/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrTextureToYUVPlanes.h"
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrYUVEffect.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrPaint.h"
#include "GrTextureProvider.h"
namespace {
using CreateFPProc = const GrFragmentProcessor* (*)(const GrFragmentProcessor*,
SkYUVColorSpace colorSpace);
};
static bool convert_texture(GrTexture* src, GrDrawContext* dst, int dstW, int dstH,
SkYUVColorSpace colorSpace, CreateFPProc proc) {
SkScalar xScale = SkIntToScalar(src->width()) / dstW / src->width();
SkScalar yScale = SkIntToScalar(src->height()) / dstH / src->height();
GrTextureParams::FilterMode filter;
if (dstW == src->width() && dstW == src->height()) {
filter = GrTextureParams::kNone_FilterMode;
} else {
filter = GrTextureParams::kBilerp_FilterMode;
}
SkAutoTUnref<const GrFragmentProcessor> fp(
GrSimpleTextureEffect::Create(src, SkMatrix::MakeScale(xScale, yScale), filter));
if (!fp) {
return false;
}
fp.reset(proc(fp, colorSpace));
if (!fp) {
return false;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
paint.addColorFragmentProcessor(fp);
dst->drawRect(GrClip::WideOpen(), paint, SkMatrix::I(), SkRect::MakeIWH(dstW, dstH));
return true;
}
bool GrTextureToYUVPlanes(GrTexture* texture, const SkISize sizes[3], void* const planes[3],
const size_t rowBytes[3], SkYUVColorSpace colorSpace) {
if (GrContext* context = texture->getContext()) {
// Depending on the relative sizes of the y, u, and v planes we may do 1 to 3 draws/
// readbacks.
SkAutoTUnref<GrTexture> yuvTex;
SkAutoTUnref<GrTexture> yTex;
SkAutoTUnref<GrTexture> uvTex;
SkAutoTUnref<GrTexture> uTex;
SkAutoTUnref<GrTexture> vTex;
GrPixelConfig singleChannelPixelConfig;
if (context->caps()->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) {
singleChannelPixelConfig = kAlpha_8_GrPixelConfig;
} else {
singleChannelPixelConfig = kRGBA_8888_GrPixelConfig;
}
// We issue draw(s) to convert from RGBA to Y, U, and V. All three planes may have different
// sizes however we optimize for two other cases - all planes are the same (1 draw to YUV),
// and U and V are the same but Y differs (2 draws, one for Y, one for UV).
if (sizes[0] == sizes[1] && sizes[1] == sizes[2]) {
GrSurfaceDesc yuvDesc;
yuvDesc.fConfig = kRGBA_8888_GrPixelConfig;
yuvDesc.fFlags = kRenderTarget_GrSurfaceFlag;
yuvDesc.fWidth = sizes[0].fWidth;
yuvDesc.fHeight = sizes[0].fHeight;
yuvTex.reset(context->textureProvider()->createApproxTexture(yuvDesc));
if (!yuvTex) {
return false;
}
} else {
GrSurfaceDesc yDesc;
yDesc.fConfig = singleChannelPixelConfig;
yDesc.fFlags = kRenderTarget_GrSurfaceFlag;
yDesc.fWidth = sizes[0].fWidth;
yDesc.fHeight = sizes[0].fHeight;
yTex.reset(context->textureProvider()->createApproxTexture(yDesc));
if (!yTex) {
return false;
}
if (sizes[1] == sizes[2]) {
GrSurfaceDesc uvDesc;
// TODO: Add support for GL_RG when available.
uvDesc.fConfig = kRGBA_8888_GrPixelConfig;
uvDesc.fFlags = kRenderTarget_GrSurfaceFlag;
uvDesc.fWidth = sizes[1].fWidth;
uvDesc.fHeight = sizes[1].fHeight;
uvTex.reset(context->textureProvider()->createApproxTexture(uvDesc));
if (!uvTex) {
return false;
}
} else {
GrSurfaceDesc uvDesc;
uvDesc.fConfig = singleChannelPixelConfig;
uvDesc.fFlags = kRenderTarget_GrSurfaceFlag;
uvDesc.fWidth = sizes[1].fWidth;
uvDesc.fHeight = sizes[1].fHeight;
uTex.reset(context->textureProvider()->createApproxTexture(uvDesc));
uvDesc.fWidth = sizes[2].fWidth;
uvDesc.fHeight = sizes[2].fHeight;
vTex.reset(context->textureProvider()->createApproxTexture(uvDesc));
if (!uTex || !vTex) {
return false;
}
}
}
// Do all the draws before any readback.
if (yuvTex) {
SkAutoTUnref<GrDrawContext> dc(context->drawContext(yuvTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[0].fWidth, sizes[0].fHeight, colorSpace,
GrYUVEffect::CreateRGBToYUV)) {
return false;
}
} else {
SkASSERT(yTex);
SkAutoTUnref<GrDrawContext> dc(context->drawContext(yTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[0].fWidth, sizes[0].fHeight, colorSpace,
GrYUVEffect::CreateRGBToY)) {
return false;
}
if (uvTex) {
dc.reset(context->drawContext(uvTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[1].fWidth, sizes[1].fHeight,
colorSpace, GrYUVEffect::CreateRGBToUV)) {
return false;
}
} else {
SkASSERT(uTex && vTex);
dc.reset(context->drawContext(uTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[1].fWidth, sizes[1].fHeight,
colorSpace, GrYUVEffect::CreateRGBToU)) {
return false;
}
dc.reset(context->drawContext(vTex->asRenderTarget()));
if (!dc) {
return false;
}
if (!convert_texture(texture, dc, sizes[2].fWidth, sizes[2].fHeight,
colorSpace, GrYUVEffect::CreateRGBToV)) {
return false;
}
}
}
if (yuvTex) {
SkASSERT(sizes[0] == sizes[1] && sizes[1] == sizes[2]);
SkISize yuvSize = sizes[0];
// We have no kRGB_888 pixel format, so readback rgba and then copy three channels.
SkAutoSTMalloc<128 * 128, uint32_t> tempYUV(yuvSize.fWidth * yuvSize.fHeight);
if (!yuvTex->readPixels(0, 0, yuvSize.fWidth, yuvSize.fHeight,
kRGBA_8888_GrPixelConfig, tempYUV.get(), 0)) {
return false;
}
size_t yRowBytes = rowBytes[0] ? rowBytes[0] : yuvSize.fWidth;
size_t uRowBytes = rowBytes[1] ? rowBytes[1] : yuvSize.fWidth;
size_t vRowBytes = rowBytes[2] ? rowBytes[2] : yuvSize.fWidth;
if (yRowBytes < (size_t)yuvSize.fWidth || uRowBytes < (size_t)yuvSize.fWidth ||
vRowBytes < (size_t)yuvSize.fWidth) {
return false;
}
for (int j = 0; j < yuvSize.fHeight; ++j) {
for (int i = 0; i < yuvSize.fWidth; ++i) {
// These writes could surely be made more efficient.
uint32_t y = GrColorUnpackR(tempYUV.get()[j * yuvSize.fWidth + i]);
uint32_t u = GrColorUnpackG(tempYUV.get()[j * yuvSize.fWidth + i]);
uint32_t v = GrColorUnpackB(tempYUV.get()[j * yuvSize.fWidth + i]);
uint8_t* yLoc = ((uint8_t*)planes[0]) + j * yRowBytes + i;
uint8_t* uLoc = ((uint8_t*)planes[1]) + j * uRowBytes + i;
uint8_t* vLoc = ((uint8_t*)planes[2]) + j * vRowBytes + i;
*yLoc = y;
*uLoc = u;
*vLoc = v;
}
}
return true;
} else {
SkASSERT(yTex);
if (!yTex->readPixels(0, 0, sizes[0].fWidth, sizes[0].fHeight,
kAlpha_8_GrPixelConfig, planes[0], rowBytes[0])) {
return false;
}
if (uvTex) {
SkASSERT(sizes[1].fWidth == sizes[2].fWidth);
SkISize uvSize = sizes[1];
// We have no kRG_88 pixel format, so readback rgba and then copy two channels.
SkAutoSTMalloc<128 * 128, uint32_t> tempUV(uvSize.fWidth * uvSize.fHeight);
if (!uvTex->readPixels(0, 0, uvSize.fWidth, uvSize.fHeight,
kRGBA_8888_GrPixelConfig, tempUV.get(), 0)) {
return false;
}
size_t uRowBytes = rowBytes[1] ? rowBytes[1] : uvSize.fWidth;
size_t vRowBytes = rowBytes[2] ? rowBytes[2] : uvSize.fWidth;
if (uRowBytes < (size_t)uvSize.fWidth || vRowBytes < (size_t)uvSize.fWidth) {
return false;
}
for (int j = 0; j < uvSize.fHeight; ++j) {
for (int i = 0; i < uvSize.fWidth; ++i) {
// These writes could surely be made more efficient.
uint32_t u = GrColorUnpackR(tempUV.get()[j * uvSize.fWidth + i]);
uint32_t v = GrColorUnpackG(tempUV.get()[j * uvSize.fWidth + i]);
uint8_t* uLoc = ((uint8_t*)planes[1]) + j * uRowBytes + i;
uint8_t* vLoc = ((uint8_t*)planes[2]) + j * vRowBytes + i;
*uLoc = u;
*vLoc = v;
}
}
return true;
} else {
SkASSERT(uTex && vTex);
if (!uTex->readPixels(0, 0, sizes[1].fWidth, sizes[1].fHeight,
kAlpha_8_GrPixelConfig, planes[1], rowBytes[1])) {
return false;
}
if (!vTex->readPixels(0, 0, sizes[2].fWidth, sizes[2].fHeight,
kAlpha_8_GrPixelConfig, planes[2], rowBytes[2])) {
return false;
}
return true;
}
}
}
return false;
}