/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrContext.h"
#include "GrContextOptions.h"
#include "GrDrawingManager.h"
#include "GrDrawContext.h"
#include "GrLayerCache.h"
#include "GrResourceCache.h"
#include "GrResourceProvider.h"
#include "GrSoftwarePathRenderer.h"
#include "GrSurfacePriv.h"
#include "SkConfig8888.h"
#include "SkGrPriv.h"
#include "batches/GrCopySurfaceBatch.h"
#include "effects/GrConfigConversionEffect.h"
#include "text/GrTextBlobCache.h"
#define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this)
#define ASSERT_SINGLE_OWNER \
SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(&fSingleOwner);)
#define RETURN_IF_ABANDONED if (fDrawingManager->abandoned()) { return; }
#define RETURN_FALSE_IF_ABANDONED if (fDrawingManager->abandoned()) { return false; }
#define RETURN_NULL_IF_ABANDONED if (fDrawingManager->abandoned()) { return nullptr; }
////////////////////////////////////////////////////////////////////////////////
GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext) {
GrContextOptions defaultOptions;
return Create(backend, backendContext, defaultOptions);
}
GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext,
const GrContextOptions& options) {
GrContext* context = new GrContext;
if (context->init(backend, backendContext, options)) {
return context;
} else {
context->unref();
return nullptr;
}
}
static int32_t gNextID = 1;
static int32_t next_id() {
int32_t id;
do {
id = sk_atomic_inc(&gNextID);
} while (id == SK_InvalidGenID);
return id;
}
GrContext::GrContext() : fUniqueID(next_id()) {
fGpu = nullptr;
fCaps = nullptr;
fResourceCache = nullptr;
fResourceProvider = nullptr;
fBatchFontCache = nullptr;
fFlushToReduceCacheSize = false;
}
bool GrContext::init(GrBackend backend, GrBackendContext backendContext,
const GrContextOptions& options) {
ASSERT_SINGLE_OWNER
SkASSERT(!fGpu);
fGpu = GrGpu::Create(backend, backendContext, options, this);
if (!fGpu) {
return false;
}
this->initCommon(options);
return true;
}
void GrContext::initCommon(const GrContextOptions& options) {
ASSERT_SINGLE_OWNER
fCaps = SkRef(fGpu->caps());
fResourceCache = new GrResourceCache(fCaps);
fResourceCache->setOverBudgetCallback(OverBudgetCB, this);
fResourceProvider = new GrResourceProvider(fGpu, fResourceCache, &fSingleOwner);
fLayerCache.reset(new GrLayerCache(this));
fDidTestPMConversions = false;
GrDrawTarget::Options dtOptions;
dtOptions.fClipBatchToBounds = options.fClipBatchToBounds;
dtOptions.fDrawBatchBounds = options.fDrawBatchBounds;
dtOptions.fMaxBatchLookback = options.fMaxBatchLookback;
fDrawingManager.reset(new GrDrawingManager(this, dtOptions, &fSingleOwner));
// GrBatchFontCache will eventually replace GrFontCache
fBatchFontCache = new GrBatchFontCache(this);
fTextBlobCache.reset(new GrTextBlobCache(TextBlobCacheOverBudgetCB, this));
}
GrContext::~GrContext() {
ASSERT_SINGLE_OWNER
if (!fGpu) {
SkASSERT(!fCaps);
return;
}
this->flush();
fDrawingManager->cleanup();
for (int i = 0; i < fCleanUpData.count(); ++i) {
(*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo);
}
delete fResourceProvider;
delete fResourceCache;
delete fBatchFontCache;
fGpu->unref();
fCaps->unref();
}
void GrContext::abandonContext() {
ASSERT_SINGLE_OWNER
fResourceProvider->abandon();
// Need to abandon the drawing manager first so all the render targets
// will be released/forgotten before they too are abandoned.
fDrawingManager->abandon();
// abandon first to so destructors
// don't try to free the resources in the API.
fResourceCache->abandonAll();
fGpu->contextAbandoned();
fBatchFontCache->freeAll();
fLayerCache->freeAll();
fTextBlobCache->freeAll();
}
void GrContext::resetContext(uint32_t state) {
ASSERT_SINGLE_OWNER
fGpu->markContextDirty(state);
}
void GrContext::freeGpuResources() {
ASSERT_SINGLE_OWNER
this->flush();
fBatchFontCache->freeAll();
fLayerCache->freeAll();
fDrawingManager->freeGpuResources();
fResourceCache->purgeAllUnlocked();
}
void GrContext::getResourceCacheUsage(int* resourceCount, size_t* resourceBytes) const {
ASSERT_SINGLE_OWNER
if (resourceCount) {
*resourceCount = fResourceCache->getBudgetedResourceCount();
}
if (resourceBytes) {
*resourceBytes = fResourceCache->getBudgetedResourceBytes();
}
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::OverBudgetCB(void* data) {
SkASSERT(data);
GrContext* context = reinterpret_cast<GrContext*>(data);
// Flush the GrBufferedDrawTarget to possibly free up some textures
context->fFlushToReduceCacheSize = true;
}
void GrContext::TextBlobCacheOverBudgetCB(void* data) {
SkASSERT(data);
// Unlike the GrResourceCache, TextBlobs are drawn at the SkGpuDevice level, therefore they
// cannot use fFlushTorReduceCacheSize because it uses AutoCheckFlush. The solution is to move
// drawText calls to below the GrContext level, but this is not trivial because they call
// drawPath on SkGpuDevice
GrContext* context = reinterpret_cast<GrContext*>(data);
context->flush();
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::flush(int flagsBitfield) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
if (kDiscard_FlushBit & flagsBitfield) {
fDrawingManager->reset();
} else {
fDrawingManager->flush();
}
fResourceCache->notifyFlushOccurred();
fFlushToReduceCacheSize = false;
}
bool sw_convert_to_premul(GrPixelConfig srcConfig, int width, int height, size_t inRowBytes,
const void* inPixels, size_t outRowBytes, void* outPixels) {
SkSrcPixelInfo srcPI;
if (!GrPixelConfig2ColorAndProfileType(srcConfig, &srcPI.fColorType, nullptr)) {
return false;
}
srcPI.fAlphaType = kUnpremul_SkAlphaType;
srcPI.fPixels = inPixels;
srcPI.fRowBytes = inRowBytes;
SkDstPixelInfo dstPI;
dstPI.fColorType = srcPI.fColorType;
dstPI.fAlphaType = kPremul_SkAlphaType;
dstPI.fPixels = outPixels;
dstPI.fRowBytes = outRowBytes;
return srcPI.convertPixelsTo(&dstPI, width, height);
}
bool GrContext::writeSurfacePixels(GrSurface* surface,
int left, int top, int width, int height,
GrPixelConfig srcConfig, const void* buffer, size_t rowBytes,
uint32_t pixelOpsFlags) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
ASSERT_OWNED_RESOURCE(surface);
SkASSERT(surface);
GR_AUDIT_TRAIL_AUTO_FRAME(&fAuditTrail, "GrContext::writeSurfacePixels");
this->testPMConversionsIfNecessary(pixelOpsFlags);
// Trim the params here so that if we wind up making a temporary surface it can be as small as
// necessary and because GrGpu::getWritePixelsInfo requires it.
if (!GrSurfacePriv::AdjustWritePixelParams(surface->width(), surface->height(),
GrBytesPerPixel(srcConfig), &left, &top, &width,
&height, &buffer, &rowBytes)) {
return false;
}
bool applyPremulToSrc = false;
if (kUnpremul_PixelOpsFlag & pixelOpsFlags) {
if (!GrPixelConfigIs8888(srcConfig)) {
return false;
}
applyPremulToSrc = true;
}
GrGpu::DrawPreference drawPreference = GrGpu::kNoDraw_DrawPreference;
// Don't prefer to draw for the conversion (and thereby access a texture from the cache) when
// we've already determined that there isn't a roundtrip preserving conversion processor pair.
if (applyPremulToSrc && !this->didFailPMUPMConversionTest()) {
drawPreference = GrGpu::kCallerPrefersDraw_DrawPreference;
}
GrGpu::WritePixelTempDrawInfo tempDrawInfo;
if (!fGpu->getWritePixelsInfo(surface, width, height, srcConfig, &drawPreference,
&tempDrawInfo)) {
return false;
}
if (!(kDontFlush_PixelOpsFlag & pixelOpsFlags) && surface->surfacePriv().hasPendingIO()) {
this->flush();
}
SkAutoTUnref<GrTexture> tempTexture;
if (GrGpu::kNoDraw_DrawPreference != drawPreference) {
tempTexture.reset(
this->textureProvider()->createApproxTexture(tempDrawInfo.fTempSurfaceDesc));
if (!tempTexture && GrGpu::kRequireDraw_DrawPreference == drawPreference) {
return false;
}
}
// temp buffer for doing sw premul conversion, if needed.
SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0);
if (tempTexture) {
SkAutoTUnref<const GrFragmentProcessor> fp;
SkMatrix textureMatrix;
textureMatrix.setIDiv(tempTexture->width(), tempTexture->height());
if (applyPremulToSrc) {
fp.reset(this->createUPMToPMEffect(tempTexture, tempDrawInfo.fSwizzle,
textureMatrix));
// If premultiplying was the only reason for the draw, fall back to a straight write.
if (!fp) {
if (GrGpu::kCallerPrefersDraw_DrawPreference == drawPreference) {
tempTexture.reset(nullptr);
}
} else {
applyPremulToSrc = false;
}
}
if (tempTexture) {
if (!fp) {
fp.reset(GrConfigConversionEffect::Create(tempTexture, tempDrawInfo.fSwizzle,
GrConfigConversionEffect::kNone_PMConversion, textureMatrix));
if (!fp) {
return false;
}
}
GrRenderTarget* renderTarget = surface->asRenderTarget();
SkASSERT(renderTarget);
if (tempTexture->surfacePriv().hasPendingIO()) {
this->flush();
}
if (applyPremulToSrc) {
size_t tmpRowBytes = 4 * width;
tmpPixels.reset(width * height);
if (!sw_convert_to_premul(srcConfig, width, height, rowBytes, buffer, tmpRowBytes,
tmpPixels.get())) {
return false;
}
rowBytes = tmpRowBytes;
buffer = tmpPixels.get();
applyPremulToSrc = false;
}
if (!fGpu->writePixels(tempTexture, 0, 0, width, height,
tempDrawInfo.fWriteConfig, buffer,
rowBytes)) {
return false;
}
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top));
SkAutoTUnref<GrDrawContext> drawContext(this->drawContext(renderTarget));
if (!drawContext) {
return false;
}
GrPaint paint;
paint.addColorFragmentProcessor(fp);
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height));
drawContext->drawRect(GrClip::WideOpen(), paint, matrix, rect, nullptr);
if (kFlushWrites_PixelOp & pixelOpsFlags) {
this->flushSurfaceWrites(surface);
}
}
}
if (!tempTexture) {
if (applyPremulToSrc) {
size_t tmpRowBytes = 4 * width;
tmpPixels.reset(width * height);
if (!sw_convert_to_premul(srcConfig, width, height, rowBytes, buffer, tmpRowBytes,
tmpPixels.get())) {
return false;
}
rowBytes = tmpRowBytes;
buffer = tmpPixels.get();
applyPremulToSrc = false;
}
return fGpu->writePixels(surface, left, top, width, height, srcConfig, buffer, rowBytes);
}
return true;
}
bool GrContext::readSurfacePixels(GrSurface* src,
int left, int top, int width, int height,
GrPixelConfig dstConfig, void* buffer, size_t rowBytes,
uint32_t flags) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
ASSERT_OWNED_RESOURCE(src);
SkASSERT(src);
GR_AUDIT_TRAIL_AUTO_FRAME(&fAuditTrail, "GrContext::readSurfacePixels");
this->testPMConversionsIfNecessary(flags);
SkAutoMutexAcquire ama(fReadPixelsMutex);
// Adjust the params so that if we wind up using an intermediate surface we've already done
// all the trimming and the temporary can be the min size required.
if (!GrSurfacePriv::AdjustReadPixelParams(src->width(), src->height(),
GrBytesPerPixel(dstConfig), &left,
&top, &width, &height, &buffer, &rowBytes)) {
return false;
}
if (!(kDontFlush_PixelOpsFlag & flags) && src->surfacePriv().hasPendingWrite()) {
this->flush();
}
bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags);
if (unpremul && !GrPixelConfigIs8888(dstConfig)) {
// The unpremul flag is only allowed for 8888 configs.
return false;
}
GrGpu::DrawPreference drawPreference = GrGpu::kNoDraw_DrawPreference;
// Don't prefer to draw for the conversion (and thereby access a texture from the cache) when
// we've already determined that there isn't a roundtrip preserving conversion processor pair.
if (unpremul && !this->didFailPMUPMConversionTest()) {
drawPreference = GrGpu::kCallerPrefersDraw_DrawPreference;
}
GrGpu::ReadPixelTempDrawInfo tempDrawInfo;
if (!fGpu->getReadPixelsInfo(src, width, height, rowBytes, dstConfig, &drawPreference,
&tempDrawInfo)) {
return false;
}
SkAutoTUnref<GrSurface> surfaceToRead(SkRef(src));
bool didTempDraw = false;
if (GrGpu::kNoDraw_DrawPreference != drawPreference) {
if (tempDrawInfo.fUseExactScratch) {
// We only respect this when the entire src is being read. Otherwise we can trigger too
// many odd ball texture sizes and trash the cache.
if (width != src->width() || height != src->height()) {
tempDrawInfo.fUseExactScratch = false;
}
}
SkAutoTUnref<GrTexture> temp;
if (tempDrawInfo.fUseExactScratch) {
temp.reset(this->textureProvider()->createTexture(tempDrawInfo.fTempSurfaceDesc,
SkBudgeted::kYes));
} else {
temp.reset(this->textureProvider()->createApproxTexture(tempDrawInfo.fTempSurfaceDesc));
}
if (temp) {
SkMatrix textureMatrix;
textureMatrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top));
textureMatrix.postIDiv(src->width(), src->height());
SkAutoTUnref<const GrFragmentProcessor> fp;
if (unpremul) {
fp.reset(this->createPMToUPMEffect(src->asTexture(), tempDrawInfo.fSwizzle,
textureMatrix));
if (fp) {
unpremul = false; // we no longer need to do this on CPU after the read back.
} else if (GrGpu::kCallerPrefersDraw_DrawPreference == drawPreference) {
// We only wanted to do the draw in order to perform the unpremul so don't
// bother.
temp.reset(nullptr);
}
}
if (!fp && temp) {
fp.reset(GrConfigConversionEffect::Create(src->asTexture(), tempDrawInfo.fSwizzle,
GrConfigConversionEffect::kNone_PMConversion, textureMatrix));
}
if (fp) {
GrPaint paint;
paint.addColorFragmentProcessor(fp);
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height));
SkAutoTUnref<GrDrawContext> drawContext(this->drawContext(temp->asRenderTarget()));
drawContext->drawRect(GrClip::WideOpen(), paint, SkMatrix::I(), rect, nullptr);
surfaceToRead.reset(SkRef(temp.get()));
left = 0;
top = 0;
didTempDraw = true;
}
}
}
if (GrGpu::kRequireDraw_DrawPreference == drawPreference && !didTempDraw) {
return false;
}
GrPixelConfig configToRead = dstConfig;
if (didTempDraw) {
this->flushSurfaceWrites(surfaceToRead);
configToRead = tempDrawInfo.fReadConfig;
}
if (!fGpu->readPixels(surfaceToRead, left, top, width, height, configToRead, buffer,
rowBytes)) {
return false;
}
// Perform umpremul conversion if we weren't able to perform it as a draw.
if (unpremul) {
SkDstPixelInfo dstPI;
if (!GrPixelConfig2ColorAndProfileType(dstConfig, &dstPI.fColorType, nullptr)) {
return false;
}
dstPI.fAlphaType = kUnpremul_SkAlphaType;
dstPI.fPixels = buffer;
dstPI.fRowBytes = rowBytes;
SkSrcPixelInfo srcPI;
srcPI.fColorType = dstPI.fColorType;
srcPI.fAlphaType = kPremul_SkAlphaType;
srcPI.fPixels = buffer;
srcPI.fRowBytes = rowBytes;
return srcPI.convertPixelsTo(&dstPI, width, height);
}
return true;
}
void GrContext::prepareSurfaceForExternalIO(GrSurface* surface) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkASSERT(surface);
ASSERT_OWNED_RESOURCE(surface);
if (surface->surfacePriv().hasPendingIO()) {
this->flush();
}
GrRenderTarget* rt = surface->asRenderTarget();
if (fGpu && rt) {
fGpu->resolveRenderTarget(rt);
}
}
bool GrContext::copySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
GR_AUDIT_TRAIL_AUTO_FRAME(&fAuditTrail, "GrContext::copySurface");
if (!src || !dst) {
return false;
}
ASSERT_OWNED_RESOURCE(src);
ASSERT_OWNED_RESOURCE(dst);
if (!dst->asRenderTarget()) {
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
if (!GrCopySurfaceBatch::ClipSrcRectAndDstPoint(dst, src, srcRect, dstPoint,
&clippedSrcRect, &clippedDstPoint)) {
return false;
}
// If we don't have an RT for the dst then we won't have a GrDrawContext to insert the
// the copy surface into. In the future we plan to have a more limited Context type
// (GrCopyContext?) that has the subset of GrDrawContext operations that should be
// allowed on textures that aren't render targets.
// For now we just flush any writes to the src and issue an immediate copy to the dst.
src->flushWrites();
return fGpu->copySurface(dst, src, clippedSrcRect, clippedDstPoint);
}
SkAutoTUnref<GrDrawContext> drawContext(this->drawContext(dst->asRenderTarget()));
if (!drawContext) {
return false;
}
if (!drawContext->copySurface(src, srcRect, dstPoint)) {
return false;
}
return true;
}
void GrContext::flushSurfaceWrites(GrSurface* surface) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
if (surface->surfacePriv().hasPendingWrite()) {
this->flush();
}
}
////////////////////////////////////////////////////////////////////////////////
int GrContext::getRecommendedSampleCount(GrPixelConfig config,
SkScalar dpi) const {
ASSERT_SINGLE_OWNER
if (!this->caps()->isConfigRenderable(config, true)) {
return 0;
}
int chosenSampleCount = 0;
if (fGpu->caps()->shaderCaps()->pathRenderingSupport()) {
if (dpi >= 250.0f) {
chosenSampleCount = 4;
} else {
chosenSampleCount = 16;
}
}
return chosenSampleCount <= fGpu->caps()->maxSampleCount() ? chosenSampleCount : 0;
}
GrDrawContext* GrContext::drawContext(GrRenderTarget* rt, const SkSurfaceProps* surfaceProps) {
ASSERT_SINGLE_OWNER
return fDrawingManager->drawContext(rt, surfaceProps);
}
bool GrContext::abandoned() const {
ASSERT_SINGLE_OWNER
return fDrawingManager->abandoned();
}
namespace {
void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) {
GrConfigConversionEffect::PMConversion pmToUPM;
GrConfigConversionEffect::PMConversion upmToPM;
GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM);
*pmToUPMValue = pmToUPM;
*upmToPMValue = upmToPM;
}
}
void GrContext::testPMConversionsIfNecessary(uint32_t flags) {
ASSERT_SINGLE_OWNER
if (SkToBool(kUnpremul_PixelOpsFlag & flags)) {
SkAutoMutexAcquire ama(fTestPMConversionsMutex);
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
}
}
const GrFragmentProcessor* GrContext::createPMToUPMEffect(GrTexture* texture,
const GrSwizzle& swizzle,
const SkMatrix& matrix) const {
ASSERT_SINGLE_OWNER
// We should have already called this->testPMConversionsIfNecessary().
SkASSERT(fDidTestPMConversions);
GrConfigConversionEffect::PMConversion pmToUPM =
static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) {
return GrConfigConversionEffect::Create(texture, swizzle, pmToUPM, matrix);
} else {
return nullptr;
}
}
const GrFragmentProcessor* GrContext::createUPMToPMEffect(GrTexture* texture,
const GrSwizzle& swizzle,
const SkMatrix& matrix) const {
ASSERT_SINGLE_OWNER
// We should have already called this->testPMConversionsIfNecessary().
SkASSERT(fDidTestPMConversions);
GrConfigConversionEffect::PMConversion upmToPM =
static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) {
return GrConfigConversionEffect::Create(texture, swizzle, upmToPM, matrix);
} else {
return nullptr;
}
}
bool GrContext::didFailPMUPMConversionTest() const {
ASSERT_SINGLE_OWNER
// We should have already called this->testPMConversionsIfNecessary().
SkASSERT(fDidTestPMConversions);
// The PM<->UPM tests fail or succeed together so we only need to check one.
return GrConfigConversionEffect::kNone_PMConversion == fPMToUPMConversion;
}
//////////////////////////////////////////////////////////////////////////////
void GrContext::getResourceCacheLimits(int* maxTextures, size_t* maxTextureBytes) const {
ASSERT_SINGLE_OWNER
if (maxTextures) {
*maxTextures = fResourceCache->getMaxResourceCount();
}
if (maxTextureBytes) {
*maxTextureBytes = fResourceCache->getMaxResourceBytes();
}
}
void GrContext::setResourceCacheLimits(int maxTextures, size_t maxTextureBytes) {
ASSERT_SINGLE_OWNER
fResourceCache->setLimits(maxTextures, maxTextureBytes);
}
//////////////////////////////////////////////////////////////////////////////
void GrContext::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const {
ASSERT_SINGLE_OWNER
fResourceCache->dumpMemoryStatistics(traceMemoryDump);
}