/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAALinearizingConvexPathRenderer.h"
#include "GrAAConvexTessellator.h"
#include "GrBatchFlushState.h"
#include "GrBatchTest.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrGeometryProcessor.h"
#include "GrInvariantOutput.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrPipelineBuilder.h"
#include "GrStrokeInfo.h"
#include "SkGeometry.h"
#include "SkString.h"
#include "SkTraceEvent.h"
#include "SkPathPriv.h"
#include "batches/GrVertexBatch.h"
#include "glsl/GrGLSLGeometryProcessor.h"
static const int DEFAULT_BUFFER_SIZE = 100;
// The thicker the stroke, the harder it is to produce high-quality results using tessellation. For
// the time being, we simply drop back to software rendering above this stroke width.
static const SkScalar kMaxStrokeWidth = 20.0;
GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() {
}
///////////////////////////////////////////////////////////////////////////////
bool GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
if (!args.fAntiAlias) {
return false;
}
if (args.fPath->isInverseFillType()) {
return false;
}
if (!args.fPath->isConvex()) {
return false;
}
if (args.fStroke->getStyle() == SkStrokeRec::kStroke_Style) {
if (!args.fViewMatrix->isSimilarity()) {
return false;
}
SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * args.fStroke->getWidth();
return strokeWidth >= 1.0f && strokeWidth <= kMaxStrokeWidth && !args.fStroke->isDashed() &&
SkPathPriv::IsClosedSingleContour(*args.fPath) &&
args.fStroke->getJoin() != SkPaint::Join::kRound_Join;
}
return args.fStroke->getStyle() == SkStrokeRec::kFill_Style;
}
// extract the result vertices and indices from the GrAAConvexTessellator
static void extract_verts(const GrAAConvexTessellator& tess,
void* vertices,
size_t vertexStride,
GrColor color,
uint16_t firstIndex,
uint16_t* idxs,
bool tweakAlphaForCoverage) {
intptr_t verts = reinterpret_cast<intptr_t>(vertices);
for (int i = 0; i < tess.numPts(); ++i) {
*((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i);
}
// Make 'verts' point to the colors
verts += sizeof(SkPoint);
for (int i = 0; i < tess.numPts(); ++i) {
if (tweakAlphaForCoverage) {
SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255);
unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i));
GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor;
} else {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
*reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) =
tess.coverage(i);
}
}
for (int i = 0; i < tess.numIndices(); ++i) {
idxs[i] = tess.index(i) + firstIndex;
}
}
static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage,
const SkMatrix& viewMatrix,
bool usesLocalCoords,
bool coverageIgnored) {
using namespace GrDefaultGeoProcFactory;
Color color(Color::kAttribute_Type);
Coverage::Type coverageType;
// TODO remove coverage if coverage is ignored
/*if (coverageIgnored) {
coverageType = Coverage::kNone_Type;
} else*/ if (tweakAlphaForCoverage) {
coverageType = Coverage::kSolid_Type;
} else {
coverageType = Coverage::kAttribute_Type;
}
Coverage coverage(coverageType);
LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type :
LocalCoords::kUnused_Type);
return CreateForDeviceSpace(color, coverage, localCoords, viewMatrix);
}
class AAFlatteningConvexPathBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
GrColor fColor;
SkMatrix fViewMatrix;
SkPath fPath;
SkScalar fStrokeWidth;
SkPaint::Join fJoin;
SkScalar fMiterLimit;
};
static GrDrawBatch* Create(const Geometry& geometry) {
return new AAFlatteningConvexPathBatch(geometry);
}
const char* name() const override { return "AAConvexBatch"; }
void computePipelineOptimizations(GrInitInvariantOutput* color,
GrInitInvariantOutput* coverage,
GrBatchToXPOverrides* overrides) const override {
// When this is called on a batch, there is only one geometry bundle
color->setKnownFourComponents(fGeoData[0].fColor);
coverage->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
// Handle any color overrides
if (!overrides.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
overrides.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !overrides.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = overrides.readsLocalCoords();
fBatch.fCoverageIgnored = !overrides.readsCoverage();
fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks();
fBatch.fCanTweakAlphaForCoverage = overrides.canTweakAlphaForCoverage();
}
void draw(GrVertexBatch::Target* target, const GrPipeline* pipeline, int vertexCount,
size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) const {
if (vertexCount == 0 || indexCount == 0) {
return;
}
const GrVertexBuffer* vertexBuffer;
GrVertices info;
int firstVertex;
void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer,
&firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
memcpy(verts, vertices, vertexCount * vertexStride);
const GrIndexBuffer* indexBuffer;
int firstIndex;
uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
if (!idxs) {
SkDebugf("Could not allocate indices\n");
return;
}
memcpy(idxs, indices, indexCount * sizeof(uint16_t));
info.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex,
firstIndex, vertexCount, indexCount);
target->draw(info);
}
void onPrepareDraws(Target* target) const override {
bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage();
// Setup GrGeometryProcessor
SkAutoTUnref<const GrGeometryProcessor> gp(create_fill_gp(canTweakAlphaForCoverage,
this->viewMatrix(),
this->usesLocalCoords(),
this->coverageIgnored()));
if (!gp) {
SkDebugf("Couldn't create a GrGeometryProcessor\n");
return;
}
target->initDraw(gp, this->pipeline());
size_t vertexStride = gp->getVertexStride();
SkASSERT(canTweakAlphaForCoverage ?
vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) :
vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr));
int instanceCount = fGeoData.count();
int vertexCount = 0;
int indexCount = 0;
int maxVertices = DEFAULT_BUFFER_SIZE;
int maxIndices = DEFAULT_BUFFER_SIZE;
uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride);
uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t));
for (int i = 0; i < instanceCount; i++) {
const Geometry& args = fGeoData[i];
GrAAConvexTessellator tess(args.fStrokeWidth, args.fJoin, args.fMiterLimit);
if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
continue;
}
int currentIndices = tess.numIndices();
SkASSERT(currentIndices <= UINT16_MAX);
if (indexCount + currentIndices > UINT16_MAX) {
// if we added the current instance, we would overflow the indices we can store in a
// uint16_t. Draw what we've got so far and reset.
this->draw(target, this->pipeline(), vertexCount, vertexStride, vertices,
indexCount, indices);
vertexCount = 0;
indexCount = 0;
}
int currentVertices = tess.numPts();
if (vertexCount + currentVertices > maxVertices) {
maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2);
vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride);
}
if (indexCount + currentIndices > maxIndices) {
maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2);
indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t));
}
extract_verts(tess, vertices + vertexStride * vertexCount, vertexStride, args.fColor,
vertexCount, indices + indexCount, canTweakAlphaForCoverage);
vertexCount += currentVertices;
indexCount += currentIndices;
}
this->draw(target, this->pipeline(), vertexCount, vertexStride, vertices, indexCount,
indices);
sk_free(vertices);
sk_free(indices);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
AAFlatteningConvexPathBatch(const Geometry& geometry) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
// compute bounds
fBounds = geometry.fPath.getBounds();
SkScalar w = geometry.fStrokeWidth;
if (w > 0) {
w /= 2;
// If the miter limit is < 1 then we effectively fallback to bevel joins.
if (SkPaint::kMiter_Join == geometry.fJoin && w > 1.f) {
w *= geometry.fMiterLimit;
}
fBounds.outset(w, w);
}
geometry.fViewMatrix.mapRect(&fBounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
AAFlatteningConvexPathBatch* that = t->cast<AAFlatteningConvexPathBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
// In the event of two batches, one who can tweak, one who cannot, we just fall back to
// not tweaking
if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) {
fBatch.fCanTweakAlphaForCoverage = false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool linesOnly() const { return fBatch.fLinesOnly; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
struct BatchTracker {
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
bool fLinesOnly;
bool fCanTweakAlphaForCoverage;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) {
GR_AUDIT_TRAIL_AUTO_FRAME(args.fTarget->getAuditTrail(),
"GrAALinearizingConvexPathRenderer::onDrawPath");
if (args.fPath->isEmpty()) {
return true;
}
AAFlatteningConvexPathBatch::Geometry geometry;
geometry.fColor = args.fColor;
geometry.fViewMatrix = *args.fViewMatrix;
geometry.fPath = *args.fPath;
geometry.fStrokeWidth = args.fStroke->isFillStyle() ? -1.0f : args.fStroke->getWidth();
geometry.fJoin = args.fStroke->isFillStyle() ? SkPaint::Join::kMiter_Join :
args.fStroke->getJoin();
geometry.fMiterLimit = args.fStroke->getMiter();
SkAutoTUnref<GrDrawBatch> batch(AAFlatteningConvexPathBatch::Create(geometry));
args.fTarget->drawBatch(*args.fPipelineBuilder, batch);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
DRAW_BATCH_TEST_DEFINE(AAFlatteningConvexPathBatch) {
AAFlatteningConvexPathBatch::Geometry geometry;
geometry.fColor = GrRandomColor(random);
geometry.fViewMatrix = GrTest::TestMatrixInvertible(random);
geometry.fPath = GrTest::TestPathConvex(random);
return AAFlatteningConvexPathBatch::Create(geometry);
}
#endif