/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
return "PowerPC" SLJIT_CPUINFO;
}
/* Length of an instruction word.
Both for ppc-32 and ppc-64. */
typedef sljit_ui sljit_ins;
#if ((defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) && (defined _AIX)) \
|| (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define SLJIT_PPC_STACK_FRAME_V2 1
#endif
#ifdef _AIX
#include <sys/cache.h>
#endif
#if (defined SLJIT_LITTLE_ENDIAN && SLJIT_LITTLE_ENDIAN)
#define SLJIT_PASS_ENTRY_ADDR_TO_CALL 1
#endif
static void ppc_cache_flush(sljit_ins *from, sljit_ins *to)
{
#ifdef _AIX
_sync_cache_range((caddr_t)from, (int)((size_t)to - (size_t)from));
#elif defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
# if defined(_ARCH_PWR) || defined(_ARCH_PWR2)
/* Cache flush for POWER architecture. */
while (from < to) {
__asm__ volatile (
"clf 0, %0\n"
"dcs\n"
: : "r"(from)
);
from++;
}
__asm__ volatile ( "ics" );
# elif defined(_ARCH_COM) && !defined(_ARCH_PPC)
# error "Cache flush is not implemented for PowerPC/POWER common mode."
# else
/* Cache flush for PowerPC architecture. */
while (from < to) {
__asm__ volatile (
"dcbf 0, %0\n"
"sync\n"
"icbi 0, %0\n"
: : "r"(from)
);
from++;
}
__asm__ volatile ( "isync" );
# endif
# ifdef __xlc__
# warning "This file may fail to compile if -qfuncsect is used"
# endif
#elif defined(__xlc__)
#error "Please enable GCC syntax for inline assembly statements with -qasm=gcc"
#else
#error "This platform requires a cache flush implementation."
#endif /* _AIX */
}
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_ZERO (SLJIT_NUMBER_OF_REGISTERS + 5)
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
#define TMP_CALL_REG (SLJIT_NUMBER_OF_REGISTERS + 6)
#else
#define TMP_CALL_REG TMP_REG2
#endif
#define TMP_FREG1 (0)
#define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 7] = {
0, 3, 4, 5, 6, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 8, 9, 10, 31, 12
};
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define D(d) (reg_map[d] << 21)
#define S(s) (reg_map[s] << 21)
#define A(a) (reg_map[a] << 16)
#define B(b) (reg_map[b] << 11)
#define C(c) (reg_map[c] << 6)
#define FD(fd) ((fd) << 21)
#define FS(fs) ((fs) << 21)
#define FA(fa) ((fa) << 16)
#define FB(fb) ((fb) << 11)
#define FC(fc) ((fc) << 6)
#define IMM(imm) ((imm) & 0xffff)
#define CRD(d) ((d) << 21)
/* Instruction bit sections.
OE and Rc flag (see ALT_SET_FLAGS). */
#define OERC(flags) (((flags & ALT_SET_FLAGS) >> 10) | (flags & ALT_SET_FLAGS))
/* Rc flag (see ALT_SET_FLAGS). */
#define RC(flags) ((flags & ALT_SET_FLAGS) >> 10)
#define HI(opcode) ((opcode) << 26)
#define LO(opcode) ((opcode) << 1)
#define ADD (HI(31) | LO(266))
#define ADDC (HI(31) | LO(10))
#define ADDE (HI(31) | LO(138))
#define ADDI (HI(14))
#define ADDIC (HI(13))
#define ADDIS (HI(15))
#define ADDME (HI(31) | LO(234))
#define AND (HI(31) | LO(28))
#define ANDI (HI(28))
#define ANDIS (HI(29))
#define Bx (HI(18))
#define BCx (HI(16))
#define BCCTR (HI(19) | LO(528) | (3 << 11))
#define BLR (HI(19) | LO(16) | (0x14 << 21))
#define CNTLZD (HI(31) | LO(58))
#define CNTLZW (HI(31) | LO(26))
#define CMP (HI(31) | LO(0))
#define CMPI (HI(11))
#define CMPL (HI(31) | LO(32))
#define CMPLI (HI(10))
#define CROR (HI(19) | LO(449))
#define DIVD (HI(31) | LO(489))
#define DIVDU (HI(31) | LO(457))
#define DIVW (HI(31) | LO(491))
#define DIVWU (HI(31) | LO(459))
#define EXTSB (HI(31) | LO(954))
#define EXTSH (HI(31) | LO(922))
#define EXTSW (HI(31) | LO(986))
#define FABS (HI(63) | LO(264))
#define FADD (HI(63) | LO(21))
#define FADDS (HI(59) | LO(21))
#define FCFID (HI(63) | LO(846))
#define FCMPU (HI(63) | LO(0))
#define FCTIDZ (HI(63) | LO(815))
#define FCTIWZ (HI(63) | LO(15))
#define FDIV (HI(63) | LO(18))
#define FDIVS (HI(59) | LO(18))
#define FMR (HI(63) | LO(72))
#define FMUL (HI(63) | LO(25))
#define FMULS (HI(59) | LO(25))
#define FNEG (HI(63) | LO(40))
#define FRSP (HI(63) | LO(12))
#define FSUB (HI(63) | LO(20))
#define FSUBS (HI(59) | LO(20))
#define LD (HI(58) | 0)
#define LWZ (HI(32))
#define MFCR (HI(31) | LO(19))
#define MFLR (HI(31) | LO(339) | 0x80000)
#define MFXER (HI(31) | LO(339) | 0x10000)
#define MTCTR (HI(31) | LO(467) | 0x90000)
#define MTLR (HI(31) | LO(467) | 0x80000)
#define MTXER (HI(31) | LO(467) | 0x10000)
#define MULHD (HI(31) | LO(73))
#define MULHDU (HI(31) | LO(9))
#define MULHW (HI(31) | LO(75))
#define MULHWU (HI(31) | LO(11))
#define MULLD (HI(31) | LO(233))
#define MULLI (HI(7))
#define MULLW (HI(31) | LO(235))
#define NEG (HI(31) | LO(104))
#define NOP (HI(24))
#define NOR (HI(31) | LO(124))
#define OR (HI(31) | LO(444))
#define ORI (HI(24))
#define ORIS (HI(25))
#define RLDICL (HI(30))
#define RLWINM (HI(21))
#define SLD (HI(31) | LO(27))
#define SLW (HI(31) | LO(24))
#define SRAD (HI(31) | LO(794))
#define SRADI (HI(31) | LO(413 << 1))
#define SRAW (HI(31) | LO(792))
#define SRAWI (HI(31) | LO(824))
#define SRD (HI(31) | LO(539))
#define SRW (HI(31) | LO(536))
#define STD (HI(62) | 0)
#define STDU (HI(62) | 1)
#define STDUX (HI(31) | LO(181))
#define STFIWX (HI(31) | LO(983))
#define STW (HI(36))
#define STWU (HI(37))
#define STWUX (HI(31) | LO(183))
#define SUBF (HI(31) | LO(40))
#define SUBFC (HI(31) | LO(8))
#define SUBFE (HI(31) | LO(136))
#define SUBFIC (HI(8))
#define XOR (HI(31) | LO(316))
#define XORI (HI(26))
#define XORIS (HI(27))
#define SIMM_MAX (0x7fff)
#define SIMM_MIN (-0x8000)
#define UIMM_MAX (0xffff)
#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func)
{
sljit_sw* ptrs;
if (func_ptr)
*func_ptr = (void*)context;
ptrs = (sljit_sw*)func;
context->addr = addr ? addr : ptrs[0];
context->r2 = ptrs[1];
context->r11 = ptrs[2];
}
#endif
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_sw diff;
sljit_uw target_addr;
sljit_sw extra_jump_flags;
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) && (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
if (jump->flags & (SLJIT_REWRITABLE_JUMP | IS_CALL))
return 0;
#else
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return 0;
#endif
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) && (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (jump->flags & IS_CALL)
goto keep_address;
#endif
diff = ((sljit_sw)target_addr - (sljit_sw)(code_ptr)) & ~0x3l;
extra_jump_flags = 0;
if (jump->flags & IS_COND) {
if (diff <= 0x7fff && diff >= -0x8000) {
jump->flags |= PATCH_B;
return 1;
}
if (target_addr <= 0xffff) {
jump->flags |= PATCH_B | PATCH_ABS_B;
return 1;
}
extra_jump_flags = REMOVE_COND;
diff -= sizeof(sljit_ins);
}
if (diff <= 0x01ffffff && diff >= -0x02000000) {
jump->flags |= PATCH_B | extra_jump_flags;
return 1;
}
if (target_addr <= 0x03ffffff) {
jump->flags |= PATCH_B | PATCH_ABS_B | extra_jump_flags;
return 1;
}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
keep_address:
#endif
if (target_addr <= 0x7fffffff) {
jump->flags |= PATCH_ABS32;
return 1;
}
if (target_addr <= 0x7fffffffffffl) {
jump->flags |= PATCH_ABS48;
return 1;
}
#endif
return 0;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
compiler->size += (compiler->size & 0x1) + (sizeof(struct sljit_function_context) / sizeof(sljit_ins));
#else
compiler->size += (sizeof(struct sljit_function_context) / sizeof(sljit_ins));
#endif
#endif
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
/* Just recording the address. */
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
jump->addr = (sljit_uw)(code_ptr - 3);
#else
jump->addr = (sljit_uw)(code_ptr - 6);
#endif
if (detect_jump_type(jump, code_ptr, code)) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
code_ptr[-3] = code_ptr[0];
code_ptr -= 3;
#else
if (jump->flags & PATCH_ABS32) {
code_ptr -= 3;
code_ptr[-1] = code_ptr[2];
code_ptr[0] = code_ptr[3];
}
else if (jump->flags & PATCH_ABS48) {
code_ptr--;
code_ptr[-1] = code_ptr[0];
code_ptr[0] = code_ptr[1];
/* rldicr rX,rX,32,31 -> rX,rX,16,47 */
SLJIT_ASSERT((code_ptr[-3] & 0xfc00ffff) == 0x780007c6);
code_ptr[-3] ^= 0x8422;
/* oris -> ori */
code_ptr[-2] ^= 0x4000000;
}
else {
code_ptr[-6] = code_ptr[0];
code_ptr -= 6;
}
#endif
if (jump->flags & REMOVE_COND) {
code_ptr[0] = BCx | (2 << 2) | ((code_ptr[0] ^ (8 << 21)) & 0x03ff0001);
code_ptr++;
jump->addr += sizeof(sljit_ins);
code_ptr[0] = Bx;
jump->flags -= IS_COND;
}
}
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
word_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size - (sizeof(struct sljit_function_context) / sizeof(sljit_ins)));
#else
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
#endif
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins*)jump->addr;
if (jump->flags & PATCH_B) {
if (jump->flags & IS_COND) {
if (!(jump->flags & PATCH_ABS_B)) {
addr = addr - jump->addr;
SLJIT_ASSERT((sljit_sw)addr <= 0x7fff && (sljit_sw)addr >= -0x8000);
*buf_ptr = BCx | (addr & 0xfffc) | ((*buf_ptr) & 0x03ff0001);
}
else {
SLJIT_ASSERT(addr <= 0xffff);
*buf_ptr = BCx | (addr & 0xfffc) | 0x2 | ((*buf_ptr) & 0x03ff0001);
}
}
else {
if (!(jump->flags & PATCH_ABS_B)) {
addr = addr - jump->addr;
SLJIT_ASSERT((sljit_sw)addr <= 0x01ffffff && (sljit_sw)addr >= -0x02000000);
*buf_ptr = Bx | (addr & 0x03fffffc) | ((*buf_ptr) & 0x1);
}
else {
SLJIT_ASSERT(addr <= 0x03ffffff);
*buf_ptr = Bx | (addr & 0x03fffffc) | 0x2 | ((*buf_ptr) & 0x1);
}
}
break;
}
/* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
#else
if (jump->flags & PATCH_ABS32) {
SLJIT_ASSERT(addr <= 0x7fffffff);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
break;
}
if (jump->flags & PATCH_ABS48) {
SLJIT_ASSERT(addr <= 0x7fffffffffff);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | (addr & 0xffff);
break;
}
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[4] = (buf_ptr[4] & 0xffff0000) | (addr & 0xffff);
#endif
} while (0);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
SLJIT_CACHE_FLUSH(code, code_ptr);
#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (((sljit_sw)code_ptr) & 0x4)
code_ptr++;
sljit_set_function_context(NULL, (struct sljit_function_context*)code_ptr, (sljit_sw)code, (void*)sljit_generate_code);
return code_ptr;
#else
sljit_set_function_context(NULL, (struct sljit_function_context*)code_ptr, (sljit_sw)code, (void*)sljit_generate_code);
return code_ptr;
#endif
#else
return code;
#endif
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* inp_flags: */
/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA 0x01
#define INDEXED 0x02
#define WRITE_BACK 0x04
#define WORD_DATA 0x00
#define BYTE_DATA 0x08
#define HALF_DATA 0x10
#define INT_DATA 0x18
#define SIGNED_DATA 0x20
/* Separates integer and floating point registers */
#define GPR_REG 0x3f
#define DOUBLE_DATA 0x40
#define MEM_MASK 0x7f
/* Other inp_flags. */
#define ARG_TEST 0x000100
/* Integer opertion and set flags -> requires exts on 64 bit systems. */
#define ALT_SIGN_EXT 0x000200
/* This flag affects the RC() and OERC() macros. */
#define ALT_SET_FLAGS 0x000400
#define ALT_KEEP_CACHE 0x000800
#define ALT_FORM1 0x010000
#define ALT_FORM2 0x020000
#define ALT_FORM3 0x040000
#define ALT_FORM4 0x080000
#define ALT_FORM5 0x100000
#define ALT_FORM6 0x200000
/* Source and destination is register. */
#define REG_DEST 0x000001
#define REG1_SOURCE 0x000002
#define REG2_SOURCE 0x000004
/* getput_arg_fast returned true. */
#define FAST_DEST 0x000008
/* Multiple instructions are required. */
#define SLOW_DEST 0x000010
/*
ALT_SIGN_EXT 0x000200
ALT_SET_FLAGS 0x000400
ALT_FORM1 0x010000
...
ALT_FORM6 0x200000 */
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#include "sljitNativePPC_32.c"
#else
#include "sljitNativePPC_64.c"
#endif
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#define STACK_STORE STW
#define STACK_LOAD LWZ
#else
#define STACK_STORE STD
#define STACK_LOAD LD
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
sljit_si i, tmp, offs;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
FAIL_IF(push_inst(compiler, MFLR | D(0)));
offs = -(sljit_si)(sizeof(sljit_sw));
FAIL_IF(push_inst(compiler, STACK_STORE | S(TMP_ZERO) | A(SLJIT_SP) | IMM(offs)));
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--) {
offs -= (sljit_si)(sizeof(sljit_sw));
FAIL_IF(push_inst(compiler, STACK_STORE | S(i) | A(SLJIT_SP) | IMM(offs)));
}
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
offs -= (sljit_si)(sizeof(sljit_sw));
FAIL_IF(push_inst(compiler, STACK_STORE | S(i) | A(SLJIT_SP) | IMM(offs)));
}
SLJIT_ASSERT(offs == -(sljit_si)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1));
#if (defined SLJIT_PPC_STACK_FRAME_V2 && SLJIT_PPC_STACK_FRAME_V2)
FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(SLJIT_SP) | IMM(2 * sizeof(sljit_sw))));
#else
FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(SLJIT_SP) | IMM(sizeof(sljit_sw))));
#endif
FAIL_IF(push_inst(compiler, ADDI | D(TMP_ZERO) | A(0) | 0));
if (args >= 1)
FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(SLJIT_S0) | B(SLJIT_R0)));
if (args >= 2)
FAIL_IF(push_inst(compiler, OR | S(SLJIT_R1) | A(SLJIT_S1) | B(SLJIT_R1)));
if (args >= 3)
FAIL_IF(push_inst(compiler, OR | S(SLJIT_R2) | A(SLJIT_S2) | B(SLJIT_R2)));
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET;
local_size = (local_size + 15) & ~0xf;
compiler->local_size = local_size;
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
if (local_size <= SIMM_MAX)
FAIL_IF(push_inst(compiler, STWU | S(SLJIT_SP) | A(SLJIT_SP) | IMM(-local_size)));
else {
FAIL_IF(load_immediate(compiler, 0, -local_size));
FAIL_IF(push_inst(compiler, STWUX | S(SLJIT_SP) | A(SLJIT_SP) | B(0)));
}
#else
if (local_size <= SIMM_MAX)
FAIL_IF(push_inst(compiler, STDU | S(SLJIT_SP) | A(SLJIT_SP) | IMM(-local_size)));
else {
FAIL_IF(load_immediate(compiler, 0, -local_size));
FAIL_IF(push_inst(compiler, STDUX | S(SLJIT_SP) | A(SLJIT_SP) | B(0)));
}
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET;
compiler->local_size = (local_size + 15) & ~0xf;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_si i, tmp, offs;
CHECK_ERROR();
CHECK(check_sljit_emit_return(compiler, op, src, srcw));
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
if (compiler->local_size <= SIMM_MAX)
FAIL_IF(push_inst(compiler, ADDI | D(SLJIT_SP) | A(SLJIT_SP) | IMM(compiler->local_size)));
else {
FAIL_IF(load_immediate(compiler, 0, compiler->local_size));
FAIL_IF(push_inst(compiler, ADD | D(SLJIT_SP) | A(SLJIT_SP) | B(0)));
}
#if (defined SLJIT_PPC_STACK_FRAME_V2 && SLJIT_PPC_STACK_FRAME_V2)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(SLJIT_SP) | IMM(2 * sizeof(sljit_sw))));
#else
FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(SLJIT_SP) | IMM(sizeof(sljit_sw))));
#endif
offs = -(sljit_si)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1);
tmp = compiler->scratches;
for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) {
FAIL_IF(push_inst(compiler, STACK_LOAD | D(i) | A(SLJIT_SP) | IMM(offs)));
offs += (sljit_si)(sizeof(sljit_sw));
}
tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
for (i = tmp; i <= SLJIT_S0; i++) {
FAIL_IF(push_inst(compiler, STACK_LOAD | D(i) | A(SLJIT_SP) | IMM(offs)));
offs += (sljit_si)(sizeof(sljit_sw));
}
FAIL_IF(push_inst(compiler, STACK_LOAD | D(TMP_ZERO) | A(SLJIT_SP) | IMM(offs)));
SLJIT_ASSERT(offs == -(sljit_sw)(sizeof(sljit_sw)));
FAIL_IF(push_inst(compiler, MTLR | S(0)));
FAIL_IF(push_inst(compiler, BLR));
return SLJIT_SUCCESS;
}
#undef STACK_STORE
#undef STACK_LOAD
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
/* i/x - immediate/indexed form
n/w - no write-back / write-back (1 bit)
s/l - store/load (1 bit)
u/s - signed/unsigned (1 bit)
w/b/h/i - word/byte/half/int allowed (2 bit)
It contans 32 items, but not all are different. */
/* 64 bit only: [reg+imm] must be aligned to 4 bytes. */
#define INT_ALIGNED 0x10000
/* 64-bit only: there is no lwau instruction. */
#define UPDATE_REQ 0x20000
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#define ARCH_32_64(a, b) a
#define INST_CODE_AND_DST(inst, flags, reg) \
((inst) | (((flags) & MEM_MASK) <= GPR_REG ? D(reg) : FD(reg)))
#else
#define ARCH_32_64(a, b) b
#define INST_CODE_AND_DST(inst, flags, reg) \
(((inst) & ~(INT_ALIGNED | UPDATE_REQ)) | (((flags) & MEM_MASK) <= GPR_REG ? D(reg) : FD(reg)))
#endif
static SLJIT_CONST sljit_ins data_transfer_insts[64 + 8] = {
/* -------- Unsigned -------- */
/* Word. */
/* u w n i s */ ARCH_32_64(HI(36) /* stw */, HI(62) | INT_ALIGNED | 0x0 /* std */),
/* u w n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x0 /* ld */),
/* u w n x s */ ARCH_32_64(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */),
/* u w n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */),
/* u w w i s */ ARCH_32_64(HI(37) /* stwu */, HI(62) | INT_ALIGNED | 0x1 /* stdu */),
/* u w w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | 0x1 /* ldu */),
/* u w w x s */ ARCH_32_64(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */),
/* u w w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */),
/* Byte. */
/* u b n i s */ HI(38) /* stb */,
/* u b n i l */ HI(34) /* lbz */,
/* u b n x s */ HI(31) | LO(215) /* stbx */,
/* u b n x l */ HI(31) | LO(87) /* lbzx */,
/* u b w i s */ HI(39) /* stbu */,
/* u b w i l */ HI(35) /* lbzu */,
/* u b w x s */ HI(31) | LO(247) /* stbux */,
/* u b w x l */ HI(31) | LO(119) /* lbzux */,
/* Half. */
/* u h n i s */ HI(44) /* sth */,
/* u h n i l */ HI(40) /* lhz */,
/* u h n x s */ HI(31) | LO(407) /* sthx */,
/* u h n x l */ HI(31) | LO(279) /* lhzx */,
/* u h w i s */ HI(45) /* sthu */,
/* u h w i l */ HI(41) /* lhzu */,
/* u h w x s */ HI(31) | LO(439) /* sthux */,
/* u h w x l */ HI(31) | LO(311) /* lhzux */,
/* Int. */
/* u i n i s */ HI(36) /* stw */,
/* u i n i l */ HI(32) /* lwz */,
/* u i n x s */ HI(31) | LO(151) /* stwx */,
/* u i n x l */ HI(31) | LO(23) /* lwzx */,
/* u i w i s */ HI(37) /* stwu */,
/* u i w i l */ HI(33) /* lwzu */,
/* u i w x s */ HI(31) | LO(183) /* stwux */,
/* u i w x l */ HI(31) | LO(55) /* lwzux */,
/* -------- Signed -------- */
/* Word. */
/* s w n i s */ ARCH_32_64(HI(36) /* stw */, HI(62) | INT_ALIGNED | 0x0 /* std */),
/* s w n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x0 /* ld */),
/* s w n x s */ ARCH_32_64(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */),
/* s w n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */),
/* s w w i s */ ARCH_32_64(HI(37) /* stwu */, HI(62) | INT_ALIGNED | 0x1 /* stdu */),
/* s w w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | 0x1 /* ldu */),
/* s w w x s */ ARCH_32_64(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */),
/* s w w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */),
/* Byte. */
/* s b n i s */ HI(38) /* stb */,
/* s b n i l */ HI(34) /* lbz */ /* EXTS_REQ */,
/* s b n x s */ HI(31) | LO(215) /* stbx */,
/* s b n x l */ HI(31) | LO(87) /* lbzx */ /* EXTS_REQ */,
/* s b w i s */ HI(39) /* stbu */,
/* s b w i l */ HI(35) /* lbzu */ /* EXTS_REQ */,
/* s b w x s */ HI(31) | LO(247) /* stbux */,
/* s b w x l */ HI(31) | LO(119) /* lbzux */ /* EXTS_REQ */,
/* Half. */
/* s h n i s */ HI(44) /* sth */,
/* s h n i l */ HI(42) /* lha */,
/* s h n x s */ HI(31) | LO(407) /* sthx */,
/* s h n x l */ HI(31) | LO(343) /* lhax */,
/* s h w i s */ HI(45) /* sthu */,
/* s h w i l */ HI(43) /* lhau */,
/* s h w x s */ HI(31) | LO(439) /* sthux */,
/* s h w x l */ HI(31) | LO(375) /* lhaux */,
/* Int. */
/* s i n i s */ HI(36) /* stw */,
/* s i n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x2 /* lwa */),
/* s i n x s */ HI(31) | LO(151) /* stwx */,
/* s i n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(341) /* lwax */),
/* s i w i s */ HI(37) /* stwu */,
/* s i w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | UPDATE_REQ | 0x2 /* lwa */),
/* s i w x s */ HI(31) | LO(183) /* stwux */,
/* s i w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(373) /* lwaux */),
/* -------- Double -------- */
/* d n i s */ HI(54) /* stfd */,
/* d n i l */ HI(50) /* lfd */,
/* d n x s */ HI(31) | LO(727) /* stfdx */,
/* d n x l */ HI(31) | LO(599) /* lfdx */,
/* s n i s */ HI(52) /* stfs */,
/* s n i l */ HI(48) /* lfs */,
/* s n x s */ HI(31) | LO(663) /* stfsx */,
/* s n x l */ HI(31) | LO(535) /* lfsx */,
};
#undef ARCH_32_64
/* Simple cases, (no caching is required). */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si inp_flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_ins inst;
/* Should work when (arg & REG_MASK) == 0. */
SLJIT_COMPILE_ASSERT(A(0) == 0, a0_must_be_0);
SLJIT_ASSERT(arg & SLJIT_MEM);
if (arg & OFFS_REG_MASK) {
if (argw & 0x3)
return 0;
if (inp_flags & ARG_TEST)
return 1;
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
FAIL_IF(push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(OFFS_REG(arg))));
return -1;
}
if (SLJIT_UNLIKELY(!(arg & REG_MASK)))
inp_flags &= ~WRITE_BACK;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
inst = data_transfer_insts[inp_flags & MEM_MASK];
SLJIT_ASSERT((arg & REG_MASK) || !(inst & UPDATE_REQ));
if (argw > SIMM_MAX || argw < SIMM_MIN || ((inst & INT_ALIGNED) && (argw & 0x3)) || (inst & UPDATE_REQ))
return 0;
if (inp_flags & ARG_TEST)
return 1;
#endif
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
if (argw > SIMM_MAX || argw < SIMM_MIN)
return 0;
if (inp_flags & ARG_TEST)
return 1;
inst = data_transfer_insts[inp_flags & MEM_MASK];
SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
#endif
FAIL_IF(push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | IMM(argw)));
return -1;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those operator always
uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_sw high_short, next_high_short;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
sljit_sw diff;
#endif
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
if (arg & OFFS_REG_MASK)
return ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && (argw & 0x3) == (next_argw & 0x3));
if (next_arg & OFFS_REG_MASK)
return 0;
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
high_short = (argw + ((argw & 0x8000) << 1)) & ~0xffff;
next_high_short = (next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff;
return high_short == next_high_short;
#else
if (argw <= 0x7fffffffl && argw >= -0x80000000l) {
high_short = (argw + ((argw & 0x8000) << 1)) & ~0xffff;
next_high_short = (next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff;
if (high_short == next_high_short)
return 1;
}
diff = argw - next_argw;
if (!(arg & REG_MASK))
return diff <= SIMM_MAX && diff >= SIMM_MIN;
if (arg == next_arg && diff <= SIMM_MAX && diff >= SIMM_MIN)
return 1;
return 0;
#endif
}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define ADJUST_CACHED_IMM(imm) \
if ((inst & INT_ALIGNED) && (imm & 0x3)) { \
/* Adjust cached value. Fortunately this is really a rare case */ \
compiler->cache_argw += imm & 0x3; \
FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | (imm & 0x3))); \
imm &= ~0x3; \
}
#endif
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si inp_flags, sljit_si reg, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si tmp_r;
sljit_ins inst;
sljit_sw high_short, next_high_short;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
sljit_sw diff;
#endif
SLJIT_ASSERT(arg & SLJIT_MEM);
tmp_r = ((inp_flags & LOAD_DATA) && ((inp_flags) & MEM_MASK) <= GPR_REG) ? reg : TMP_REG1;
/* Special case for "mov reg, [reg, ... ]". */
if ((arg & REG_MASK) == tmp_r)
tmp_r = TMP_REG1;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
/* Otherwise getput_arg_fast would capture it. */
SLJIT_ASSERT(argw);
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg && argw == compiler->cache_argw)
tmp_r = TMP_REG3;
else {
if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == (next_argw & 0x3)) {
compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
compiler->cache_argw = argw;
tmp_r = TMP_REG3;
}
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
FAIL_IF(push_inst(compiler, RLWINM | S(OFFS_REG(arg)) | A(tmp_r) | (argw << 11) | ((31 - argw) << 1)));
#else
FAIL_IF(push_inst(compiler, RLDI(tmp_r, OFFS_REG(arg), argw, 63 - argw, 1)));
#endif
}
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(tmp_r));
}
if (SLJIT_UNLIKELY(!(arg & REG_MASK)))
inp_flags &= ~WRITE_BACK;
inst = data_transfer_insts[inp_flags & MEM_MASK];
SLJIT_ASSERT((arg & REG_MASK) || !(inst & UPDATE_REQ));
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (argw <= 0x7fff7fffl && argw >= -0x80000000l
&& (!(inst & INT_ALIGNED) || !(argw & 0x3)) && !(inst & UPDATE_REQ)) {
#endif
arg &= REG_MASK;
high_short = (sljit_si)(argw + ((argw & 0x8000) << 1)) & ~0xffff;
/* The getput_arg_fast should handle this otherwise. */
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
SLJIT_ASSERT(high_short && high_short <= 0x7fffffffl && high_short >= -0x80000000l);
#else
SLJIT_ASSERT(high_short && !(inst & (INT_ALIGNED | UPDATE_REQ)));
#endif
if (inp_flags & WRITE_BACK) {
if (arg == reg) {
FAIL_IF(push_inst(compiler, OR | S(reg) | A(tmp_r) | B(reg)));
reg = tmp_r;
}
tmp_r = arg;
FAIL_IF(push_inst(compiler, ADDIS | D(arg) | A(arg) | IMM(high_short >> 16)));
}
else if (compiler->cache_arg != (SLJIT_MEM | arg) || high_short != compiler->cache_argw) {
if ((next_arg & SLJIT_MEM) && !(next_arg & OFFS_REG_MASK)) {
next_high_short = (sljit_si)(next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff;
if (high_short == next_high_short) {
compiler->cache_arg = SLJIT_MEM | arg;
compiler->cache_argw = high_short;
tmp_r = TMP_REG3;
}
}
FAIL_IF(push_inst(compiler, ADDIS | D(tmp_r) | A(arg & REG_MASK) | IMM(high_short >> 16)));
}
else
tmp_r = TMP_REG3;
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(tmp_r) | IMM(argw));
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
}
/* Everything else is PPC-64 only. */
if (SLJIT_UNLIKELY(!(arg & REG_MASK))) {
diff = argw - compiler->cache_argw;
if ((compiler->cache_arg & SLJIT_IMM) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
ADJUST_CACHED_IMM(diff);
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3) | IMM(diff));
}
diff = argw - next_argw;
if ((next_arg & SLJIT_MEM) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
tmp_r = TMP_REG3;
}
FAIL_IF(load_immediate(compiler, tmp_r, argw));
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(tmp_r));
}
diff = argw - compiler->cache_argw;
if (compiler->cache_arg == arg && diff <= SIMM_MAX && diff >= SIMM_MIN) {
SLJIT_ASSERT(!(inp_flags & WRITE_BACK) && !(inst & UPDATE_REQ));
ADJUST_CACHED_IMM(diff);
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3) | IMM(diff));
}
if ((compiler->cache_arg & SLJIT_IMM) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
if (compiler->cache_argw != argw) {
FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | IMM(diff)));
compiler->cache_argw = argw;
}
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(TMP_REG3));
}
if (argw == next_argw && (next_arg & SLJIT_MEM)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(TMP_REG3));
}
diff = argw - next_argw;
if (arg == next_arg && !(inp_flags & WRITE_BACK) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
FAIL_IF(push_inst(compiler, ADD | D(TMP_REG3) | A(TMP_REG3) | B(arg & REG_MASK)));
compiler->cache_arg = arg;
compiler->cache_argw = argw;
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3));
}
if ((next_arg & SLJIT_MEM) && !(next_arg & OFFS_REG_MASK) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
tmp_r = TMP_REG3;
}
else
FAIL_IF(load_immediate(compiler, tmp_r, argw));
/* Get the indexed version instead of the normal one. */
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(tmp_r));
#endif
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si input_flags,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
sljit_si dst_r;
sljit_si src1_r;
sljit_si src2_r;
sljit_si sugg_src2_r = TMP_REG2;
sljit_si flags = input_flags & (ALT_FORM1 | ALT_FORM2 | ALT_FORM3 | ALT_FORM4 | ALT_FORM5 | ALT_FORM6 | ALT_SIGN_EXT | ALT_SET_FLAGS);
if (!(input_flags & ALT_KEEP_CACHE)) {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
/* Destination check. */
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
dst_r = TMP_REG2;
}
else if (FAST_IS_REG(dst)) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
}
else {
SLJIT_ASSERT(dst & SLJIT_MEM);
if (getput_arg_fast(compiler, input_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
flags |= FAST_DEST;
dst_r = TMP_REG2;
}
else {
flags |= SLOW_DEST;
dst_r = 0;
}
}
/* Source 1. */
if (FAST_IS_REG(src1)) {
src1_r = src1;
flags |= REG1_SOURCE;
}
else if (src1 & SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
src1_r = TMP_REG1;
}
else if (getput_arg_fast(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1_r = TMP_REG1;
}
else
src1_r = 0;
/* Source 2. */
if (FAST_IS_REG(src2)) {
src2_r = src2;
flags |= REG2_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
}
else if (src2 & SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w));
src2_r = sugg_src2_r;
}
else if (getput_arg_fast(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
FAIL_IF(compiler->error);
src2_r = sugg_src2_r;
}
else
src2_r = 0;
/* src1_r, src2_r and dst_r can be zero (=unprocessed).
All arguments are complex addressing modes, and it is a binary operator. */
if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
}
src1_r = TMP_REG1;
src2_r = TMP_REG2;
}
else if (src1_r == 0 && src2_r == 0) {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
src1_r = TMP_REG1;
}
else if (src1_r == 0 && dst_r == 0) {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
src1_r = TMP_REG1;
}
else if (src2_r == 0 && dst_r == 0) {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
src2_r = sugg_src2_r;
}
if (dst_r == 0)
dst_r = TMP_REG2;
if (src1_r == 0) {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
src1_r = TMP_REG1;
}
if (src2_r == 0) {
FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
src2_r = sugg_src2_r;
}
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (flags & (FAST_DEST | SLOW_DEST)) {
if (flags & FAST_DEST)
FAIL_IF(getput_arg_fast(compiler, input_flags, dst_r, dst, dstw));
else
FAIL_IF(getput_arg(compiler, input_flags, dst_r, dst, dstw, 0, 0));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
sljit_si int_op = op & SLJIT_INT_OP;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
case SLJIT_NOP:
return push_inst(compiler, NOP);
case SLJIT_LUMUL:
case SLJIT_LSMUL:
FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R0)));
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
FAIL_IF(push_inst(compiler, MULLD | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1)));
return push_inst(compiler, (op == SLJIT_LUMUL ? MULHDU : MULHD) | D(SLJIT_R1) | A(TMP_REG1) | B(SLJIT_R1));
#else
FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1)));
return push_inst(compiler, (op == SLJIT_LUMUL ? MULHWU : MULHW) | D(SLJIT_R1) | A(TMP_REG1) | B(SLJIT_R1));
#endif
case SLJIT_UDIVMOD:
case SLJIT_SDIVMOD:
FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R0)));
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
FAIL_IF(push_inst(compiler, (int_op ? (op == SLJIT_UDIVMOD ? DIVWU : DIVW) : (op == SLJIT_UDIVMOD ? DIVDU : DIVD)) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1)));
FAIL_IF(push_inst(compiler, (int_op ? MULLW : MULLD) | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1)));
#else
FAIL_IF(push_inst(compiler, (op == SLJIT_UDIVMOD ? DIVWU : DIVW) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1)));
FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1)));
#endif
return push_inst(compiler, SUBF | D(SLJIT_R1) | A(SLJIT_R1) | B(TMP_REG1));
case SLJIT_UDIVI:
case SLJIT_SDIVI:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
return push_inst(compiler, (int_op ? (op == SLJIT_UDIVI ? DIVWU : DIVW) : (op == SLJIT_UDIVI ? DIVDU : DIVD)) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1));
#else
return push_inst(compiler, (op == SLJIT_UDIVI ? DIVWU : DIVW) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1));
#endif
}
return SLJIT_SUCCESS;
}
#define EMIT_MOV(type, type_flags, type_cast) \
emit_op(compiler, (src & SLJIT_IMM) ? SLJIT_MOV : type, flags | (type_flags), dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? type_cast srcw : srcw)
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si flags = GET_FLAGS(op) ? ALT_SET_FLAGS : 0;
sljit_si op_flags = GET_ALL_FLAGS(op);
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
op = GET_OPCODE(op);
if ((src & SLJIT_IMM) && srcw == 0)
src = TMP_ZERO;
if (op_flags & SLJIT_SET_O)
FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO)));
if (op_flags & SLJIT_INT_OP) {
if (op < SLJIT_NOT) {
if (FAST_IS_REG(src) && src == dst) {
if (!TYPE_CAST_NEEDED(op))
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op == SLJIT_MOV_SI && (src & SLJIT_MEM))
op = SLJIT_MOV_UI;
if (op == SLJIT_MOVU_SI && (src & SLJIT_MEM))
op = SLJIT_MOVU_UI;
if (op == SLJIT_MOV_UI && (src & SLJIT_IMM))
op = SLJIT_MOV_SI;
if (op == SLJIT_MOVU_UI && (src & SLJIT_IMM))
op = SLJIT_MOVU_SI;
#endif
}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
else {
/* Most operations expect sign extended arguments. */
flags |= INT_DATA | SIGNED_DATA;
if (src & SLJIT_IMM)
srcw = (sljit_si)srcw;
}
#endif
}
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
#endif
return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
case SLJIT_MOV_UI:
return EMIT_MOV(SLJIT_MOV_UI, INT_DATA, (sljit_ui));
case SLJIT_MOV_SI:
return EMIT_MOV(SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, (sljit_si));
#endif
case SLJIT_MOV_UB:
return EMIT_MOV(SLJIT_MOV_UB, BYTE_DATA, (sljit_ub));
case SLJIT_MOV_SB:
return EMIT_MOV(SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, (sljit_sb));
case SLJIT_MOV_UH:
return EMIT_MOV(SLJIT_MOV_UH, HALF_DATA, (sljit_uh));
case SLJIT_MOV_SH:
return EMIT_MOV(SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, (sljit_sh));
case SLJIT_MOVU:
case SLJIT_MOVU_P:
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
case SLJIT_MOVU_UI:
case SLJIT_MOVU_SI:
#endif
return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
case SLJIT_MOVU_UI:
return EMIT_MOV(SLJIT_MOV_UI, INT_DATA | WRITE_BACK, (sljit_ui));
case SLJIT_MOVU_SI:
return EMIT_MOV(SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, (sljit_si));
#endif
case SLJIT_MOVU_UB:
return EMIT_MOV(SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, (sljit_ub));
case SLJIT_MOVU_SB:
return EMIT_MOV(SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, (sljit_sb));
case SLJIT_MOVU_UH:
return EMIT_MOV(SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, (sljit_uh));
case SLJIT_MOVU_SH:
return EMIT_MOV(SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, (sljit_sh));
case SLJIT_NOT:
return emit_op(compiler, SLJIT_NOT, flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
return emit_op(compiler, SLJIT_NEG, flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_CLZ:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
return emit_op(compiler, SLJIT_CLZ, flags | (!(op_flags & SLJIT_INT_OP) ? 0 : ALT_FORM1), dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_CLZ, flags, dst, dstw, TMP_REG1, 0, src, srcw);
#endif
}
return SLJIT_SUCCESS;
}
#undef EMIT_MOV
#define TEST_SL_IMM(src, srcw) \
(((src) & SLJIT_IMM) && (srcw) <= SIMM_MAX && (srcw) >= SIMM_MIN)
#define TEST_UL_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & ~0xffff))
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_SH_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & 0xffff) && (srcw) <= 0x7fffffffl && (srcw) >= -0x80000000l)
#else
#define TEST_SH_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & 0xffff))
#endif
#define TEST_UH_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & ~0xffff0000))
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_ADD_IMM(src, srcw) \
(((src) & SLJIT_IMM) && (srcw) <= 0x7fff7fffl && (srcw) >= -0x80000000l)
#else
#define TEST_ADD_IMM(src, srcw) \
((src) & SLJIT_IMM)
#endif
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_UI_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & ~0xffffffff))
#else
#define TEST_UI_IMM(src, srcw) \
((src) & SLJIT_IMM)
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si flags = GET_FLAGS(op) ? ALT_SET_FLAGS : 0;
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
if ((src1 & SLJIT_IMM) && src1w == 0)
src1 = TMP_ZERO;
if ((src2 & SLJIT_IMM) && src2w == 0)
src2 = TMP_ZERO;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP) {
/* Most operations expect sign extended arguments. */
flags |= INT_DATA | SIGNED_DATA;
if (src1 & SLJIT_IMM)
src1w = (sljit_si)(src1w);
if (src2 & SLJIT_IMM)
src2w = (sljit_si)(src2w);
if (GET_FLAGS(op))
flags |= ALT_SIGN_EXT;
}
#endif
if (op & SLJIT_SET_O)
FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO)));
if (src2 == TMP_REG2)
flags |= ALT_KEEP_CACHE;
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
if (!GET_FLAGS(op) && ((src1 | src2) & SLJIT_IMM)) {
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
if (TEST_SH_IMM(src2, src2w)) {
compiler->imm = (src2w >> 16) & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SH_IMM(src1, src1w)) {
compiler->imm = (src1w >> 16) & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
}
/* Range between -1 and -32768 is covered above. */
if (TEST_ADD_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffffffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_ADD_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffffffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
if (!(GET_FLAGS(op) & (SLJIT_SET_E | SLJIT_SET_O))) {
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
return emit_op(compiler, SLJIT_ADD, flags, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ADDC:
return emit_op(compiler, SLJIT_ADDC, flags | (!(op & SLJIT_KEEP_FLAGS) ? 0 : ALT_FORM1), dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
if (!GET_FLAGS(op) && ((src1 | src2) & SLJIT_IMM)) {
if (TEST_SL_IMM(src2, -src2w)) {
compiler->imm = (-src2w) & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
if (TEST_SH_IMM(src2, -src2w)) {
compiler->imm = ((-src2w) >> 16) & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
/* Range between -1 and -32768 is covered above. */
if (TEST_ADD_IMM(src2, -src2w)) {
compiler->imm = -src2w & 0xffffffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src1, src1w, TMP_REG2, 0);
}
}
if (dst == SLJIT_UNUSED && (op & (SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S)) && !(op & (SLJIT_SET_O | SLJIT_SET_C))) {
if (!(op & SLJIT_SET_U)) {
/* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (GET_FLAGS(op) == SLJIT_SET_E && TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
if (!(op & (SLJIT_SET_E | SLJIT_SET_S))) {
/* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */
if (TEST_UL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM4, dst, dstw, src1, src1w, src2, src2w);
}
if ((src2 & SLJIT_IMM) && src2w >= 0 && src2w <= 0x7fff) {
compiler->imm = src2w;
return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2 | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
return emit_op(compiler, SLJIT_SUB, flags | ((op & SLJIT_SET_U) ? ALT_FORM4 : 0) | ((op & (SLJIT_SET_E | SLJIT_SET_S)) ? ALT_FORM5 : 0), dst, dstw, src1, src1w, src2, src2w);
}
if (!(op & (SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_O))) {
if (TEST_SL_IMM(src2, -src2w)) {
compiler->imm = (-src2w) & 0xffff;
return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
}
/* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */
return emit_op(compiler, SLJIT_SUB, flags | (!(op & SLJIT_SET_U) ? 0 : ALT_FORM6), dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUBC:
return emit_op(compiler, SLJIT_SUBC, flags | (!(op & SLJIT_KEEP_FLAGS) ? 0 : ALT_FORM1), dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP)
flags |= ALT_FORM2;
#endif
if (!GET_FLAGS(op)) {
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_MUL, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_MUL, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
return emit_op(compiler, SLJIT_MUL, flags, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
/* Commutative unsigned operations. */
if (!GET_FLAGS(op) || GET_OPCODE(op) == SLJIT_AND) {
if (TEST_UL_IMM(src2, src2w)) {
compiler->imm = src2w;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_UL_IMM(src1, src1w)) {
compiler->imm = src1w;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
if (TEST_UH_IMM(src2, src2w)) {
compiler->imm = (src2w >> 16) & 0xffff;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_UH_IMM(src1, src1w)) {
compiler->imm = (src1w >> 16) & 0xffff;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
if (!GET_FLAGS(op) && GET_OPCODE(op) != SLJIT_AND) {
if (TEST_UI_IMM(src2, src2w)) {
compiler->imm = src2w;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_UI_IMM(src1, src1w)) {
compiler->imm = src1w;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
return emit_op(compiler, GET_OPCODE(op), flags, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ASHR:
if (op & SLJIT_KEEP_FLAGS)
flags |= ALT_FORM3;
/* Fall through. */
case SLJIT_SHL:
case SLJIT_LSHR:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP)
flags |= ALT_FORM2;
#endif
if (src2 & SLJIT_IMM) {
compiler->imm = src2w;
return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
return emit_op(compiler, GET_OPCODE(op), flags, dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
return reg;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
return push_inst(compiler, *(sljit_ins*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#else
/* Available by default. */
return 1;
#endif
}
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_SINGLE_OP) >> 6))
#define SELECT_FOP(op, single, double) ((op & SLJIT_SINGLE_OP) ? single : double)
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define FLOAT_TMP_MEM_OFFSET (6 * sizeof(sljit_sw))
#else
#define FLOAT_TMP_MEM_OFFSET (2 * sizeof(sljit_sw))
#if (defined SLJIT_LITTLE_ENDIAN && SLJIT_LITTLE_ENDIAN)
#define FLOAT_TMP_MEM_OFFSET_LOW (2 * sizeof(sljit_sw))
#define FLOAT_TMP_MEM_OFFSET_HI (3 * sizeof(sljit_sw))
#else
#define FLOAT_TMP_MEM_OFFSET_LOW (3 * sizeof(sljit_sw))
#define FLOAT_TMP_MEM_OFFSET_HI (2 * sizeof(sljit_sw))
#endif
#endif /* SLJIT_CONFIG_PPC_64 */
static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
if (src & SLJIT_MEM) {
/* We can ignore the temporary data store on the stack from caching point of view. */
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
src = TMP_FREG1;
}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
op = GET_OPCODE(op);
FAIL_IF(push_inst(compiler, (op == SLJIT_CONVI_FROMD ? FCTIWZ : FCTIDZ) | FD(TMP_FREG1) | FB(src)));
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (op == SLJIT_CONVW_FROMD) {
if (FAST_IS_REG(dst)) {
FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0));
return emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0);
}
return emit_op_mem2(compiler, DOUBLE_DATA, TMP_FREG1, dst, dstw, 0, 0);
}
#else
FAIL_IF(push_inst(compiler, FCTIWZ | FD(TMP_FREG1) | FB(src)));
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
#endif
if (FAST_IS_REG(dst)) {
FAIL_IF(load_immediate(compiler, TMP_REG1, FLOAT_TMP_MEM_OFFSET));
FAIL_IF(push_inst(compiler, STFIWX | FS(TMP_FREG1) | A(SLJIT_SP) | B(TMP_REG1)));
return emit_op_mem2(compiler, INT_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0);
}
SLJIT_ASSERT(dst & SLJIT_MEM);
if (dst & OFFS_REG_MASK) {
dstw &= 0x3;
if (dstw) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
FAIL_IF(push_inst(compiler, RLWINM | S(OFFS_REG(dst)) | A(TMP_REG1) | (dstw << 11) | ((31 - dstw) << 1)));
#else
FAIL_IF(push_inst(compiler, RLDI(TMP_REG1, OFFS_REG(dst), dstw, 63 - dstw, 1)));
#endif
dstw = TMP_REG1;
}
else
dstw = OFFS_REG(dst);
}
else {
if ((dst & REG_MASK) && !dstw) {
dstw = dst & REG_MASK;
dst = 0;
}
else {
/* This works regardless we have SLJIT_MEM1 or SLJIT_MEM0. */
FAIL_IF(load_immediate(compiler, TMP_REG1, dstw));
dstw = TMP_REG1;
}
}
return push_inst(compiler, STFIWX | FS(TMP_FREG1) | A(dst & REG_MASK) | B(dstw));
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_IMM) {
if (GET_OPCODE(op) == SLJIT_CONVD_FROMI)
srcw = (sljit_si)srcw;
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
}
else if (GET_OPCODE(op) == SLJIT_CONVD_FROMI) {
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, EXTSW | S(src) | A(TMP_REG1)));
else
FAIL_IF(emit_op_mem2(compiler, INT_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
src = TMP_REG1;
}
if (FAST_IS_REG(src)) {
FAIL_IF(emit_op_mem2(compiler, WORD_DATA, src, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, dst, dstw));
}
else
FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
FAIL_IF(push_inst(compiler, FCFID | FD(dst_r) | FB(TMP_FREG1)));
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
if (op & SLJIT_SINGLE_OP)
return push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r));
return SLJIT_SUCCESS;
#else
sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
sljit_si invert_sign = 1;
if (src & SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw ^ 0x80000000));
src = TMP_REG1;
invert_sign = 0;
}
else if (!FAST_IS_REG(src)) {
FAIL_IF(emit_op_mem2(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW));
src = TMP_REG1;
}
/* First, a special double floating point value is constructed: (2^53 + (input xor (2^31)))
The double precision format has exactly 53 bit precision, so the lower 32 bit represents
the lower 32 bit of such value. The result of xor 2^31 is the same as adding 0x80000000
to the input, which shifts it into the 0 - 0xffffffff range. To get the converted floating
point value, we need to substract 2^53 + 2^31 from the constructed value. */
FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330));
if (invert_sign)
FAIL_IF(push_inst(compiler, XORIS | S(src) | A(TMP_REG1) | 0x8000));
FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG2, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_HI, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_HI));
FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG1) | A(0) | 0x8000));
FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW));
FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG2, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW));
FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2)));
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
if (op & SLJIT_SINGLE_OP)
return push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r));
return SLJIT_SUCCESS;
#endif
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
src2 = TMP_FREG2;
}
return push_inst(compiler, FCMPU | CRD(4) | FA(src1) | FB(src2));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r;
CHECK_ERROR();
compiler->cache_arg = 0;
compiler->cache_argw = 0;
SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100) && !(DOUBLE_DATA & 0x4), float_transfer_bit_error);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
if (GET_OPCODE(op) == SLJIT_CONVD_FROMS)
op ^= SLJIT_SINGLE_OP;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
src = dst_r;
}
switch (GET_OPCODE(op)) {
case SLJIT_CONVD_FROMS:
op ^= SLJIT_SINGLE_OP;
if (op & SLJIT_SINGLE_OP) {
FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(src)));
break;
}
/* Fall through. */
case SLJIT_DMOV:
if (src != dst_r) {
if (dst_r != TMP_FREG1)
FAIL_IF(push_inst(compiler, FMR | FD(dst_r) | FB(src)));
else
dst_r = src;
}
break;
case SLJIT_DNEG:
FAIL_IF(push_inst(compiler, FNEG | FD(dst_r) | FB(src)));
break;
case SLJIT_DABS:
FAIL_IF(push_inst(compiler, FABS | FD(dst_r) | FB(src)));
break;
}
if (dst & SLJIT_MEM)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r, flags = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG2;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1 = TMP_FREG1;
} else
flags |= ALT_FORM1;
}
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
FAIL_IF(compiler->error);
src2 = TMP_FREG2;
} else
flags |= ALT_FORM2;
}
if ((flags & (ALT_FORM1 | ALT_FORM2)) == (ALT_FORM1 | ALT_FORM2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
}
}
else if (flags & ALT_FORM1)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
else if (flags & ALT_FORM2)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
if (flags & ALT_FORM1)
src1 = TMP_FREG1;
if (flags & ALT_FORM2)
src2 = TMP_FREG2;
switch (GET_OPCODE(op)) {
case SLJIT_DADD:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FADDS, FADD) | FD(dst_r) | FA(src1) | FB(src2)));
break;
case SLJIT_DSUB:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSUBS, FSUB) | FD(dst_r) | FA(src1) | FB(src2)));
break;
case SLJIT_DMUL:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FMULS, FMUL) | FD(dst_r) | FA(src1) | FC(src2) /* FMUL use FC as src2 */));
break;
case SLJIT_DDIV:
FAIL_IF(push_inst(compiler, SELECT_FOP(op, FDIVS, FDIV) | FD(dst_r) | FA(src1) | FB(src2)));
break;
}
if (dst_r == TMP_FREG2)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
#undef FLOAT_DATA
#undef SELECT_FOP
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst(compiler, MFLR | D(dst));
/* Memory. */
FAIL_IF(push_inst(compiler, MFLR | D(TMP_REG2)));
return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, MTLR | S(src)));
else {
if (src & SLJIT_MEM)
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, TMP_REG2, srcw));
FAIL_IF(push_inst(compiler, MTLR | S(TMP_REG2)));
}
return push_inst(compiler, BLR);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
static sljit_ins get_bo_bi_flags(sljit_si type)
{
switch (type) {
case SLJIT_EQUAL:
return (12 << 21) | (2 << 16);
case SLJIT_NOT_EQUAL:
return (4 << 21) | (2 << 16);
case SLJIT_LESS:
case SLJIT_D_LESS:
return (12 << 21) | ((4 + 0) << 16);
case SLJIT_GREATER_EQUAL:
case SLJIT_D_GREATER_EQUAL:
return (4 << 21) | ((4 + 0) << 16);
case SLJIT_GREATER:
case SLJIT_D_GREATER:
return (12 << 21) | ((4 + 1) << 16);
case SLJIT_LESS_EQUAL:
case SLJIT_D_LESS_EQUAL:
return (4 << 21) | ((4 + 1) << 16);
case SLJIT_SIG_LESS:
return (12 << 21) | (0 << 16);
case SLJIT_SIG_GREATER_EQUAL:
return (4 << 21) | (0 << 16);
case SLJIT_SIG_GREATER:
return (12 << 21) | (1 << 16);
case SLJIT_SIG_LESS_EQUAL:
return (4 << 21) | (1 << 16);
case SLJIT_OVERFLOW:
case SLJIT_MUL_OVERFLOW:
return (12 << 21) | (3 << 16);
case SLJIT_NOT_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
return (4 << 21) | (3 << 16);
case SLJIT_D_EQUAL:
return (12 << 21) | ((4 + 2) << 16);
case SLJIT_D_NOT_EQUAL:
return (4 << 21) | ((4 + 2) << 16);
case SLJIT_D_UNORDERED:
return (12 << 21) | ((4 + 3) << 16);
case SLJIT_D_ORDERED:
return (4 << 21) | ((4 + 3) << 16);
default:
SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL3);
return (20 << 21);
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
sljit_ins bo_bi_flags;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
bo_bi_flags = get_bo_bi_flags(type & 0xff);
if (!bo_bi_flags)
return NULL;
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
/* In PPC, we don't need to touch the arguments. */
if (type < SLJIT_JUMP)
jump->flags |= IS_COND;
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
if (type >= SLJIT_CALL0)
jump->flags |= IS_CALL;
#endif
PTR_FAIL_IF(emit_const(compiler, TMP_CALL_REG, 0));
PTR_FAIL_IF(push_inst(compiler, MTCTR | S(TMP_CALL_REG)));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, BCCTR | bo_bi_flags | (type >= SLJIT_FAST_CALL ? 1 : 0)));
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
struct sljit_jump *jump = NULL;
sljit_si src_r;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src)) {
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
if (type >= SLJIT_CALL0) {
FAIL_IF(push_inst(compiler, OR | S(src) | A(TMP_CALL_REG) | B(src)));
src_r = TMP_CALL_REG;
}
else
src_r = src;
#else
src_r = src;
#endif
} else if (src & SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR);
jump->u.target = srcw;
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
if (type >= SLJIT_CALL0)
jump->flags |= IS_CALL;
#endif
FAIL_IF(emit_const(compiler, TMP_CALL_REG, 0));
src_r = TMP_CALL_REG;
}
else {
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_CALL_REG, 0, TMP_REG1, 0, src, srcw));
src_r = TMP_CALL_REG;
}
FAIL_IF(push_inst(compiler, MTCTR | S(src_r)));
if (jump)
jump->addr = compiler->size;
return push_inst(compiler, BCCTR | (20 << 21) | (type >= SLJIT_FAST_CALL ? 1 : 0));
}
/* Get a bit from CR, all other bits are zeroed. */
#define GET_CR_BIT(bit, dst) \
FAIL_IF(push_inst(compiler, MFCR | D(dst))); \
FAIL_IF(push_inst(compiler, RLWINM | S(dst) | A(dst) | ((1 + (bit)) << 11) | (31 << 6) | (31 << 1)));
#define INVERT_BIT(dst) \
FAIL_IF(push_inst(compiler, XORI | S(dst) | A(dst) | 0x1));
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si reg, input_flags;
sljit_si flags = GET_ALL_FLAGS(op);
sljit_sw original_dstw = dstw;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
reg = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
ADJUST_LOCAL_OFFSET(src, srcw);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
input_flags = (flags & SLJIT_INT_OP) ? INT_DATA : WORD_DATA;
#else
input_flags = WORD_DATA;
#endif
FAIL_IF(emit_op_mem2(compiler, input_flags | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
}
switch (type & 0xff) {
case SLJIT_EQUAL:
GET_CR_BIT(2, reg);
break;
case SLJIT_NOT_EQUAL:
GET_CR_BIT(2, reg);
INVERT_BIT(reg);
break;
case SLJIT_LESS:
case SLJIT_D_LESS:
GET_CR_BIT(4 + 0, reg);
break;
case SLJIT_GREATER_EQUAL:
case SLJIT_D_GREATER_EQUAL:
GET_CR_BIT(4 + 0, reg);
INVERT_BIT(reg);
break;
case SLJIT_GREATER:
case SLJIT_D_GREATER:
GET_CR_BIT(4 + 1, reg);
break;
case SLJIT_LESS_EQUAL:
case SLJIT_D_LESS_EQUAL:
GET_CR_BIT(4 + 1, reg);
INVERT_BIT(reg);
break;
case SLJIT_SIG_LESS:
GET_CR_BIT(0, reg);
break;
case SLJIT_SIG_GREATER_EQUAL:
GET_CR_BIT(0, reg);
INVERT_BIT(reg);
break;
case SLJIT_SIG_GREATER:
GET_CR_BIT(1, reg);
break;
case SLJIT_SIG_LESS_EQUAL:
GET_CR_BIT(1, reg);
INVERT_BIT(reg);
break;
case SLJIT_OVERFLOW:
case SLJIT_MUL_OVERFLOW:
GET_CR_BIT(3, reg);
break;
case SLJIT_NOT_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
GET_CR_BIT(3, reg);
INVERT_BIT(reg);
break;
case SLJIT_D_EQUAL:
GET_CR_BIT(4 + 2, reg);
break;
case SLJIT_D_NOT_EQUAL:
GET_CR_BIT(4 + 2, reg);
INVERT_BIT(reg);
break;
case SLJIT_D_UNORDERED:
GET_CR_BIT(4 + 3, reg);
break;
case SLJIT_D_ORDERED:
GET_CR_BIT(4 + 3, reg);
INVERT_BIT(reg);
break;
default:
SLJIT_ASSERT_STOP();
break;
}
if (op < SLJIT_ADD) {
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op == SLJIT_MOV)
input_flags = WORD_DATA;
else {
op = SLJIT_MOV_UI;
input_flags = INT_DATA;
}
#else
op = SLJIT_MOV;
input_flags = WORD_DATA;
#endif
if (reg != TMP_REG2)
return SLJIT_SUCCESS;
return emit_op(compiler, op, input_flags, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
}
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, op | flags, dst, original_dstw, src, srcw, TMP_REG2, 0);
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si reg;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const(compiler, reg, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
return const_;
}