// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HASHMAP_H_
#define V8_HASHMAP_H_
#include "src/allocation.h"
#include "src/base/bits.h"
#include "src/base/logging.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
template<class AllocationPolicy>
class TemplateHashMapImpl {
public:
typedef bool (*MatchFun) (void* key1, void* key2);
// The default capacity. This is used by the call sites which want
// to pass in a non-default AllocationPolicy but want to use the
// default value of capacity specified by the implementation.
static const uint32_t kDefaultHashMapCapacity = 8;
// initial_capacity is the size of the initial hash map;
// it must be a power of 2 (and thus must not be 0).
TemplateHashMapImpl(MatchFun match,
uint32_t capacity = kDefaultHashMapCapacity,
AllocationPolicy allocator = AllocationPolicy());
~TemplateHashMapImpl();
// HashMap entries are (key, value, hash) triplets.
// Some clients may not need to use the value slot
// (e.g. implementers of sets, where the key is the value).
struct Entry {
void* key;
void* value;
uint32_t hash; // The full hash value for key
int order; // If you never remove entries this is the insertion order.
};
// If an entry with matching key is found, returns that entry.
// Otherwise, NULL is returned.
Entry* Lookup(void* key, uint32_t hash) const;
// If an entry with matching key is found, returns that entry.
// If no matching entry is found, a new entry is inserted with
// corresponding key, key hash, and NULL value.
Entry* LookupOrInsert(void* key, uint32_t hash,
AllocationPolicy allocator = AllocationPolicy());
// Removes the entry with matching key.
// It returns the value of the deleted entry
// or null if there is no value for such key.
void* Remove(void* key, uint32_t hash);
// Empties the hash map (occupancy() == 0).
void Clear();
// The number of (non-empty) entries in the table.
uint32_t occupancy() const { return occupancy_; }
// The capacity of the table. The implementation
// makes sure that occupancy is at most 80% of
// the table capacity.
uint32_t capacity() const { return capacity_; }
// Iteration
//
// for (Entry* p = map.Start(); p != NULL; p = map.Next(p)) {
// ...
// }
//
// If entries are inserted during iteration, the effect of
// calling Next() is undefined.
Entry* Start() const;
Entry* Next(Entry* p) const;
// Some match functions defined for convenience.
static bool PointersMatch(void* key1, void* key2) {
return key1 == key2;
}
private:
MatchFun match_;
Entry* map_;
uint32_t capacity_;
uint32_t occupancy_;
Entry* map_end() const { return map_ + capacity_; }
Entry* Probe(void* key, uint32_t hash) const;
void Initialize(uint32_t capacity, AllocationPolicy allocator);
void Resize(AllocationPolicy allocator);
};
typedef TemplateHashMapImpl<FreeStoreAllocationPolicy> HashMap;
template<class AllocationPolicy>
TemplateHashMapImpl<AllocationPolicy>::TemplateHashMapImpl(
MatchFun match, uint32_t initial_capacity, AllocationPolicy allocator) {
match_ = match;
Initialize(initial_capacity, allocator);
}
template<class AllocationPolicy>
TemplateHashMapImpl<AllocationPolicy>::~TemplateHashMapImpl() {
AllocationPolicy::Delete(map_);
}
template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Lookup(void* key, uint32_t hash) const {
Entry* p = Probe(key, hash);
return p->key != NULL ? p : NULL;
}
template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::LookupOrInsert(
void* key, uint32_t hash, AllocationPolicy allocator) {
// Find a matching entry.
Entry* p = Probe(key, hash);
if (p->key != NULL) {
return p;
}
// No entry found; insert one.
p->key = key;
p->value = NULL;
p->hash = hash;
p->order = occupancy_;
occupancy_++;
// Grow the map if we reached >= 80% occupancy.
if (occupancy_ + occupancy_ / 4 >= capacity_) {
Resize(allocator);
p = Probe(key, hash);
}
return p;
}
template<class AllocationPolicy>
void* TemplateHashMapImpl<AllocationPolicy>::Remove(void* key, uint32_t hash) {
// Lookup the entry for the key to remove.
Entry* p = Probe(key, hash);
if (p->key == NULL) {
// Key not found nothing to remove.
return NULL;
}
void* value = p->value;
// To remove an entry we need to ensure that it does not create an empty
// entry that will cause the search for another entry to stop too soon. If all
// the entries between the entry to remove and the next empty slot have their
// initial position inside this interval, clearing the entry to remove will
// not break the search. If, while searching for the next empty entry, an
// entry is encountered which does not have its initial position between the
// entry to remove and the position looked at, then this entry can be moved to
// the place of the entry to remove without breaking the search for it. The
// entry made vacant by this move is now the entry to remove and the process
// starts over.
// Algorithm from http://en.wikipedia.org/wiki/Open_addressing.
// This guarantees loop termination as there is at least one empty entry so
// eventually the removed entry will have an empty entry after it.
DCHECK(occupancy_ < capacity_);
// p is the candidate entry to clear. q is used to scan forwards.
Entry* q = p; // Start at the entry to remove.
while (true) {
// Move q to the next entry.
q = q + 1;
if (q == map_end()) {
q = map_;
}
// All entries between p and q have their initial position between p and q
// and the entry p can be cleared without breaking the search for these
// entries.
if (q->key == NULL) {
break;
}
// Find the initial position for the entry at position q.
Entry* r = map_ + (q->hash & (capacity_ - 1));
// If the entry at position q has its initial position outside the range
// between p and q it can be moved forward to position p and will still be
// found. There is now a new candidate entry for clearing.
if ((q > p && (r <= p || r > q)) ||
(q < p && (r <= p && r > q))) {
*p = *q;
p = q;
}
}
// Clear the entry which is allowed to en emptied.
p->key = NULL;
occupancy_--;
return value;
}
template<class AllocationPolicy>
void TemplateHashMapImpl<AllocationPolicy>::Clear() {
// Mark all entries as empty.
const Entry* end = map_end();
for (Entry* p = map_; p < end; p++) {
p->key = NULL;
}
occupancy_ = 0;
}
template<class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Start() const {
return Next(map_ - 1);
}
template<class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Next(Entry* p) const {
const Entry* end = map_end();
DCHECK(map_ - 1 <= p && p < end);
for (p++; p < end; p++) {
if (p->key != NULL) {
return p;
}
}
return NULL;
}
template <class AllocationPolicy>
typename TemplateHashMapImpl<AllocationPolicy>::Entry*
TemplateHashMapImpl<AllocationPolicy>::Probe(void* key, uint32_t hash) const {
DCHECK(key != NULL);
DCHECK(base::bits::IsPowerOfTwo32(capacity_));
Entry* p = map_ + (hash & (capacity_ - 1));
const Entry* end = map_end();
DCHECK(map_ <= p && p < end);
DCHECK(occupancy_ < capacity_); // Guarantees loop termination.
while (p->key != NULL && (hash != p->hash || !match_(key, p->key))) {
p++;
if (p >= end) {
p = map_;
}
}
return p;
}
template<class AllocationPolicy>
void TemplateHashMapImpl<AllocationPolicy>::Initialize(
uint32_t capacity, AllocationPolicy allocator) {
DCHECK(base::bits::IsPowerOfTwo32(capacity));
map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry)));
if (map_ == NULL) {
v8::internal::FatalProcessOutOfMemory("HashMap::Initialize");
return;
}
capacity_ = capacity;
Clear();
}
template<class AllocationPolicy>
void TemplateHashMapImpl<AllocationPolicy>::Resize(AllocationPolicy allocator) {
Entry* map = map_;
uint32_t n = occupancy_;
// Allocate larger map.
Initialize(capacity_ * 2, allocator);
// Rehash all current entries.
for (Entry* p = map; n > 0; p++) {
if (p->key != NULL) {
Entry* entry = LookupOrInsert(p->key, p->hash, allocator);
entry->value = p->value;
entry->order = p->order;
n--;
}
}
// Delete old map.
AllocationPolicy::Delete(map);
}
// A hash map for pointer keys and values with an STL-like interface.
template<class Key, class Value, class AllocationPolicy>
class TemplateHashMap: private TemplateHashMapImpl<AllocationPolicy> {
public:
STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT
STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT
struct value_type {
Key* first;
Value* second;
};
class Iterator {
public:
Iterator& operator++() {
entry_ = map_->Next(entry_);
return *this;
}
value_type* operator->() { return reinterpret_cast<value_type*>(entry_); }
bool operator!=(const Iterator& other) { return entry_ != other.entry_; }
private:
Iterator(const TemplateHashMapImpl<AllocationPolicy>* map,
typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry) :
map_(map), entry_(entry) { }
const TemplateHashMapImpl<AllocationPolicy>* map_;
typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry_;
friend class TemplateHashMap;
};
TemplateHashMap(
typename TemplateHashMapImpl<AllocationPolicy>::MatchFun match,
AllocationPolicy allocator = AllocationPolicy())
: TemplateHashMapImpl<AllocationPolicy>(
match,
TemplateHashMapImpl<AllocationPolicy>::kDefaultHashMapCapacity,
allocator) { }
Iterator begin() const { return Iterator(this, this->Start()); }
Iterator end() const { return Iterator(this, NULL); }
Iterator find(Key* key, bool insert = false,
AllocationPolicy allocator = AllocationPolicy()) {
if (insert) {
return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator));
}
return Iterator(this, this->Lookup(key, key->Hash()));
}
};
} // namespace internal
} // namespace v8
#endif // V8_HASHMAP_H_