普通文本  |  44行  |  1.18 KB

#!/usr/bin/python
'''
This example illustrates how to use Hough Transform to find lines
Usage: ./houghlines.py [<image_name>]
image argument defaults to ../data/pic1.png
'''
import cv2
import numpy as np
import sys
import math

try:
    fn = sys.argv[1]
except:
    fn = "../data/pic1.png"
print __doc__
src = cv2.imread(fn)
dst = cv2.Canny(src, 50, 200)
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)

if True: # HoughLinesP
    lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
    a,b,c = lines.shape
    for i in range(a):
        cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA)

else:    # HoughLines
    lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
    a,b,c = lines.shape
    for i in range(a):
        rho = lines[i][0][0]
        theta = lines[i][0][1]
        a = math.cos(theta)
        b = math.sin(theta)
        x0, y0 = a*rho, b*rho
        pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
        pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
        cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)


cv2.imshow("source", src)
cv2.imshow("detected lines", cdst)
cv2.waitKey(0)