/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
class AllignedFrameSource : public cv::superres::FrameSource
{
public:
AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale);
void nextFrame(cv::OutputArray frame);
void reset();
private:
cv::Ptr<cv::superres::FrameSource> base_;
cv::Mat origFrame_;
int scale_;
};
AllignedFrameSource::AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) :
base_(base), scale_(scale)
{
CV_Assert( base_ );
}
void AllignedFrameSource::nextFrame(cv::OutputArray frame)
{
base_->nextFrame(origFrame_);
if (origFrame_.rows % scale_ == 0 && origFrame_.cols % scale_ == 0)
cv::superres::arrCopy(origFrame_, frame);
else
{
cv::Rect ROI(0, 0, (origFrame_.cols / scale_) * scale_, (origFrame_.rows / scale_) * scale_);
cv::superres::arrCopy(origFrame_(ROI), frame);
}
}
void AllignedFrameSource::reset()
{
base_->reset();
}
class DegradeFrameSource : public cv::superres::FrameSource
{
public:
DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale);
void nextFrame(cv::OutputArray frame);
void reset();
private:
cv::Ptr<cv::superres::FrameSource> base_;
cv::Mat origFrame_;
cv::Mat blurred_;
cv::Mat deg_;
double iscale_;
};
DegradeFrameSource::DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) :
base_(base), iscale_(1.0 / scale)
{
CV_Assert( base_ );
}
static void addGaussNoise(cv::OutputArray _image, double sigma)
{
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
cv::Mat noise(_image.size(), CV_32FC(cn));
cvtest::TS::ptr()->get_rng().fill(noise, cv::RNG::NORMAL, 0.0, sigma);
cv::addWeighted(_image, 1.0, noise, 1.0, 0.0, _image, depth);
}
static void addSpikeNoise(cv::OutputArray _image, int frequency)
{
cv::Mat_<uchar> mask(_image.size(), 0);
for (int y = 0; y < mask.rows; ++y)
for (int x = 0; x < mask.cols; ++x)
if (cvtest::TS::ptr()->get_rng().uniform(0, frequency) < 1)
mask(y, x) = 255;
_image.setTo(cv::Scalar::all(255), mask);
}
void DegradeFrameSource::nextFrame(cv::OutputArray frame)
{
base_->nextFrame(origFrame_);
cv::GaussianBlur(origFrame_, blurred_, cv::Size(5, 5), 0);
cv::resize(blurred_, deg_, cv::Size(), iscale_, iscale_, cv::INTER_NEAREST);
addGaussNoise(deg_, 10.0);
addSpikeNoise(deg_, 500);
cv::superres::arrCopy(deg_, frame);
}
void DegradeFrameSource::reset()
{
base_->reset();
}
double MSSIM(cv::InputArray _i1, cv::InputArray _i2)
{
const double C1 = 6.5025;
const double C2 = 58.5225;
const int depth = CV_32F;
cv::Mat I1, I2;
_i1.getMat().convertTo(I1, depth);
_i2.getMat().convertTo(I2, depth);
cv::Mat I2_2 = I2.mul(I2); // I2^2
cv::Mat I1_2 = I1.mul(I1); // I1^2
cv::Mat I1_I2 = I1.mul(I2); // I1 * I2
cv::Mat mu1, mu2;
cv::GaussianBlur(I1, mu1, cv::Size(11, 11), 1.5);
cv::GaussianBlur(I2, mu2, cv::Size(11, 11), 1.5);
cv::Mat mu1_2 = mu1.mul(mu1);
cv::Mat mu2_2 = mu2.mul(mu2);
cv::Mat mu1_mu2 = mu1.mul(mu2);
cv::Mat sigma1_2, sigma2_2, sigma12;
cv::GaussianBlur(I1_2, sigma1_2, cv::Size(11, 11), 1.5);
sigma1_2 -= mu1_2;
cv::GaussianBlur(I2_2, sigma2_2, cv::Size(11, 11), 1.5);
sigma2_2 -= mu2_2;
cv::GaussianBlur(I1_I2, sigma12, cv::Size(11, 11), 1.5);
sigma12 -= mu1_mu2;
cv::Mat t1, t2;
cv::Mat numerator;
cv::Mat denominator;
// t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
t1 = 2 * mu1_mu2 + C1;
t2 = 2 * sigma12 + C2;
numerator = t1.mul(t2);
// t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
t1 = mu1_2 + mu2_2 + C1;
t2 = sigma1_2 + sigma2_2 + C2;
denominator = t1.mul(t2);
// ssim_map = numerator./denominator;
cv::Mat ssim_map;
cv::divide(numerator, denominator, ssim_map);
// mssim = average of ssim map
cv::Scalar mssim = cv::mean(ssim_map);
if (_i1.channels() == 1)
return mssim[0];
return (mssim[0] + mssim[1] + mssim[3]) / 3;
}
class SuperResolution : public testing::Test
{
public:
template <typename T>
void RunTest(cv::Ptr<cv::superres::SuperResolution> superRes);
};
template <typename T>
void SuperResolution::RunTest(cv::Ptr<cv::superres::SuperResolution> superRes)
{
const std::string inputVideoName = cvtest::TS::ptr()->get_data_path() + "car.avi";
const int scale = 2;
const int iterations = 100;
const int temporalAreaRadius = 2;
ASSERT_FALSE( superRes.empty() );
const int btvKernelSize = superRes->getKernelSize();
superRes->setScale(scale);
superRes->setIterations(iterations);
superRes->setTemporalAreaRadius(temporalAreaRadius);
cv::Ptr<cv::superres::FrameSource> goldSource(new AllignedFrameSource(cv::superres::createFrameSource_Video(inputVideoName), scale));
cv::Ptr<cv::superres::FrameSource> lowResSource(new DegradeFrameSource(
cv::makePtr<AllignedFrameSource>(cv::superres::createFrameSource_Video(inputVideoName), scale), scale));
// skip first frame
cv::Mat frame;
lowResSource->nextFrame(frame);
goldSource->nextFrame(frame);
cv::Rect inner(btvKernelSize, btvKernelSize, frame.cols - 2 * btvKernelSize, frame.rows - 2 * btvKernelSize);
superRes->setInput(lowResSource);
double srAvgMSSIM = 0.0;
const int count = 10;
cv::Mat goldFrame;
T superResFrame;
for (int i = 0; i < count; ++i)
{
goldSource->nextFrame(goldFrame);
ASSERT_FALSE( goldFrame.empty() );
superRes->nextFrame(superResFrame);
ASSERT_FALSE( superResFrame.empty() );
const double srMSSIM = MSSIM(goldFrame(inner), superResFrame);
srAvgMSSIM += srMSSIM;
}
srAvgMSSIM /= count;
EXPECT_GE( srAvgMSSIM, 0.5 );
}
TEST_F(SuperResolution, BTVL1)
{
RunTest<cv::Mat>(cv::superres::createSuperResolution_BTVL1());
}
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) && defined(HAVE_OPENCV_CUDAFILTERS)
TEST_F(SuperResolution, BTVL1_CUDA)
{
RunTest<cv::Mat>(cv::superres::createSuperResolution_BTVL1_CUDA());
}
#endif
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
OCL_TEST_F(SuperResolution, BTVL1)
{
RunTest<cv::UMat>(cv::superres::createSuperResolution_BTVL1());
}
} } // namespace cvtest::ocl
#endif
#endif // BUILD_WITH_VIDEO_INPUT_SUPPORT