/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRandom.h"
#include "SkReader32.h"
#include "SkWriter32.h"
#include "Test.h"
static void check_contents(skiatest::Reporter* reporter, const SkWriter32& writer,
const void* expected, size_t size) {
SkAutoSMalloc<256> storage(size);
REPORTER_ASSERT(reporter, writer.bytesWritten() == size);
writer.flatten(storage.get());
REPORTER_ASSERT(reporter, !memcmp(storage.get(), expected, size));
}
static void test_reserve(skiatest::Reporter* reporter) {
// There used to be a bug where we'd assert your first reservation had to
// fit in external storage if you used it. This would crash in debug mode.
uint8_t storage[4];
SkWriter32 writer(storage, sizeof(storage));
writer.reserve(40);
}
static void test_string_null(skiatest::Reporter* reporter) {
uint8_t storage[8];
SkWriter32 writer(storage, sizeof(storage));
// Can we write nullptr?
writer.writeString(nullptr);
const int32_t expected[] = { 0x0, 0x0 };
check_contents(reporter, writer, expected, sizeof(expected));
}
static void test_rewind(skiatest::Reporter* reporter) {
SkSWriter32<32> writer;
int32_t array[3] = { 1, 2, 4 };
REPORTER_ASSERT(reporter, 0 == writer.bytesWritten());
for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
writer.writeInt(array[i]);
}
check_contents(reporter, writer, array, sizeof(array));
writer.rewindToOffset(2*sizeof(int32_t));
REPORTER_ASSERT(reporter, sizeof(array) - 4 == writer.bytesWritten());
writer.writeInt(3);
REPORTER_ASSERT(reporter, sizeof(array) == writer.bytesWritten());
array[2] = 3;
check_contents(reporter, writer, array, sizeof(array));
// test rewinding past allocated chunks. This used to crash because we
// didn't truncate our link-list after freeing trailing blocks
{
SkWriter32 writer;
for (int i = 0; i < 100; ++i) {
writer.writeInt(i);
}
REPORTER_ASSERT(reporter, 100*4 == writer.bytesWritten());
for (int j = 100*4; j >= 0; j -= 16) {
writer.rewindToOffset(j);
}
REPORTER_ASSERT(reporter, writer.bytesWritten() < 16);
}
}
static void test_ptr(skiatest::Reporter* reporter) {
SkSWriter32<32> writer;
void* p0 = reporter;
void* p1 = &writer;
// try writing ptrs where at least one of them may be at a non-multiple of
// 8 boundary, to confirm this works on 64bit machines.
writer.writePtr(p0);
writer.write8(0x33);
writer.writePtr(p1);
writer.write8(0x66);
size_t size = writer.bytesWritten();
REPORTER_ASSERT(reporter, 2 * sizeof(void*) + 2 * sizeof(int32_t));
char buffer[32];
SkASSERT(sizeof(buffer) >= size);
writer.flatten(buffer);
SkReader32 reader(buffer, size);
REPORTER_ASSERT(reporter, reader.readPtr() == p0);
REPORTER_ASSERT(reporter, reader.readInt() == 0x33);
REPORTER_ASSERT(reporter, reader.readPtr() == p1);
REPORTER_ASSERT(reporter, reader.readInt() == 0x66);
}
static void test1(skiatest::Reporter* reporter, SkWriter32* writer) {
const uint32_t data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
REPORTER_ASSERT(reporter, i*4 == writer->bytesWritten());
writer->write32(data[i]);
REPORTER_ASSERT(reporter, data[i] == writer->readTAt<uint32_t>(i * 4));
}
char buffer[sizeof(data)];
REPORTER_ASSERT(reporter, sizeof(buffer) == writer->bytesWritten());
writer->flatten(buffer);
REPORTER_ASSERT(reporter, !memcmp(data, buffer, sizeof(buffer)));
}
static void test2(skiatest::Reporter* reporter, SkWriter32* writer) {
static const char gStr[] = "abcdefghimjklmnopqrstuvwxyz";
size_t i;
size_t len = 0;
for (i = 0; i <= 26; ++i) {
len += SkWriter32::WriteStringSize(gStr, i);
writer->writeString(gStr, i);
}
REPORTER_ASSERT(reporter, writer->bytesWritten() == len);
SkAutoMalloc storage(len);
writer->flatten(storage.get());
SkReader32 reader;
reader.setMemory(storage.get(), len);
for (i = 0; i <= 26; ++i) {
REPORTER_ASSERT(reporter, !reader.eof());
const char* str = reader.readString(&len);
REPORTER_ASSERT(reporter, i == len);
REPORTER_ASSERT(reporter, strlen(str) == len);
REPORTER_ASSERT(reporter, !memcmp(str, gStr, len));
// Ensure that the align4 of the string is padded with zeroes.
size_t alignedSize = SkAlign4(len + 1);
for (size_t j = len; j < alignedSize; j++) {
REPORTER_ASSERT(reporter, 0 == str[j]);
}
}
REPORTER_ASSERT(reporter, reader.eof());
}
static void testWritePad(skiatest::Reporter* reporter, SkWriter32* writer) {
// Create some random data to write.
const size_t dataSize = 10;
SkAutoTMalloc<uint32_t> originalData(dataSize);
{
SkRandom rand(0);
for (size_t i = 0; i < dataSize; i++) {
originalData[(int) i] = rand.nextU();
}
// Write the random data to the writer at different lengths for
// different alignments.
for (size_t len = 0; len < dataSize; len++) {
writer->writePad(originalData.get(), len);
}
}
size_t totalBytes = writer->bytesWritten();
SkAutoMalloc readStorage(totalBytes);
writer->flatten(readStorage.get());
SkReader32 reader;
reader.setMemory(readStorage.get(), totalBytes);
for (size_t len = 0; len < dataSize; len++) {
const char* readPtr = static_cast<const char*>(reader.skip(len));
// Ensure that the data read is the same as what was written.
REPORTER_ASSERT(reporter, memcmp(readPtr, originalData.get(), len) == 0);
// Ensure that the rest is padded with zeroes.
const char* stop = readPtr + SkAlign4(len);
readPtr += len;
while (readPtr < stop) {
REPORTER_ASSERT(reporter, *readPtr++ == 0);
}
}
}
static void testOverwriteT(skiatest::Reporter* reporter, SkWriter32* writer) {
const size_t padding = 64;
const uint32_t uint1 = 0x12345678;
const uint32_t uint2 = 0x98765432;
const SkScalar scalar1 = 1234.5678f;
const SkScalar scalar2 = 9876.5432f;
const SkRect rect1 = SkRect::MakeXYWH(1, 2, 3, 4);
const SkRect rect2 = SkRect::MakeXYWH(5, 6, 7, 8);
for (size_t i = 0; i < (padding / 4); ++i) {
writer->write32(0);
}
writer->write32(uint1);
writer->writeRect(rect1);
writer->writeScalar(scalar1);
for (size_t i = 0; i < (padding / 4); ++i) {
writer->write32(0);
}
REPORTER_ASSERT(reporter, writer->readTAt<uint32_t>(padding) == uint1);
REPORTER_ASSERT(reporter, writer->readTAt<SkRect>(padding + sizeof(uint32_t)) == rect1);
REPORTER_ASSERT(reporter, writer->readTAt<SkScalar>(
padding + sizeof(uint32_t) + sizeof(SkRect)) == scalar1);
writer->overwriteTAt(padding, uint2);
writer->overwriteTAt(padding + sizeof(uint32_t), rect2);
writer->overwriteTAt(padding + sizeof(uint32_t) + sizeof(SkRect), scalar2);
REPORTER_ASSERT(reporter, writer->readTAt<uint32_t>(padding) == uint2);
REPORTER_ASSERT(reporter, writer->readTAt<SkRect>(padding + sizeof(uint32_t)) == rect2);
REPORTER_ASSERT(reporter, writer->readTAt<SkScalar>(
padding + sizeof(uint32_t) + sizeof(SkRect)) == scalar2);
}
DEF_TEST(Writer32_dynamic, reporter) {
SkWriter32 writer;
test1(reporter, &writer);
writer.reset();
test2(reporter, &writer);
writer.reset();
testWritePad(reporter, &writer);
writer.reset();
testOverwriteT(reporter, &writer);
}
DEF_TEST(Writer32_contiguous, reporter) {
uint32_t storage[256];
SkWriter32 writer;
writer.reset(storage, sizeof(storage));
// This write is small enough to fit in storage, so it's contiguous.
test1(reporter, &writer);
REPORTER_ASSERT(reporter, writer.contiguousArray() != nullptr);
// Everything other aspect of contiguous/non-contiguous is an
// implementation detail, not part of the public contract for
// SkWriter32, and so not tested here.
}
DEF_TEST(Writer32_small, reporter) {
SkSWriter32<8 * sizeof(intptr_t)> writer;
test1(reporter, &writer);
writer.reset(); // should just rewind our storage
test2(reporter, &writer);
writer.reset();
testWritePad(reporter, &writer);
writer.reset();
testOverwriteT(reporter, &writer);
}
DEF_TEST(Writer32_large, reporter) {
SkSWriter32<1024 * sizeof(intptr_t)> writer;
test1(reporter, &writer);
writer.reset(); // should just rewind our storage
test2(reporter, &writer);
writer.reset();
testWritePad(reporter, &writer);
writer.reset();
testOverwriteT(reporter, &writer);
}
DEF_TEST(Writer32_misc, reporter) {
test_reserve(reporter);
test_string_null(reporter);
test_ptr(reporter);
test_rewind(reporter);
}