/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/core_c.h"
namespace cvtest
{
static const int default_test_case_count = 500;
static const int default_max_log_array_size = 9;
ArrayTest::ArrayTest()
{
test_case_count = default_test_case_count;
iplimage_allowed = true;
cvmat_allowed = true;
optional_mask = false;
min_log_array_size = 0;
max_log_array_size = default_max_log_array_size;
element_wise_relative_error = true;
test_array.resize(MAX_ARR);
}
ArrayTest::~ArrayTest()
{
clear();
}
void ArrayTest::clear()
{
for( size_t i = 0; i < test_array.size(); i++ )
{
for( size_t j = 0; j < test_array[i].size(); j++ )
cvRelease( &test_array[i][j] );
}
BaseTest::clear();
}
int ArrayTest::read_params( CvFileStorage* fs )
{
int code = BaseTest::read_params( fs );
if( code < 0 )
return code;
min_log_array_size = cvReadInt( find_param( fs, "min_log_array_size" ), min_log_array_size );
max_log_array_size = cvReadInt( find_param( fs, "max_log_array_size" ), max_log_array_size );
test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count );
test_case_count = cvRound( test_case_count*ts->get_test_case_count_scale() );
min_log_array_size = clipInt( min_log_array_size, 0, 20 );
max_log_array_size = clipInt( max_log_array_size, min_log_array_size, 20 );
test_case_count = clipInt( test_case_count, 0, 100000 );
return code;
}
void ArrayTest::get_test_array_types_and_sizes( int /*test_case_idx*/, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
Size size;
double val;
size_t i, j;
val = randReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size;
size.width = cvRound( exp(val*CV_LOG2) );
val = randReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size;
size.height = cvRound( exp(val*CV_LOG2) );
for( i = 0; i < test_array.size(); i++ )
{
size_t sizei = test_array[i].size();
for( j = 0; j < sizei; j++ )
{
sizes[i][j] = size;
types[i][j] = CV_8UC1;
}
}
}
static const unsigned int icvTsTypeToDepth[] =
{
IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, IPL_DEPTH_16S,
IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F
};
int ArrayTest::prepare_test_case( int test_case_idx )
{
int code = 1;
size_t max_arr = test_array.size();
vector<vector<Size> > sizes(max_arr);
vector<vector<Size> > whole_sizes(max_arr);
vector<vector<int> > types(max_arr);
size_t i, j;
RNG& rng = ts->get_rng();
bool is_image = false;
for( i = 0; i < max_arr; i++ )
{
size_t sizei = std::max(test_array[i].size(), (size_t)1);
sizes[i].resize(sizei);
types[i].resize(sizei);
whole_sizes[i].resize(sizei);
}
get_test_array_types_and_sizes( test_case_idx, sizes, types );
for( i = 0; i < max_arr; i++ )
{
size_t sizei = test_array[i].size();
for( j = 0; j < sizei; j++ )
{
unsigned t = randInt(rng);
bool create_mask = true, use_roi = false;
CvSize size = sizes[i][j], whole_size = size;
CvRect roi;
is_image = !cvmat_allowed ? true : iplimage_allowed ? (t & 1) != 0 : false;
create_mask = (t & 6) == 0; // ~ each of 3 tests will use mask
use_roi = (t & 8) != 0;
if( use_roi )
{
whole_size.width += randInt(rng) % 10;
whole_size.height += randInt(rng) % 10;
}
cvRelease( &test_array[i][j] );
if( size.width > 0 && size.height > 0 &&
types[i][j] >= 0 && (i != MASK || create_mask) )
{
if( use_roi )
{
roi.width = size.width;
roi.height = size.height;
if( whole_size.width > size.width )
roi.x = randInt(rng) % (whole_size.width - size.width);
if( whole_size.height > size.height )
roi.y = randInt(rng) % (whole_size.height - size.height);
}
if( is_image )
{
test_array[i][j] = cvCreateImage( whole_size,
icvTsTypeToDepth[CV_MAT_DEPTH(types[i][j])], CV_MAT_CN(types[i][j]) );
if( use_roi )
cvSetImageROI( (IplImage*)test_array[i][j], roi );
}
else
{
test_array[i][j] = cvCreateMat( whole_size.height, whole_size.width, types[i][j] );
if( use_roi )
{
CvMat submat, *mat = (CvMat*)test_array[i][j];
cvGetSubRect( test_array[i][j], &submat, roi );
submat.refcount = mat->refcount;
*mat = submat;
}
}
}
}
}
test_mat.resize(test_array.size());
for( i = 0; i < max_arr; i++ )
{
size_t sizei = test_array[i].size();
test_mat[i].resize(sizei);
for( j = 0; j < sizei; j++ )
{
CvArr* arr = test_array[i][j];
test_mat[i][j] = cv::cvarrToMat(arr);
if( !test_mat[i][j].empty() )
fill_array( test_case_idx, (int)i, (int)j, test_mat[i][j] );
}
}
return code;
}
void ArrayTest::get_minmax_bounds( int i, int /*j*/, int type, Scalar& low, Scalar& high )
{
double l, u;
int depth = CV_MAT_DEPTH(type);
if( i == MASK )
{
l = -2;
u = 2;
}
else if( depth < CV_32S )
{
l = getMinVal(type);
u = getMaxVal(type);
}
else
{
u = depth == CV_32S ? 1000000 : 1000.;
l = -u;
}
low = Scalar::all(l);
high = Scalar::all(u);
}
void ArrayTest::fill_array( int /*test_case_idx*/, int i, int j, Mat& arr )
{
if( i == REF_INPUT_OUTPUT )
cvtest::copy( test_mat[INPUT_OUTPUT][j], arr, Mat() );
else if( i == INPUT || i == INPUT_OUTPUT || i == MASK )
{
Scalar low, high;
get_minmax_bounds( i, j, arr.type(), low, high );
randUni( ts->get_rng(), arr, low, high );
}
}
double ArrayTest::get_success_error_level( int /*test_case_idx*/, int i, int j )
{
int elem_depth = CV_MAT_DEPTH(cvGetElemType(test_array[i][j]));
assert( i == OUTPUT || i == INPUT_OUTPUT );
return elem_depth < CV_32F ? 0 : elem_depth == CV_32F ? FLT_EPSILON*100: DBL_EPSILON*5000;
}
void ArrayTest::prepare_to_validation( int /*test_case_idx*/ )
{
assert(0);
}
int ArrayTest::validate_test_results( int test_case_idx )
{
static const char* arr_names[] = { "input", "input/output", "output",
"ref input/output", "ref output",
"temporary", "mask" };
size_t i, j;
prepare_to_validation( test_case_idx );
for( i = 0; i < 2; i++ )
{
int i0 = i == 0 ? OUTPUT : INPUT_OUTPUT;
int i1 = i == 0 ? REF_OUTPUT : REF_INPUT_OUTPUT;
size_t sizei = test_array[i0].size();
assert( sizei == test_array[i1].size() );
for( j = 0; j < sizei; j++ )
{
double err_level;
int code;
if( !test_array[i1][j] )
continue;
err_level = get_success_error_level( test_case_idx, i0, (int)j );
code = cmpEps2(ts, test_mat[i0][j], test_mat[i1][j], err_level, element_wise_relative_error, arr_names[i0]);
if (code == 0) continue;
for( i0 = 0; i0 < (int)test_array.size(); i0++ )
{
size_t sizei0 = test_array[i0].size();
if( i0 == REF_INPUT_OUTPUT || i0 == OUTPUT || i0 == TEMP )
continue;
for( i1 = 0; i1 < (int)sizei0; i1++ )
{
const Mat& arr = test_mat[i0][i1];
if( !arr.empty() )
{
string sizestr = vec2str(", ", &arr.size[0], arr.dims);
ts->printf( TS::LOG, "%s array %d type=%sC%d, size=(%s)\n",
arr_names[i0], i1, getTypeName(arr.depth()),
arr.channels(), sizestr.c_str() );
}
}
}
ts->set_failed_test_info( code );
return code;
}
}
return 0;
}
}
/* End of file. */