/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkOpCoincidence.h"
#include "SkOpContour.h"
#include "SkOpSegment.h"
#include "SkPathWriter.h"
bool SkOpPtT::alias() const {
return this->span()->ptT() != this;
}
bool SkOpPtT::collapsed(const SkOpPtT* check) const {
if (fPt != check->fPt) {
return false;
}
SkASSERT(this != check);
const SkOpSegment* segment = this->segment();
SkASSERT(segment == check->segment());
return segment->collapsed();
}
bool SkOpPtT::contains(const SkOpPtT* check) const {
SkASSERT(this != check);
const SkOpPtT* ptT = this;
const SkOpPtT* stopPtT = ptT;
while ((ptT = ptT->next()) != stopPtT) {
if (ptT == check) {
return true;
}
}
return false;
}
SkOpPtT* SkOpPtT::contains(const SkOpSegment* check) {
SkASSERT(this->segment() != check);
SkOpPtT* ptT = this;
const SkOpPtT* stopPtT = ptT;
while ((ptT = ptT->next()) != stopPtT) {
if (ptT->segment() == check) {
return ptT;
}
}
return nullptr;
}
SkOpContour* SkOpPtT::contour() const {
return segment()->contour();
}
SkOpPtT* SkOpPtT::doppelganger() {
SkASSERT(fDeleted);
SkOpPtT* ptT = fNext;
while (ptT->fDeleted) {
ptT = ptT->fNext;
}
const SkOpPtT* stopPtT = ptT;
do {
if (ptT->fSpan == fSpan) {
return ptT;
}
ptT = ptT->fNext;
} while (stopPtT != ptT);
SkASSERT(0);
return nullptr;
}
SkOpPtT* SkOpPtT::find(SkOpSegment* segment) {
SkOpPtT* ptT = this;
const SkOpPtT* stopPtT = ptT;
do {
if (ptT->segment() == segment) {
return ptT;
}
ptT = ptT->fNext;
} while (stopPtT != ptT);
SkASSERT(0);
return nullptr;
}
SkOpGlobalState* SkOpPtT::globalState() const {
return contour()->globalState();
}
void SkOpPtT::init(SkOpSpanBase* span, double t, const SkPoint& pt, bool duplicate) {
fT = t;
fPt = pt;
fSpan = span;
fNext = this;
fDuplicatePt = duplicate;
fDeleted = false;
SkDEBUGCODE(fID = span->globalState()->nextPtTID());
}
bool SkOpPtT::onEnd() const {
const SkOpSpanBase* span = this->span();
if (span->ptT() != this) {
return false;
}
const SkOpSegment* segment = this->segment();
return span == segment->head() || span == segment->tail();
}
SkOpPtT* SkOpPtT::prev() {
SkOpPtT* result = this;
SkOpPtT* next = this;
while ((next = next->fNext) != this) {
result = next;
}
SkASSERT(result->fNext == this);
return result;
}
SkOpPtT* SkOpPtT::remove() {
SkOpPtT* prev = this;
do {
SkOpPtT* next = prev->fNext;
if (next == this) {
prev->removeNext(this);
SkASSERT(prev->fNext != prev);
fDeleted = true;
return prev;
}
prev = next;
} while (prev != this);
SkASSERT(0);
return nullptr;
}
void SkOpPtT::removeNext(SkOpPtT* kept) {
SkASSERT(this->fNext);
SkOpPtT* next = this->fNext;
SkASSERT(this != next->fNext);
this->fNext = next->fNext;
SkOpSpanBase* span = next->span();
next->setDeleted();
if (span->ptT() == next) {
span->upCast()->detach(kept);
}
}
const SkOpSegment* SkOpPtT::segment() const {
return span()->segment();
}
SkOpSegment* SkOpPtT::segment() {
return span()->segment();
}
void SkOpSpanBase::align() {
if (this->fAligned) {
return;
}
SkASSERT(!zero_or_one(this->fPtT.fT));
SkASSERT(this->fPtT.next());
// if a linked pt/t pair has a t of zero or one, use it as the base for alignment
SkOpPtT* ptT = &this->fPtT, * stopPtT = ptT;
while ((ptT = ptT->next()) != stopPtT) {
if (zero_or_one(ptT->fT)) {
SkOpSegment* segment = ptT->segment();
SkASSERT(this->segment() != segment);
SkASSERT(segment->head()->ptT() == ptT || segment->tail()->ptT() == ptT);
if (ptT->fT) {
segment->tail()->alignEnd(1, segment->lastPt());
} else {
segment->head()->alignEnd(0, segment->pts()[0]);
}
return;
}
}
alignInner();
this->fAligned = true;
}
// FIXME: delete spans that collapse
// delete segments that collapse
// delete contours that collapse
void SkOpSpanBase::alignEnd(double t, const SkPoint& pt) {
SkASSERT(zero_or_one(t));
SkOpSegment* segment = this->segment();
SkASSERT(t ? segment->lastPt() == pt : segment->pts()[0] == pt);
alignInner();
*segment->writablePt(!!t) = pt;
SkOpPtT* ptT = &this->fPtT;
SkASSERT(t == ptT->fT);
SkASSERT(pt == ptT->fPt);
SkOpPtT* test = ptT, * stopPtT = ptT;
while ((test = test->next()) != stopPtT) {
SkOpSegment* other = test->segment();
if (other == this->segment()) {
continue;
}
if (!zero_or_one(test->fT)) {
continue;
}
*other->writablePt(!!test->fT) = pt;
}
this->fAligned = true;
}
void SkOpSpanBase::alignInner() {
// force the spans to share points and t values
SkOpPtT* ptT = &this->fPtT, * stopPtT = ptT;
const SkPoint& pt = ptT->fPt;
do {
ptT->fPt = pt;
const SkOpSpanBase* span = ptT->span();
SkOpPtT* test = ptT;
do {
SkOpPtT* prev = test;
if ((test = test->next()) == stopPtT) {
break;
}
if (span == test->span() && !span->segment()->ptsDisjoint(*ptT, *test)) {
// omit aliases that alignment makes redundant
if ((!ptT->alias() || test->alias()) && (ptT->onEnd() || !test->onEnd())) {
SkASSERT(test->alias());
prev->removeNext(ptT);
test = prev;
} else {
SkASSERT(ptT->alias());
stopPtT = ptT = ptT->remove();
break;
}
}
} while (true);
} while ((ptT = ptT->next()) != stopPtT);
}
bool SkOpSpanBase::contains(const SkOpSpanBase* span) const {
const SkOpPtT* start = &fPtT;
const SkOpPtT* check = &span->fPtT;
SkASSERT(start != check);
const SkOpPtT* walk = start;
while ((walk = walk->next()) != start) {
if (walk == check) {
return true;
}
}
return false;
}
SkOpPtT* SkOpSpanBase::contains(const SkOpSegment* segment) {
SkOpPtT* start = &fPtT;
SkOpPtT* walk = start;
while ((walk = walk->next()) != start) {
if (walk->segment() == segment) {
return walk;
}
}
return nullptr;
}
bool SkOpSpanBase::containsCoinEnd(const SkOpSegment* segment) const {
SkASSERT(this->segment() != segment);
const SkOpSpanBase* next = this;
while ((next = next->fCoinEnd) != this) {
if (next->segment() == segment) {
return true;
}
}
return false;
}
SkOpContour* SkOpSpanBase::contour() const {
return segment()->contour();
}
SkOpGlobalState* SkOpSpanBase::globalState() const {
return contour()->globalState();
}
void SkOpSpanBase::initBase(SkOpSegment* segment, SkOpSpan* prev, double t, const SkPoint& pt) {
fSegment = segment;
fPtT.init(this, t, pt, false);
fCoinEnd = this;
fFromAngle = nullptr;
fPrev = prev;
fSpanAdds = 0;
fAligned = true;
fChased = false;
SkDEBUGCODE(fCount = 1);
SkDEBUGCODE(fID = globalState()->nextSpanID());
}
// this pair of spans share a common t value or point; merge them and eliminate duplicates
// this does not compute the best t or pt value; this merely moves all data into a single list
void SkOpSpanBase::merge(SkOpSpan* span) {
SkOpPtT* spanPtT = span->ptT();
SkASSERT(this->t() != spanPtT->fT);
SkASSERT(!zero_or_one(spanPtT->fT));
span->detach(this->ptT());
SkOpPtT* remainder = spanPtT->next();
ptT()->insert(spanPtT);
while (remainder != spanPtT) {
SkOpPtT* next = remainder->next();
SkOpPtT* compare = spanPtT->next();
while (compare != spanPtT) {
SkOpPtT* nextC = compare->next();
if (nextC->span() == remainder->span() && nextC->fT == remainder->fT) {
goto tryNextRemainder;
}
compare = nextC;
}
spanPtT->insert(remainder);
tryNextRemainder:
remainder = next;
}
fSpanAdds += span->fSpanAdds;
}
int SkOpSpan::computeWindSum() {
SkOpGlobalState* globals = this->globalState();
SkOpContour* contourHead = globals->contourHead();
int windTry = 0;
while (!this->sortableTop(contourHead) && ++windTry < SkOpGlobalState::kMaxWindingTries) {
;
}
return this->windSum();
}
bool SkOpSpan::containsCoincidence(const SkOpSegment* segment) const {
SkASSERT(this->segment() != segment);
const SkOpSpan* next = fCoincident;
do {
if (next->segment() == segment) {
return true;
}
} while ((next = next->fCoincident) != this);
return false;
}
void SkOpSpan::detach(SkOpPtT* kept) {
SkASSERT(!final());
SkOpSpan* prev = this->prev();
SkASSERT(prev);
SkOpSpanBase* next = this->next();
SkASSERT(next);
prev->setNext(next);
next->setPrev(prev);
this->segment()->detach(this);
SkOpCoincidence* coincidence = this->globalState()->coincidence();
if (coincidence) {
coincidence->fixUp(this->ptT(), kept);
}
this->ptT()->setDeleted();
}
void SkOpSpan::init(SkOpSegment* segment, SkOpSpan* prev, double t, const SkPoint& pt) {
SkASSERT(t != 1);
initBase(segment, prev, t, pt);
fCoincident = this;
fToAngle = nullptr;
fWindSum = fOppSum = SK_MinS32;
fWindValue = 1;
fOppValue = 0;
fTopTTry = 0;
fChased = fDone = false;
segment->bumpCount();
fAlreadyAdded = false;
}
void SkOpSpan::setOppSum(int oppSum) {
SkASSERT(!final());
if (fOppSum != SK_MinS32 && fOppSum != oppSum) {
this->globalState()->setWindingFailed();
return;
}
SkASSERT(!DEBUG_LIMIT_WIND_SUM || SkTAbs(oppSum) <= DEBUG_LIMIT_WIND_SUM);
fOppSum = oppSum;
}
void SkOpSpan::setWindSum(int windSum) {
SkASSERT(!final());
if (fWindSum != SK_MinS32 && fWindSum != windSum) {
this->globalState()->setWindingFailed();
return;
}
SkASSERT(!DEBUG_LIMIT_WIND_SUM || SkTAbs(windSum) <= DEBUG_LIMIT_WIND_SUM);
fWindSum = windSum;
}