_size_(8 * (kPointerSize / 4) * MB), max_semi_space_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(Page::kPageSize), target_semispace_size_(Page::kPageSize), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), initial_old_generation_size_(max_old_generation_size_ / kInitalOldGenerationLimitFactor), old_generation_size_configured_(false), max_executable_size_(256ul * (kPointerSize / 4) * MB), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), survived_last_scavenge_(0), always_allocate_scope_count_(0), contexts_disposed_(0), number_of_disposed_maps_(0), global_ic_age_(0), scan_on_scavenge_pages_(0), new_space_(this), old_space_(NULL), code_space_(NULL), map_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), allocations_count_(0), raw_allocations_hash_(0), ms_count_(0), gc_count_(0), remembered_unmapped_pages_index_(0), #ifdef DEBUG allocation_timeout_(0), #endif // DEBUG old_generation_allocation_limit_(initial_old_generation_size_), old_gen_exhausted_(false), optimize_for_memory_usage_(false), inline_allocation_disabled_(false), store_buffer_rebuilder_(store_buffer()), total_regexp_code_generated_(0), tracer_(nullptr), high_survival_rate_period_length_(0), promoted_objects_size_(0), promotion_ratio_(0), semi_space_copied_object_size_(0), previous_semi_space_copied_object_size_(0), semi_space_copied_rate_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), maximum_size_scavenges_(0), max_gc_pause_(0.0), total_gc_time_ms_(0.0), max_alive_after_gc_(0), min_in_mutator_(kMaxInt), marking_time_(0.0), sweeping_time_(0.0), last_idle_notification_time_(0.0), last_gc_time_(0.0), scavenge_collector_(nullptr), mark_compact_collector_(nullptr), store_buffer_(this), incremental_marking_(nullptr), gc_idle_time_handler_(nullptr), memory_reducer_(nullptr), object_stats_(nullptr), scavenge_job_(nullptr), idle_scavenge_observer_(nullptr), full_codegen_bytes_generated_(0), crankshaft_codegen_bytes_generated_(0), new_space_allocation_counter_(0), old_generation_allocation_counter_(0), old_generation_size_at_last_gc_(0), gcs_since_last_deopt_(0), global_pretenuring_feedback_(nullptr), ring_buffer_full_(false), ring_buffer_end_(0), promotion_queue_(this), configured_(false), current_gc_flags_(Heap::kNoGCFlags), current_gc_callback_flags_(GCCallbackFlags::kNoGCCallbackFlags), external_string_table_(this), chunks_queued_for_free_(NULL), concurrent_unmapping_tasks_active_(0), pending_unmapping_tasks_semaphore_(0), gc_callbacks_depth_(0), deserialization_complete_(false), strong_roots_list_(NULL), array_buffer_tracker_(NULL), heap_iterator_depth_(0), force_oom_(false) { // Allow build-time customization of the max semispace size. Building // V8 with snapshots and a non-default max semispace size is much // easier if you can define it as part of the build environment. #if defined(V8_MAX_SEMISPACE_SIZE) max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; #endif // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK((max_old_generation_size_ & (Page::kPageSize - 1)) == 0); memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); set_native_contexts_list(NULL); set_allocation_sites_list(Smi::FromInt(0)); set_encountered_weak_collections(Smi::FromInt(0)); set_encountered_weak_cells(Smi::FromInt(0)); set_encountered_transition_arrays(Smi::FromInt(0)); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); } intptr_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_.Capacity() + old_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity(); } intptr_t Heap::CommittedOldGenerationMemory() { if (!HasBeenSetUp()) return 0; return old_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + lo_space_->Size(); } intptr_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedMemory() + CommittedOldGenerationMemory(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedPhysicalMemory() + old_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } intptr_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return isolate()->memory_allocator()->SizeExecutable(); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; intptr_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } intptr_t Heap::Available() { if (!HasBeenSetUp()) return 0; intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->Available(); } return total; } bool Heap::HasBeenSetUp() { return old_space_ != NULL && code_space_ != NULL && map_space_ != NULL && lo_space_ != NULL; } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } // Is enough data promoted to justify a global GC? if (OldGenerationAllocationLimitReached()) { isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment(); *reason = "promotion limit reached"; return MARK_COMPACTOR; } // Have allocation in OLD and LO failed? if (old_gen_exhausted_) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "old generations exhausted"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return SCAVENGER; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); #else if (FLAG_log_gc) { new_space_.CollectStatistics(); new_space_.ReportStatistics(); new_space_.ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintIsolate(isolate_, "Memory allocator, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB\n", isolate_->memory_allocator()->Size() / KB, isolate_->memory_allocator()->Available() / KB); PrintIsolate(isolate_, "New space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", new_space_.Size() / KB, new_space_.Available() / KB, new_space_.CommittedMemory() / KB); PrintIsolate(isolate_, "Old space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", old_space_->SizeOfObjects() / KB, old_space_->Available() / KB, old_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Map space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Large object space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "All spaces, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintIsolate( isolate_, "External memory reported: %6" V8_PTR_PREFIX "d KB\n", static_cast
(amount_of_external_allocated_memory_ / KB)); PrintIsolate(isolate_, "Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_.CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } #else if (FLAG_log_gc) new_space_.ReportStatistics(); #endif // DEBUG for (int i = 0; i < static_cast
(v8::Isolate::kUseCounterFeatureCount); ++i) { int count = deferred_counters_[i]; deferred_counters_[i] = 0; while (count > 0) { count--; isolate()->CountUsage(static_cast
(i)); } } } void Heap::IncrementDeferredCount(v8::Isolate::UseCounterFeature feature) { deferred_counters_[feature]++; } void Heap::GarbageCollectionPrologue() { { AllowHeapAllocation for_the_first_part_of_prologue; gc_count_++; #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } // Reset GC statistics. promoted_objects_size_ = 0; previous_semi_space_copied_object_size_ = semi_space_copied_object_size_; semi_space_copied_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG store_buffer()->GCPrologue(); if (isolate()->concurrent_osr_enabled()) { isolate()->optimizing_compile_dispatcher()->AgeBufferedOsrJobs(); } if (new_space_.IsAtMaximumCapacity()) { maximum_size_scavenges_++; } else { maximum_size_scavenges_ = 0; } CheckNewSpaceExpansionCriteria(); UpdateNewSpaceAllocationCounter(); } intptr_t Heap::SizeOfObjects() { intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } const char* Heap::GetSpaceName(int idx) { switch (idx) { case NEW_SPACE: return "new_space"; case OLD_SPACE: return "old_space"; case MAP_SPACE: return "map_space"; case CODE_SPACE: return "code_space"; case LO_SPACE: return "large_object_space"; default: UNREACHABLE(); } return nullptr; } void Heap::RepairFreeListsAfterDeserialization() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterDeserialization(); } } void Heap::MergeAllocationSitePretenuringFeedback( const HashMap& local_pretenuring_feedback) { AllocationSite* site = nullptr; for (HashMap::Entry* local_entry = local_pretenuring_feedback.Start(); local_entry != nullptr; local_entry = local_pretenuring_feedback.Next(local_entry)) { site = reinterpret_cast
(local_entry->key); MapWord map_word = site->map_word(); if (map_word.IsForwardingAddress()) { site = AllocationSite::cast(map_word.ToForwardingAddress()); } DCHECK(site->IsAllocationSite()); int value = static_cast
(reinterpret_cast
(local_entry->value)); DCHECK_GT(value, 0); { // TODO(mlippautz): For parallel processing we need synchronization here. if (site->IncrementMementoFoundCount(value)) { global_pretenuring_feedback_->LookupOrInsert( site, static_cast
(bit_cast
(site))); } } } } class Heap::PretenuringScope { public: explicit PretenuringScope(Heap* heap) : heap_(heap) { heap_->global_pretenuring_feedback_ = new HashMap(HashMap::PointersMatch, kInitialFeedbackCapacity); } ~PretenuringScope() { delete heap_->global_pretenuring_feedback_; heap_->global_pretenuring_feedback_ = nullptr; } private: Heap* heap_; }; void Heap::ProcessPretenuringFeedback() { bool trigger_deoptimization = false; if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; int allocation_sites = 0; int active_allocation_sites = 0; AllocationSite* site = nullptr; // Step 1: Digest feedback for recorded allocation sites. bool maximum_size_scavenge = MaximumSizeScavenge(); for (HashMap::Entry* e = global_pretenuring_feedback_->Start(); e != nullptr; e = global_pretenuring_feedback_->Next(e)) { site = reinterpret_cast
(e->key); int found_count = site->memento_found_count(); // The fact that we have an entry in the storage means that we've found // the site at least once. DCHECK_GT(found_count, 0); DCHECK(site->IsAllocationSite()); allocation_sites++; active_allocation_sites++; allocation_mementos_found += found_count; if (site->DigestPretenuringFeedback(maximum_size_scavenge)) { trigger_deoptimization = true; } if (site->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } } // Step 2: Deopt maybe tenured allocation sites if necessary. bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); if (deopt_maybe_tenured) { Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { site = AllocationSite::cast(list_element); DCHECK(site->IsAllocationSite()); allocation_sites++; if (site->IsMaybeTenure()) { site->set_deopt_dependent_code(true); trigger_deoptimization = true; } list_element = site->weak_next(); } } if (trigger_deoptimization) { isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } if (FLAG_trace_pretenuring_statistics && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintIsolate(isolate(), "pretenuring: deopt_maybe_tenured=%d visited_sites=%d " "active_sites=%d " "mementos=%d tenured=%d not_tenured=%d\n", deopt_maybe_tenured ? 1 : 0, allocation_sites, active_allocation_sites, allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache data structure in heap instead. Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(list_element); if (site->deopt_dependent_code()) { site->dependent_code()->MarkCodeForDeoptimization( isolate_, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } list_element = site->weak_next(); } Deoptimizer::DeoptimizeMarkedCode(isolate_); } void Heap::GarbageCollectionEpilogue() { store_buffer()->GCEpilogue(); // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); if (FLAG_check_handle_count) CheckHandleCount(); #endif if (FLAG_deopt_every_n_garbage_collections > 0) { // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that // the topmost optimized frame can be deoptimized safely, because it // might not have a lazy bailout point right after its current PC. if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { Deoptimizer::DeoptimizeAll(isolate()); gcs_since_last_deopt_ = 0; } } UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast
(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) { isolate_->counters()->codegen_fraction_crankshaft()->AddSample( static_cast
((crankshaft_codegen_bytes_generated_ * 100.0) / (crankshaft_codegen_bytes_generated_ + full_codegen_bytes_generated_))); } if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast
(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()->AddSample(static_cast
( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_space()->AddSample(static_cast
( (old_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()->AddSample( static_cast
((code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample(static_cast
( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()->AddSample(static_cast
( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast
(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast
(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast
(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast
(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast
(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast
(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast
(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast
(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast
(100 - \ (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG ReportStatisticsAfterGC(); #endif // DEBUG // Remember the last top pointer so that we can later find out // whether we allocated in new space since the last GC. new_space_top_after_last_gc_ = new_space()->top(); last_gc_time_ = MonotonicallyIncreasingTimeInMs(); ReduceNewSpaceSize(); } void Heap::PreprocessStackTraces() { WeakFixedArray::Iterator iterator(weak_stack_trace_list()); FixedArray* elements; while ((elements = iterator.Next
())) { for (int j = 1; j < elements->length(); j += 4) { Object* maybe_code = elements->get(j + 2); // If GC happens while adding a stack trace to the weak fixed array, // which has been copied into a larger backing store, we may run into // a stack trace that has already been preprocessed. Guard against this. if (!maybe_code->IsCode()) break; Code* code = Code::cast(maybe_code); int offset = Smi::cast(elements->get(j + 3))->value(); Address pc = code->address() + offset; int pos = code->SourcePosition(pc); elements->set(j + 2, Smi::FromInt(pos)); } } // We must not compact the weak fixed list here, as we may be in the middle // of writing to it, when the GC triggered. Instead, we reset the root value. set_weak_stack_trace_list(Smi::FromInt(0)); } class GCCallbacksScope { public: explicit GCCallbacksScope(Heap* heap) : heap_(heap) { heap_->gc_callbacks_depth_++; } ~GCCallbacksScope() { heap_->gc_callbacks_depth_--; } bool CheckReenter() { return heap_->gc_callbacks_depth_ == 1; } private: Heap* heap_; }; void Heap::HandleGCRequest() { if (incremental_marking()->request_type() == IncrementalMarking::COMPLETE_MARKING) { CollectAllGarbage(current_gc_flags_, "GC interrupt", current_gc_callback_flags_); } else if (incremental_marking()->IsMarking() && !incremental_marking()->finalize_marking_completed()) { FinalizeIncrementalMarking("GC interrupt: finalize incremental marking"); } } void Heap::ScheduleIdleScavengeIfNeeded(int bytes_allocated) { scavenge_job_->ScheduleIdleTaskIfNeeded(this, bytes_allocated); } void Heap::FinalizeIncrementalMarking(const char* gc_reason) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] (%s).\n", gc_reason); } GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE); HistogramTimerScope incremental_marking_scope( isolate()->counters()->gc_incremental_marking_finalize()); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState
state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } incremental_marking()->FinalizeIncrementally(); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState
state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } } HistogramTimer* Heap::GCTypeTimer(GarbageCollector collector) { if (collector == SCAVENGER) { return isolate_->counters()->gc_scavenger(); } else { if (!incremental_marking()->IsStopped()) { if (ShouldReduceMemory()) { return isolate_->counters()->gc_finalize_reduce_memory(); } else { return isolate_->counters()->gc_finalize(); } } else { return isolate_->counters()->gc_compactor(); } } } void Heap::CollectAllGarbage(int flags, const char* gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. set_current_gc_flags(flags); CollectGarbage(OLD_SPACE, gc_reason, gc_callback_flags); set_current_gc_flags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(const char* gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compile_dispatcher()->Flush(); } isolate()->ClearSerializerData(); set_current_gc_flags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL, v8::kGCCallbackFlagForced) && attempt + 1 >= kMinNumberOfAttempts) { break; } } set_current_gc_flags(kNoGCFlags); new_space_.Shrink(); UncommitFromSpace(); } void Heap::ReportExternalMemoryPressure(const char* gc_reason) { if (incremental_marking()->IsStopped()) { if (incremental_marking()->CanBeActivated()) { StartIncrementalMarking( i::Heap::kNoGCFlags, kGCCallbackFlagSynchronousPhantomCallbackProcessing, gc_reason); } else { CollectAllGarbage(i::Heap::kNoGCFlags, gc_reason, kGCCallbackFlagSynchronousPhantomCallbackProcessing); } } else { // Incremental marking is turned on an has already been started. // TODO(mlippautz): Compute the time slice for incremental marking based on // memory pressure. double deadline = MonotonicallyIncreasingTimeInMs() + FLAG_external_allocation_limit_incremental_time; incremental_marking()->AdvanceIncrementalMarking( 0, deadline, IncrementalMarking::StepActions(IncrementalMarking::GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::FORCE_COMPLETION)); } } void Heap::EnsureFillerObjectAtTop() { // There may be an allocation memento behind every object in new space. // If we evacuate a not full new space or if we are on the last page of // the new space, then there may be uninitialized memory behind the top // pointer of the new space page. We store a filler object there to // identify the unused space. Address from_top = new_space_.top(); // Check that from_top is inside its page (i.e., not at the end). Address space_end = new_space_.ToSpaceEnd(); if (from_top < space_end) { Page* page = Page::FromAddress(from_top); if (page->Contains(from_top)) { int remaining_in_page = static_cast
(page->area_end() - from_top); CreateFillerObjectAt(from_top, remaining_in_page); } } } bool Heap::CollectGarbage(GarbageCollector collector, const char* gc_reason, const char* collector_reason, const v8::GCCallbackFlags gc_callback_flags) { // The VM is in the GC state until exiting this function. VMState
state(isolate_); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif EnsureFillerObjectAtTop(); if (collector == SCAVENGER && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Scavenge during marking.\n"); } } if (collector == MARK_COMPACTOR && !ShouldFinalizeIncrementalMarking() && !ShouldAbortIncrementalMarking() && !incremental_marking()->IsStopped() && !incremental_marking()->should_hurry() && FLAG_incremental_marking && OldGenerationAllocationLimitReached()) { // Make progress in incremental marking. const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB; incremental_marking()->Step(kStepSizeWhenDelayedByScavenge, IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (!incremental_marking()->IsComplete() && !mark_compact_collector()->marking_deque_.IsEmpty() && !FLAG_gc_global) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Delaying MarkSweep.\n"); } collector = SCAVENGER; collector_reason = "incremental marking delaying mark-sweep"; } } bool next_gc_likely_to_collect_more = false; intptr_t committed_memory_before = 0; if (collector == MARK_COMPACTOR) { committed_memory_before = CommittedOldGenerationMemory(); } { tracer()->Start(collector, gc_reason, collector_reason); DCHECK(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); { HistogramTimerScope histogram_timer_scope(GCTypeTimer(collector)); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, gc_callback_flags); } GarbageCollectionEpilogue(); if (collector == MARK_COMPACTOR && FLAG_track_detached_contexts) { isolate()->CheckDetachedContextsAfterGC(); } if (collector == MARK_COMPACTOR) { intptr_t committed_memory_after = CommittedOldGenerationMemory(); intptr_t used_memory_after = PromotedSpaceSizeOfObjects(); MemoryReducer::Event event; event.type = MemoryReducer::kMarkCompact; event.time_ms = MonotonicallyIncreasingTimeInMs(); // Trigger one more GC if // - this GC decreased committed memory, // - there is high fragmentation, // - there are live detached contexts. event.next_gc_likely_to_collect_more = (committed_memory_before - committed_memory_after) > MB || HasHighFragmentation(used_memory_after, committed_memory_after) || (detached_contexts()->length() > 0); if (deserialization_complete_) { memory_reducer_->NotifyMarkCompact(event); } } tracer()->Stop(collector); } if (collector == MARK_COMPACTOR && (gc_callback_flags & kGCCallbackFlagForced) != 0) { isolate()->CountUsage(v8::Isolate::kForcedGC); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. if (!ShouldAbortIncrementalMarking() && incremental_marking()->IsStopped() && incremental_marking()->ShouldActivateEvenWithoutIdleNotification()) { StartIncrementalMarking(kNoGCFlags, kNoGCCallbackFlags, "GC epilogue"); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed(bool dependant_context) { if (!dependant_context) { tracer()->ResetSurvivalEvents(); old_generation_size_configured_ = false; MemoryReducer::Event event; event.type = MemoryReducer::kContextDisposed; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyContextDisposed(event); } if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compile_dispatcher()->Flush(); } AgeInlineCaches(); number_of_disposed_maps_ = retained_maps()->Length(); tracer()->AddContextDisposalTime(MonotonicallyIncreasingTimeInMs()); return ++contexts_disposed_; } void Heap::StartIncrementalMarking(int gc_flags, const GCCallbackFlags gc_callback_flags, const char* reason) { DCHECK(incremental_marking()->IsStopped()); set_current_gc_flags(gc_flags); current_gc_callback_flags_ = gc_callback_flags; incremental_marking()->Start(reason); } void Heap::StartIdleIncrementalMarking() { gc_idle_time_handler_->ResetNoProgressCounter(); StartIncrementalMarking(kReduceMemoryFootprintMask, kNoGCCallbackFlags, "idle"); } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; DCHECK(array->map() != fixed_cow_array_map()); Object** dst_objects = array->data_start() + dst_index; MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); if (!InNewSpace(array)) { for (int i = 0; i < len; i++) { // TODO(hpayer): check store buffer for entries if (InNewSpace(dst_objects[i])) { RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i)); } } } incremental_marking()->RecordWrites(array); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) override { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { // Check that the string is actually internalized. CHECK((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP bool Heap::ReserveSpace(Reservation* reservations) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; for (int space = NEW_SPACE; space < Serializer::kNumberOfSpaces; space++) { Reservation* reservation = &reservations[space]; DCHECK_LE(1, reservation->length()); if (reservation->at(0).size == 0) continue; bool perform_gc = false; if (space == LO_SPACE) { DCHECK_EQ(1, reservation->length()); perform_gc = !CanExpandOldGeneration(reservation->at(0).size); } else { for (auto& chunk : *reservation) { AllocationResult allocation; int size = chunk.size; DCHECK_LE(size, MemoryAllocator::PageAreaSize( static_cast
(space))); if (space == NEW_SPACE) { allocation = new_space()->AllocateRawUnaligned(size); } else { allocation = paged_space(space)->AllocateRawUnaligned(size); } HeapObject* free_space = nullptr; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, size); DCHECK(space < Serializer::kNumberOfPreallocatedSpaces); chunk.start = free_space_address; chunk.end = free_space_address + size; } else { perform_gc = true; break; } } } if (perform_gc) { if (space == NEW_SPACE) { CollectGarbage(NEW_SPACE, "failed to reserve space in the new space"); } else { if (counter > 1) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, "failed to reserve space in paged or large " "object space, trying to reduce memory footprint"); } else { CollectAllGarbage( kAbortIncrementalMarkingMask, "failed to reserve space in paged or large object space"); } } gc_performed = true; break; // Abort for-loop over spaces and retry. } } } return !gc_performed; } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_.CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list(); while (!context->IsUndefined()) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined()) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_ratio_ = (static_cast
(promoted_objects_size_) / static_cast
(start_new_space_size) * 100); if (previous_semi_space_copied_object_size_ > 0) { promotion_rate_ = (static_cast
(promoted_objects_size_) / static_cast
(previous_semi_space_copied_object_size_) * 100); } else { promotion_rate_ = 0; } semi_space_copied_rate_ = (static_cast
(semi_space_copied_object_size_) / static_cast
(start_new_space_size) * 100); double survival_rate = promotion_ratio_ + semi_space_copied_rate_; tracer()->AddSurvivalRatio(survival_rate); if (survival_rate > kYoungSurvivalRateHighThreshold) { high_survival_rate_period_length_++; } else { high_survival_rate_period_length_ = 0; } } bool Heap::PerformGarbageCollection( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { int freed_global_handles = 0; if (collector != SCAVENGER) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState
state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } } EnsureFromSpaceIsCommitted(); int start_new_space_size = Heap::new_space()->SizeAsInt(); if (IsHighSurvivalRate()) { // We speed up the incremental marker if it is running so that it // does not fall behind the rate of promotion, which would cause a // constantly growing old space. incremental_marking()->NotifyOfHighPromotionRate(); } { Heap::PretenuringScope pretenuring_scope(this); if (collector == MARK_COMPACTOR) { UpdateOldGenerationAllocationCounter(); // Perform mark-sweep with optional compaction. MarkCompact(); old_gen_exhausted_ = false; old_generation_size_configured_ = true; // This should be updated before PostGarbageCollectionProcessing, which // can cause another GC. Take into account the objects promoted during GC. old_generation_allocation_counter_ += static_cast
(promoted_objects_size_); old_generation_size_at_last_gc_ = PromotedSpaceSizeOfObjects(); } else { Scavenge(); } ProcessPretenuringFeedback(); } UpdateSurvivalStatistics(start_new_space_size); ConfigureInitialOldGenerationSize(); isolate_->counters()->objs_since_last_young()->Set(0); if (collector != SCAVENGER) { // Callbacks that fire after this point might trigger nested GCs and // restart incremental marking, the assertion can't be moved down. DCHECK(incremental_marking()->IsStopped()); // We finished a marking cycle. We can uncommit the marking deque until // we start marking again. mark_compact_collector()->marking_deque()->Uninitialize(); mark_compact_collector()->EnsureMarkingDequeIsCommitted( MarkCompactCollector::kMinMarkingDequeSize); } gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); freed_global_handles = isolate_->global_handles()->PostGarbageCollectionProcessing( collector, gc_callback_flags); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); double gc_speed = tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond(); double mutator_speed = static_cast
( tracer() ->CurrentOldGenerationAllocationThroughputInBytesPerMillisecond()); intptr_t old_gen_size = PromotedSpaceSizeOfObjects(); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. amount_of_external_allocated_memory_at_last_global_gc_ = amount_of_external_allocated_memory_; SetOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } else if (HasLowYoungGenerationAllocationRate() && old_generation_size_configured_) { DampenOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState
state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type, gc_callback_flags); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return freed_global_handles > 0; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast
( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast
(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags gc_callback_flags) { for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast
( gc_epilogue_callbacks_[i].callback); callback(gc_type, gc_callback_flags); } else { v8::Isolate* isolate = reinterpret_cast
(this->isolate()); gc_epilogue_callbacks_[i].callback(isolate, gc_type, gc_callback_flags); } } } } void Heap::MarkCompact() { PauseInlineAllocationObserversScope pause_observers(new_space()); gc_state_ = MARK_COMPACT; LOG(isolate_, ResourceEvent("markcompact", "begin")); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector()->Prepare(); ms_count_++; MarkCompactPrologue(); mark_compact_collector()->CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); MarkCompactEpilogue(); if (FLAG_allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } } void Heap::MarkCompactEpilogue() { gc_state_ = NOT_IN_GC; isolate_->counters()->objs_since_last_full()->Set(0); incremental_marking()->Epilogue(); PreprocessStackTraces(); } void Heap::MarkCompactPrologue() { // At any old GC clear the keyed lookup cache to enable collection of unused // maps. isolate_->keyed_lookup_cache()->Clear(); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); CompletelyClearInstanceofCache(); FlushNumberStringCache(); if (FLAG_cleanup_code_caches_at_gc) { polymorphic_code_cache()->set_cache(undefined_value()); } ClearNormalizedMapCaches(); } #ifdef VERIFY_HEAP // Visitor class to verify pointers in code or data space do not point into // new space. class VerifyNonPointerSpacePointersVisitor : public ObjectVisitor { public: explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(Object** start, Object** end) override { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { CHECK(!heap_->InNewSpace(HeapObject::cast(*current))); } } } private: Heap* heap_; }; static void VerifyNonPointerSpacePointers(Heap* heap) { // Verify that there are no pointers to new space in spaces where we // do not expect them. VerifyNonPointerSpacePointersVisitor v(heap); HeapObjectIterator code_it(heap->code_space()); for (HeapObject* object = code_it.Next(); object != NULL; object = code_it.Next()) object->Iterate(&v); } #endif // VERIFY_HEAP void Heap::CheckNewSpaceExpansionCriteria() { if (FLAG_experimental_new_space_growth_heuristic) { if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_last_scavenge_ * 100 / new_space_.TotalCapacity() >= 10) { // Grow the size of new space if there is room to grow, and more than 10% // have survived the last scavenge. new_space_.Grow(); survived_since_last_expansion_ = 0; } } else if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_since_last_expansion_ > new_space_.TotalCapacity()) { // Grow the size of new space if there is room to grow, and enough data // has survived scavenge since the last expansion. new_space_.Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } static bool IsUnmodifiedHeapObject(Object** p) { Object* object = *p; if (object->IsSmi()) return false; HeapObject* heap_object = HeapObject::cast(object); if (!object->IsJSObject()) return false; Object* obj_constructor = (JSObject::cast(object))->map()->GetConstructor(); if (!obj_constructor->IsJSFunction()) return false; JSFunction* constructor = JSFunction::cast(obj_constructor); if (!constructor->shared()->IsApiFunction()) return false; if (constructor != nullptr && constructor->initial_map() == heap_object->map()) { return true; } return false; } void Heap::ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page, StoreBufferEvent event) { heap->store_buffer_rebuilder_.Callback(page, event); } void PromotionQueue::Initialize() { // The last to-space page may be used for promotion queue. On promotion // conflict, we use the emergency stack. DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) == 0); front_ = rear_ = reinterpret_cast
(heap_->new_space()->ToSpaceEnd()); limit_ = reinterpret_cast
( Page::FromAllocationTop(reinterpret_cast
(rear_))->area_start()); emergency_stack_ = NULL; } void PromotionQueue::RelocateQueueHead() { DCHECK(emergency_stack_ == NULL); Page* p = Page::FromAllocationTop(reinterpret_cast
(rear_)); intptr_t* head_start = rear_; intptr_t* head_end = Min(front_, reinterpret_cast
(p->area_end())); int entries_count = static_cast
(head_end - head_start) / kEntrySizeInWords; emergency_stack_ = new List
(2 * entries_count); while (head_start != head_end) { int size = static_cast
(*(head_start++)); HeapObject* obj = reinterpret_cast
(*(head_start++)); // New space allocation in SemiSpaceCopyObject marked the region // overlapping with promotion queue as uninitialized. MSAN_MEMORY_IS_INITIALIZED(&size, sizeof(size)); MSAN_MEMORY_IS_INITIALIZED(&obj, sizeof(obj)); emergency_stack_->Add(Entry(obj, size)); } rear_ = head_end; } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) {} virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::Scavenge() { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE); RelocationLock relocation_lock(this); // There are soft limits in the allocation code, designed to trigger a mark // sweep collection by failing allocations. There is no sense in trying to // trigger one during scavenge: scavenges allocation should always succeed. AlwaysAllocateScope scope(isolate()); // Bump-pointer allocations done during scavenge are not real allocations. // Pause the inline allocation steps. PauseInlineAllocationObserversScope pause_observers(new_space()); #ifdef VERIFY_HEAP if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this); #endif gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Clear descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Used for updating survived_since_last_expansion_ at function end. intptr_t survived_watermark = PromotedSpaceSizeOfObjects(); scavenge_collector_->SelectScavengingVisitorsTable(); array_buffer_tracker()->PrepareDiscoveryInNewSpace(); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_.Flip(); new_space_.ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_.ToSpaceStart(); promotion_queue_.Initialize(); ScavengeVisitor scavenge_visitor(this); if (FLAG_scavenge_reclaim_unmodified_objects) { isolate()->global_handles()->IdentifyWeakUnmodifiedObjects( &IsUnmodifiedHeapObject); } { // Copy roots. GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_ROOTS); IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); } { // Copy objects reachable from the old generation. GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_OLD_TO_NEW_POINTERS); StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); store_buffer()->IteratePointersToNewSpace(&Scavenger::ScavengeObject); } { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_WEAK); // Copy objects reachable from the encountered weak collections list. scavenge_visitor.VisitPointer(&encountered_weak_collections_); // Copy objects reachable from the encountered weak cells. scavenge_visitor.VisitPointer(&encountered_weak_cells_); } { // Copy objects reachable from the code flushing candidates list. GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_CODE_FLUSH_CANDIDATES); MarkCompactCollector* collector = mark_compact_collector(); if (collector->is_code_flushing_enabled()) { collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); } } { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_SEMISPACE); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } if (FLAG_scavenge_reclaim_unmodified_objects) { isolate()->global_handles()->MarkNewSpaceWeakUnmodifiedObjectsPending( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakUnmodifiedRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } else { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_OBJECT_GROUPS); while (isolate()->global_handles()->IterateObjectGroups( &scavenge_visitor, &IsUnscavengedHeapObject)) { new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } isolate()->global_handles()->RemoveObjectGroups(); isolate()->global_handles()->RemoveImplicitRefGroups(); isolate()->global_handles()->IdentifyNewSpaceWeakIndependentHandles( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakIndependentRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); promotion_queue_.Destroy(); incremental_marking()->UpdateMarkingDequeAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessYoungWeakReferences(&weak_object_retainer); DCHECK(new_space_front == new_space_.top()); // Set age mark. new_space_.set_age_mark(new_space_.top()); array_buffer_tracker()->FreeDead(true); // Update how much has survived scavenge. IncrementYoungSurvivorsCounter(static_cast
( (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size())); LOG(isolate_, ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. heap->FinalizeExternalString(String::cast(*p)); return NULL; } // String is still reachable. return String::cast(first_word.ToForwardingAddress()); } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { external_string_table_.Verify(); } #endif if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { DCHECK(InFromSpace(*p)); String* target = updater_func(this, p); if (target == NULL) continue; DCHECK(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } DCHECK(last <= end); external_string_table_.ShrinkNewStrings(static_cast
(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } void Heap::ProcessAllWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); ProcessAllocationSites(retainer); } void Heap::ProcessYoungWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Object* head = VisitWeakList
(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Object* allocation_site_obj = VisitWeakList
(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { DisallowHeapAllocation no_allocation_scope; Object* cur = allocation_sites_list(); bool marked = false; while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); if (casted->GetPretenureMode() == flag) { casted->ResetPretenureDecision(); casted->set_deopt_dependent_code(true); marked = true; RemoveAllocationSitePretenuringFeedback(casted); } cur = casted->weak_next(); } if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast
(size_of_objects_after_gc) * 100) / static_cast
(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(TENURED); if (FLAG_trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public ObjectVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { DCHECK((*p)->IsExternalString()); visitor_->VisitExternalString( Utils::ToLocal(Handle
(String::cast(*p)))); } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.Iterate(&external_string_table_visitor); } Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front) { do { SemiSpace::AssertValidRange(new_space_front, new_space_.top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front != new_space_.top()) { if (!NewSpacePage::IsAtEnd(new_space_front)) { HeapObject* object = HeapObject::FromAddress(new_space_front); new_space_front += StaticScavengeVisitor::IterateBody(object->map(), object); } else { new_space_front = NewSpacePage::FromLimit(new_space_front)->next_page()->area_start(); } } // Promote and process all the to-be-promoted objects. { StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); while (!promotion_queue()->is_empty()) { HeapObject* target; int size; promotion_queue()->remove(&target, &size); // Promoted object might be already partially visited // during old space pointer iteration. Thus we search specifically // for pointers to from semispace instead of looking for pointers // to new space. DCHECK(!target->IsMap()); IteratePointersToFromSpace(target, size, &Scavenger::ScavengeObject); } } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front != new_space_.top()); return new_space_front; } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((FixedTypedArrayBase::kDataOffset & kDoubleAlignmentMask) == 0); // NOLINT #ifdef V8_HOST_ARCH_32_BIT STATIC_ASSERT((HeapNumber::kValueOffset & kDoubleAlignmentMask) != 0); // NOLINT #endif int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) { switch (alignment) { case kWordAligned: return 0; case kDoubleAligned: case kDoubleUnaligned: return kDoubleSize - kPointerSize; case kSimd128Unaligned: return kSimd128Size - kPointerSize; default: UNREACHABLE(); } return 0; } int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) { intptr_t offset = OffsetFrom(address); if (alignment == kDoubleAligned && (offset & kDoubleAlignmentMask) != 0) return kPointerSize; if (alignment == kDoubleUnaligned && (offset & kDoubleAlignmentMask) == 0) return kDoubleSize - kPointerSize; // No fill if double is always aligned. if (alignment == kSimd128Unaligned) { return (kSimd128Size - (static_cast
(offset) + kPointerSize)) & kSimd128AlignmentMask; } return 0; } HeapObject* Heap::PrecedeWithFiller(HeapObject* object, int filler_size) { CreateFillerObjectAt(object->address(), filler_size); return HeapObject::FromAddress(object->address() + filler_size); } HeapObject* Heap::AlignWithFiller(HeapObject* object, int object_size, int allocation_size, AllocationAlignment alignment) { int filler_size = allocation_size - object_size; DCHECK(filler_size > 0); int pre_filler = GetFillToAlign(object->address(), alignment); if (pre_filler) { object = PrecedeWithFiller(object, pre_filler); filler_size -= pre_filler; } if (filler_size) CreateFillerObjectAt(object->address() + object_size, filler_size); return object; } HeapObject* Heap::DoubleAlignForDeserialization(HeapObject* object, int size) { return AlignWithFiller(object, size - kPointerSize, size, kDoubleAligned); } void Heap::RegisterNewArrayBuffer(JSArrayBuffer* buffer) { return array_buffer_tracker()->RegisterNew(buffer); } void Heap::UnregisterArrayBuffer(JSArrayBuffer* buffer) { return array_buffer_tracker()->Unregister(buffer); } void Heap::ConfigureInitialOldGenerationSize() { if (!old_generation_size_configured_ && tracer()->SurvivalEventsRecorded()) { old_generation_allocation_limit_ = Max(kMinimumOldGenerationAllocationLimit, static_cast
( static_cast
(old_generation_allocation_limit_) * (tracer()->AverageSurvivalRatio() / 100))); } } AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast
(result)->set_map( reinterpret_cast
(root(kMetaMapRootIndex))); reinterpret_cast
(result)->set_instance_type(instance_type); reinterpret_cast
(result)->set_instance_size(instance_size); // Initialize to only containing tagged fields. reinterpret_cast
(result)->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size, false)); if (FLAG_unbox_double_fields) { reinterpret_cast
(result) ->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } reinterpret_cast
(result)->clear_unused(); reinterpret_cast
(result) ->set_inobject_properties_or_constructor_function_index(0); reinterpret_cast
(result)->set_unused_property_fields(0); reinterpret_cast
(result)->set_bit_field(0); reinterpret_cast
(result)->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); reinterpret_cast
(result)->set_bit_field3(bit_field3); reinterpret_cast
(result)->set_weak_cell_cache(Smi::FromInt(0)); return result; } AllocationResult Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(meta_map()); Map* map = Map::cast(result); map->set_instance_type(instance_type); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->clear_unused(); map->set_inobject_properties_or_constructor_function_index(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->set_weak_cell_cache(Smi::FromInt(0)); map->set_raw_transitions(Smi::FromInt(0)); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Must be called only after |instance_type|, |instance_size| and // |layout_descriptor| are set. map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map)); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); map->set_new_target_is_base(true); return map; } AllocationResult Heap::AllocateFillerObject(int size, bool double_align, AllocationSpace space) { HeapObject* obj = nullptr; { AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned; AllocationResult allocation = AllocateRaw(size, space, align); if (!allocation.To(&obj)) return allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(chunk->owner()->identity() == space); #endif CreateFillerObjectAt(obj->address(), size); return obj; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ { type, size, k##camel_name##MapRootIndex } \ , STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { {"", kempty_stringRootIndex}, #define CONSTANT_STRING_ELEMENT(name, contents) \ { contents, k##name##RootIndex } \ , INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \ , STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; bool Heap::CreateInitialMaps() { HeapObject* obj = nullptr; { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!allocation.To(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast
(obj); set_meta_map(new_meta_map); new_meta_map->set_map(new_meta_map); { // Partial map allocation #define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ set_##field_name##_map(map); \ } ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); #undef ALLOCATE_PARTIAL_MAP } // Allocate the empty array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { AllocationResult allocation = Allocate(null_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); DCHECK(!InNewSpace(undefined_value())); // Set preliminary exception sentinel value before actually initializing it. set_exception(null_value()); // Allocate the empty descriptor array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Fix the instance_descriptors for the existing maps. meta_map()->set_code_cache(empty_fixed_array()); meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); meta_map()->set_raw_transitions(Smi::FromInt(0)); meta_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { meta_map()->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } fixed_array_map()->set_code_cache(empty_fixed_array()); fixed_array_map()->set_dependent_code( DependentCode::cast(empty_fixed_array())); fixed_array_map()->set_raw_transitions(Smi::FromInt(0)); fixed_array_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { fixed_array_map()->set_layout_descriptor( LayoutDescriptor::FastPointerLayout()); } undefined_map()->set_code_cache(empty_fixed_array()); undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); undefined_map()->set_raw_transitions(Smi::FromInt(0)); undefined_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { undefined_map()->set_layout_descriptor( LayoutDescriptor::FastPointerLayout()); } null_map()->set_code_cache(empty_fixed_array()); null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); null_map()->set_raw_transitions(Smi::FromInt(0)); null_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { null_map()->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Fix prototype object for existing maps. meta_map()->set_prototype(null_value()); meta_map()->set_constructor_or_backpointer(null_value()); fixed_array_map()->set_prototype(null_value()); fixed_array_map()->set_constructor_or_backpointer(null_value()); undefined_map()->set_prototype(null_value()); undefined_map()->set_constructor_or_backpointer(null_value()); null_map()->set_prototype(null_value()); null_map()->set_constructor_or_backpointer(null_value()); { // Map allocation #define ALLOCATE_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocateMap((instance_type), size).To(&map)) return false; \ set_##field_name##_map(map); \ } #define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) #define ALLOCATE_PRIMITIVE_MAP(instance_type, size, field_name, \ constructor_function_index) \ { \ ALLOCATE_MAP((instance_type), (size), field_name); \ field_name##_map()->SetConstructorFunctionIndex( \ (constructor_function_index)); \ } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) DCHECK(fixed_array_map() != fixed_cow_array_map()); ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) ALLOCATE_PRIMITIVE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number, Context::NUMBER_FUNCTION_INDEX) ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) ALLOCATE_PRIMITIVE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol, Context::SYMBOL_FUNCTION_INDEX) #define ALLOCATE_SIMD128_MAP(TYPE, Type, type, lane_count, lane_type) \ ALLOCATE_PRIMITIVE_MAP(SIMD128_VALUE_TYPE, Type::kSize, type, \ Context::TYPE##_FUNCTION_INDEX) SIMD128_TYPES(ALLOCATE_SIMD128_MAP) #undef ALLOCATE_SIMD128_MAP ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); ALLOCATE_PRIMITIVE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean, Context::BOOLEAN_FUNCTION_INDEX); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); for (unsigned i = 0; i < arraysize(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { AllocationResult allocation = AllocateMap(entry.type, entry.size); if (!allocation.To(&obj)) return false; } Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); // Mark cons string maps as unstable, because their objects can change // maps during GC. if (StringShape(entry.type).IsCons()) map->mark_unstable(); roots_[entry.index] = map; } { // Create a separate external one byte string map for native sources. AllocationResult allocation = AllocateMap(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize); if (!allocation.To(&obj)) return false; Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); set_native_source_string_map(map); } ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array) ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) #define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array) TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) #undef ALLOCATE_FIXED_TYPED_ARRAY_MAP ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell) ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) ALLOCATE_VARSIZE_MAP(TRANSITION_ARRAY_TYPE, transition_array) for (unsigned i = 0; i < arraysize(struct_table); i++) { const StructTable& entry = struct_table[i]; Map* map; if (!AllocateMap(entry.type, entry.size).To(&map)) return false; roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) native_context_map()->set_dictionary_map(true); native_context_map()->set_visitor_id( StaticVisitorBase::kVisitNativeContext); ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, shared_function_info) ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object) ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external) external_map()->set_is_extensible(false); #undef ALLOCATE_PRIMITIVE_MAP #undef ALLOCATE_VARSIZE_MAP #undef ALLOCATE_MAP } { // Empty arrays { ByteArray* byte_array; if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; set_empty_byte_array(byte_array); BytecodeArray* bytecode_array = nullptr; AllocationResult allocation = AllocateBytecodeArray(0, nullptr, 0, 0, empty_fixed_array()); if (!allocation.To(&bytecode_array)) { return false; } set_empty_bytecode_array(bytecode_array); } #define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ { \ FixedTypedArrayBase* obj; \ if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_fixed_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) #undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY } DCHECK(!InNewSpace(empty_fixed_array())); return true; } AllocationResult Heap::AllocateHeapNumber(double value, MutableMode mode, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space, kDoubleUnaligned); if (!allocation.To(&result)) return allocation; } Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); HeapObject::cast(result)->set_map_no_write_barrier(map); HeapNumber::cast(result)->set_value(value); return result; } #define SIMD_ALLOCATE_DEFINITION(TYPE, Type, type, lane_count, lane_type) \ AllocationResult Heap::Allocate##Type(lane_type lanes[lane_count], \ PretenureFlag pretenure) { \ int size = Type::kSize; \ STATIC_ASSERT(Type::kSize <= Page::kMaxRegularHeapObjectSize); \ \ AllocationSpace space = SelectSpace(pretenure); \ \ HeapObject* result = nullptr; \ { \ AllocationResult allocation = \ AllocateRaw(size, space, kSimd128Unaligned); \ if (!allocation.To(&result)) return allocation; \ } \ \ result->set_map_no_write_barrier(type##_map()); \ Type* instance = Type::cast(result); \ for (int i = 0; i < lane_count; i++) { \ instance->set_lane(i, lanes[i]); \ } \ return result; \ } SIMD128_TYPES(SIMD_ALLOCATE_DEFINITION) #undef SIMD_ALLOCATE_DEFINITION AllocationResult Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(cell_map()); Cell::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocatePropertyCell() { int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(global_property_cell_map()); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_property_details(PropertyDetails(Smi::FromInt(0))); cell->set_value(the_hole_value()); return result; } AllocationResult Heap::AllocateWeakCell(HeapObject* value) { int size = WeakCell::kSize; STATIC_ASSERT(WeakCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(weak_cell_map()); WeakCell::cast(result)->initialize(value); WeakCell::cast(result)->clear_next(the_hole_value()); return result; } AllocationResult Heap::AllocateTransitionArray(int capacity) { DCHECK(capacity > 0); HeapObject* raw_array = nullptr; { AllocationResult allocation = AllocateRawFixedArray(capacity, TENURED); if (!allocation.To(&raw_array)) return allocation; } raw_array->set_map_no_write_barrier(transition_array_map()); TransitionArray* array = TransitionArray::cast(raw_array); array->set_length(capacity); MemsetPointer(array->data_start(), undefined_value(), capacity); return array; } void Heap::CreateApiObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); Handle
new_neander_map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); // Don't use Smi-only elements optimizations for objects with the neander // map. There are too many cases where element values are set directly with a // bottleneck to trap the Smi-only -> fast elements transition, and there // appears to be no benefit for optimize this case. new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND); set_neander_map(*new_neander_map); Handle
listeners = factory->NewNeanderObject(); Handle
elements = factory->NewFixedArray(2); elements->set(0, Smi::FromInt(0)); listeners->set_elements(*elements); set_message_listeners(*listeners); } void Heap::CreateJSEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY); set_js_entry_code(*stub.GetCode()); } void Heap::CreateJSConstructEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY_CONSTRUCT); set_js_construct_entry_code(*stub.GetCode()); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub // is created. // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); } void Heap::CreateInitialObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); // The -0 value must be set before NewNumber works. set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); DCHECK(std::signbit(minus_zero_value()->Number()) != 0); set_nan_value(*factory->NewHeapNumber( std::numeric_limits
::quiet_NaN(), IMMUTABLE, TENURED)); set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); set_minus_infinity_value( *factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED)); // The hole has not been created yet, but we want to put something // predictable in the gaps in the string table, so lets make that Smi zero. set_the_hole_value(reinterpret_cast
(Smi::FromInt(0))); // Allocate initial string table. set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); // Finish initializing oddballs after creating the string table. Oddball::Initialize(isolate(), factory->undefined_value(), "undefined", factory->nan_value(), "undefined", Oddball::kUndefined); // Initialize the null_value. Oddball::Initialize(isolate(), factory->null_value(), "null", handle(Smi::FromInt(0), isolate()), "object", Oddball::kNull); set_true_value(*factory->NewOddball(factory->boolean_map(), "true", handle(Smi::FromInt(1), isolate()), "boolean", Oddball::kTrue)); set_false_value(*factory->NewOddball(factory->boolean_map(), "false", handle(Smi::FromInt(0), isolate()), "boolean", Oddball::kFalse)); set_the_hole_value(*factory->NewOddball(factory->the_hole_map(), "hole", handle(Smi::FromInt(-1), isolate()), "undefined", Oddball::kTheHole)); set_uninitialized_value( *factory->NewOddball(factory->uninitialized_map(), "uninitialized", handle(Smi::FromInt(-1), isolate()), "undefined", Oddball::kUninitialized)); set_arguments_marker( *factory->NewOddball(factory->arguments_marker_map(), "arguments_marker", handle(Smi::FromInt(-4), isolate()), "undefined", Oddball::kArgumentMarker)); set_no_interceptor_result_sentinel(*factory->NewOddball( factory->no_interceptor_result_sentinel_map(), "no_interceptor_result_sentinel", handle(Smi::FromInt(-2), isolate()), "undefined", Oddball::kOther)); set_termination_exception(*factory->NewOddball( factory->termination_exception_map(), "termination_exception", handle(Smi::FromInt(-3), isolate()), "undefined", Oddball::kOther)); set_exception(*factory->NewOddball(factory->exception_map(), "exception", handle(Smi::FromInt(-5), isolate()), "undefined", Oddball::kException)); for (unsigned i = 0; i < arraysize(constant_string_table); i++) { Handle
str = factory->InternalizeUtf8String(constant_string_table[i].contents); roots_[constant_string_table[i].index] = *str; } // The {hidden_string} is special because it is an empty string, but does not // match any string (even the {empty_string}) when looked up in properties. // Allocate the hidden string which is used to identify the hidden properties // in JSObjects. The hash code has a special value so that it will not match // the empty string when searching for the property. It cannot be part of the // loop above because it needs to be allocated manually with the special // hash code in place. The hash code for the hidden_string is zero to ensure // that it will always be at the first entry in property descriptors. set_hidden_string(*factory->NewOneByteInternalizedString( OneByteVector("", 0), String::kEmptyStringHash)); // Create the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); // Create the non_monomorphic_cache used in stub-cache.cc. The initial size // is set to avoid expanding the dictionary during bootstrapping. set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64)); set_polymorphic_code_cache(PolymorphicCodeCache::cast( *factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE))); set_instanceof_cache_function(Smi::FromInt(0)); set_instanceof_cache_map(Smi::FromInt(0)); set_instanceof_cache_answer(Smi::FromInt(0)); { HandleScope scope(isolate()); #define SYMBOL_INIT(name) \ { \ Handle
name##d = factory->NewStringFromStaticChars(#name); \ Handle
symbol(isolate()->factory()->NewPrivateSymbol()); \ symbol->set_name(*name##d); \ roots_[k##name##RootIndex] = *symbol; \ } PRIVATE_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } { HandleScope scope(isolate()); #define SYMBOL_INIT(name, description) \ Handle
name = factory->NewSymbol(); \ Handle
name##d = factory->NewStringFromStaticChars(#description); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; PUBLIC_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT #define SYMBOL_INIT(name, description) \ Handle
name = factory->NewSymbol(); \ Handle
name##d = factory->NewStringFromStaticChars(#description); \ name->set_is_well_known_symbol(true); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; WELL_KNOWN_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } CreateFixedStubs(); // Allocate the dictionary of intrinsic function names. Handle
intrinsic_names = NameDictionary::New(isolate(), Runtime::kNumFunctions, TENURED); Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names); set_intrinsic_function_names(*intrinsic_names); Handle
empty_properties_dictionary = NameDictionary::New(isolate(), 0, TENURED); empty_properties_dictionary->SetRequiresCopyOnCapacityChange(); set_empty_properties_dictionary(*empty_properties_dictionary); set_number_string_cache( *factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED)); // Allocate cache for single character one byte strings. set_single_character_string_cache( *factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED)); // Allocate cache for string split and regexp-multiple. set_string_split_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_regexp_multiple_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); // Allocate cache for external strings pointing to native source code. set_natives_source_cache( *factory->NewFixedArray(Natives::GetBuiltinsCount())); set_experimental_natives_source_cache( *factory->NewFixedArray(ExperimentalNatives::GetBuiltinsCount())); set_extra_natives_source_cache( *factory->NewFixedArray(ExtraNatives::GetBuiltinsCount())); set_experimental_extra_natives_source_cache( *factory->NewFixedArray(ExperimentalExtraNatives::GetBuiltinsCount())); set_undefined_cell(*factory->NewCell(factory->undefined_value())); // The symbol registry is initialized lazily. set_symbol_registry(Smi::FromInt(0)); // Allocate object to hold object observation state. set_observation_state(*factory->NewJSObjectFromMap( factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize))); // Microtask queue uses the empty fixed array as a sentinel for "empty". // Number of queued microtasks stored in Isolate::pending_microtask_count(). set_microtask_queue(empty_fixed_array()); { StaticFeedbackVectorSpec spec; FeedbackVectorSlot load_ic_slot = spec.AddLoadICSlot(); FeedbackVectorSlot keyed_load_ic_slot = spec.AddKeyedLoadICSlot(); FeedbackVectorSlot store_ic_slot = spec.AddStoreICSlot(); FeedbackVectorSlot keyed_store_ic_slot = spec.AddKeyedStoreICSlot(); DCHECK_EQ(load_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyLoadICSlot)); DCHECK_EQ(keyed_load_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot)); DCHECK_EQ(store_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyStoreICSlot)); DCHECK_EQ(keyed_store_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot)); Handle
dummy_metadata = TypeFeedbackMetadata::New(isolate(), &spec); Handle
dummy_vector = TypeFeedbackVector::New(isolate(), dummy_metadata); Object* megamorphic = *TypeFeedbackVector::MegamorphicSentinel(isolate()); dummy_vector->Set(load_ic_slot, megamorphic, SKIP_WRITE_BARRIER); dummy_vector->Set(keyed_load_ic_slot, megamorphic, SKIP_WRITE_BARRIER); dummy_vector->Set(store_ic_slot, megamorphic, SKIP_WRITE_BARRIER); dummy_vector->Set(keyed_store_ic_slot, megamorphic, SKIP_WRITE_BARRIER); set_dummy_vector(*dummy_vector); } { Handle
cell = factory->NewWeakCell(factory->undefined_value()); set_empty_weak_cell(*cell); cell->clear(); Handle
cleared_optimized_code_map = factory->NewFixedArray(SharedFunctionInfo::kEntriesStart, TENURED); cleared_optimized_code_map->set(SharedFunctionInfo::kSharedCodeIndex, *cell); STATIC_ASSERT(SharedFunctionInfo::kEntriesStart == 1 && SharedFunctionInfo::kSharedCodeIndex == 0); set_cleared_optimized_code_map(*cleared_optimized_code_map); } set_detached_contexts(empty_fixed_array()); set_retained_maps(ArrayList::cast(empty_fixed_array())); set_weak_object_to_code_table( *WeakHashTable::New(isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED)); set_script_list(Smi::FromInt(0)); Handle
slow_element_dictionary = SeededNumberDictionary::New(isolate(), 0, TENURED); slow_element_dictionary->set_requires_slow_elements(); set_empty_slow_element_dictionary(*slow_element_dictionary); set_materialized_objects(*factory->NewFixedArray(0, TENURED)); // Handling of script id generation is in Heap::NextScriptId(). set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); // Allocate the empty script. Handle
登录后可以享受更多权益
您还没有登录,登录后您可以:
收藏Android系统代码
收藏喜欢的文章
多个平台共享账号
去登录
首次使用?从这里
注册