// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/crankshaft/hydrogen-range-analysis.h"
namespace v8 {
namespace internal {
class Pending {
public:
Pending(HBasicBlock* block, int last_changed_range)
: block_(block), last_changed_range_(last_changed_range) {}
HBasicBlock* block() const { return block_; }
int last_changed_range() const { return last_changed_range_; }
private:
HBasicBlock* block_;
int last_changed_range_;
};
void HRangeAnalysisPhase::TraceRange(const char* msg, ...) {
if (FLAG_trace_range) {
va_list arguments;
va_start(arguments, msg);
base::OS::VPrint(msg, arguments);
va_end(arguments);
}
}
void HRangeAnalysisPhase::Run() {
HBasicBlock* block(graph()->entry_block());
ZoneList<Pending> stack(graph()->blocks()->length(), zone());
while (block != NULL) {
TraceRange("Analyzing block B%d\n", block->block_id());
// Infer range based on control flow.
if (block->predecessors()->length() == 1) {
HBasicBlock* pred = block->predecessors()->first();
if (pred->end()->IsCompareNumericAndBranch()) {
InferControlFlowRange(HCompareNumericAndBranch::cast(pred->end()),
block);
}
}
// Process phi instructions.
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
InferRange(phi);
}
// Go through all instructions of the current block.
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HValue* value = it.Current();
InferRange(value);
// Compute the bailout-on-minus-zero flag.
if (value->IsChange()) {
HChange* instr = HChange::cast(value);
// Propagate flags for negative zero checks upwards from conversions
// int32-to-tagged and int32-to-double.
Representation from = instr->value()->representation();
DCHECK(from.Equals(instr->from()));
if (from.IsSmiOrInteger32()) {
DCHECK(instr->to().IsTagged() ||
instr->to().IsDouble() ||
instr->to().IsSmiOrInteger32());
PropagateMinusZeroChecks(instr->value());
}
} else if (value->IsCompareMinusZeroAndBranch()) {
HCompareMinusZeroAndBranch* instr =
HCompareMinusZeroAndBranch::cast(value);
if (instr->value()->representation().IsSmiOrInteger32()) {
PropagateMinusZeroChecks(instr->value());
}
}
}
// Continue analysis in all dominated blocks.
const ZoneList<HBasicBlock*>* dominated_blocks(block->dominated_blocks());
if (!dominated_blocks->is_empty()) {
// Continue with first dominated block, and push the
// remaining blocks on the stack (in reverse order).
int last_changed_range = changed_ranges_.length();
for (int i = dominated_blocks->length() - 1; i > 0; --i) {
stack.Add(Pending(dominated_blocks->at(i), last_changed_range), zone());
}
block = dominated_blocks->at(0);
} else if (!stack.is_empty()) {
// Pop next pending block from stack.
Pending pending = stack.RemoveLast();
RollBackTo(pending.last_changed_range());
block = pending.block();
} else {
// All blocks done.
block = NULL;
}
}
// The ranges are not valid anymore due to SSI vs. SSA!
PoisonRanges();
}
void HRangeAnalysisPhase::PoisonRanges() {
#ifdef DEBUG
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instr = it.Current();
if (instr->HasRange()) instr->PoisonRange();
}
}
#endif
}
void HRangeAnalysisPhase::InferControlFlowRange(HCompareNumericAndBranch* test,
HBasicBlock* dest) {
DCHECK((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest));
if (test->representation().IsSmiOrInteger32()) {
Token::Value op = test->token();
if (test->SecondSuccessor() == dest) {
op = Token::NegateCompareOp(op);
}
Token::Value inverted_op = Token::ReverseCompareOp(op);
UpdateControlFlowRange(op, test->left(), test->right());
UpdateControlFlowRange(inverted_op, test->right(), test->left());
}
}
// We know that value [op] other. Use this information to update the range on
// value.
void HRangeAnalysisPhase::UpdateControlFlowRange(Token::Value op,
HValue* value,
HValue* other) {
Range temp_range;
Range* range = other->range() != NULL ? other->range() : &temp_range;
Range* new_range = NULL;
TraceRange("Control flow range infer %d %s %d\n",
value->id(),
Token::Name(op),
other->id());
if (op == Token::EQ || op == Token::EQ_STRICT) {
// The same range has to apply for value.
new_range = range->Copy(graph()->zone());
} else if (op == Token::LT || op == Token::LTE) {
new_range = range->CopyClearLower(graph()->zone());
if (op == Token::LT) {
new_range->AddConstant(-1);
}
} else if (op == Token::GT || op == Token::GTE) {
new_range = range->CopyClearUpper(graph()->zone());
if (op == Token::GT) {
new_range->AddConstant(1);
}
}
if (new_range != NULL && !new_range->IsMostGeneric()) {
AddRange(value, new_range);
}
}
void HRangeAnalysisPhase::InferRange(HValue* value) {
DCHECK(!value->HasRange());
if (!value->representation().IsNone()) {
value->ComputeInitialRange(graph()->zone());
Range* range = value->range();
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
value->id(),
value->Mnemonic(),
range->lower(),
range->upper());
}
}
void HRangeAnalysisPhase::RollBackTo(int index) {
DCHECK(index <= changed_ranges_.length());
for (int i = index; i < changed_ranges_.length(); ++i) {
changed_ranges_[i]->RemoveLastAddedRange();
}
changed_ranges_.Rewind(index);
}
void HRangeAnalysisPhase::AddRange(HValue* value, Range* range) {
Range* original_range = value->range();
value->AddNewRange(range, graph()->zone());
changed_ranges_.Add(value, zone());
Range* new_range = value->range();
TraceRange("Updated range of %d set to [%d,%d]\n",
value->id(),
new_range->lower(),
new_range->upper());
if (original_range != NULL) {
TraceRange("Original range was [%d,%d]\n",
original_range->lower(),
original_range->upper());
}
TraceRange("New information was [%d,%d]\n",
range->lower(),
range->upper());
}
void HRangeAnalysisPhase::PropagateMinusZeroChecks(HValue* value) {
DCHECK(worklist_.is_empty());
DCHECK(in_worklist_.IsEmpty());
AddToWorklist(value);
while (!worklist_.is_empty()) {
value = worklist_.RemoveLast();
if (value->IsPhi()) {
// For phis, we must propagate the check to all of its inputs.
HPhi* phi = HPhi::cast(value);
for (int i = 0; i < phi->OperandCount(); ++i) {
AddToWorklist(phi->OperandAt(i));
}
} else if (value->IsUnaryMathOperation()) {
HUnaryMathOperation* instr = HUnaryMathOperation::cast(value);
if (instr->representation().IsSmiOrInteger32() &&
!instr->value()->representation().Equals(instr->representation())) {
if (instr->value()->range() == NULL ||
instr->value()->range()->CanBeMinusZero()) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
}
}
if (instr->RequiredInputRepresentation(0).IsSmiOrInteger32() &&
instr->representation().Equals(
instr->RequiredInputRepresentation(0))) {
AddToWorklist(instr->value());
}
} else if (value->IsChange()) {
HChange* instr = HChange::cast(value);
if (!instr->from().IsSmiOrInteger32() &&
!instr->CanTruncateToInt32() &&
(instr->value()->range() == NULL ||
instr->value()->range()->CanBeMinusZero())) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
}
} else if (value->IsForceRepresentation()) {
HForceRepresentation* instr = HForceRepresentation::cast(value);
AddToWorklist(instr->value());
} else if (value->IsMod()) {
HMod* instr = HMod::cast(value);
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
AddToWorklist(instr->left());
}
} else if (value->IsDiv() || value->IsMul()) {
HBinaryOperation* instr = HBinaryOperation::cast(value);
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
}
AddToWorklist(instr->right());
AddToWorklist(instr->left());
} else if (value->IsMathFloorOfDiv()) {
HMathFloorOfDiv* instr = HMathFloorOfDiv::cast(value);
instr->SetFlag(HValue::kBailoutOnMinusZero);
} else if (value->IsAdd() || value->IsSub()) {
HBinaryOperation* instr = HBinaryOperation::cast(value);
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
// Propagate to the left argument. If the left argument cannot be -0,
// then the result of the add/sub operation cannot be either.
AddToWorklist(instr->left());
}
} else if (value->IsMathMinMax()) {
HMathMinMax* instr = HMathMinMax::cast(value);
AddToWorklist(instr->right());
AddToWorklist(instr->left());
}
}
in_worklist_.Clear();
DCHECK(in_worklist_.IsEmpty());
DCHECK(worklist_.is_empty());
}
} // namespace internal
} // namespace v8