/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
/*! */
class NormHistogramCostExtractorImpl : public NormHistogramCostExtractor
{
public:
/* Constructors */
NormHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost)
{
flag=_flag;
nDummies=_nDummies;
defaultCost=_defaultCost;
name_ = "HistogramCostExtractor.NOR";
}
/* Destructor */
~NormHistogramCostExtractorImpl()
{
}
//! the main operator
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix);
//! Setters/Getters
void setNDummies(int _nDummies)
{
nDummies=_nDummies;
}
int getNDummies() const
{
return nDummies;
}
void setDefaultCost(float _defaultCost)
{
defaultCost=_defaultCost;
}
float getDefaultCost() const
{
return defaultCost;
}
virtual void setNormFlag(int _flag)
{
flag=_flag;
}
virtual int getNormFlag() const
{
return flag;
}
//! write/read
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "flag" << flag
<< "dummies" << nDummies
<< "default" << defaultCost;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
flag = (int)fn["flag"];
nDummies = (int)fn["dummies"];
defaultCost = (float)fn["default"];
}
private:
int flag;
int nDummies;
float defaultCost;
protected:
String name_;
};
void NormHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
{
// size of the costMatrix with dummies //
Mat descriptors1=_descriptors1.getMat();
Mat descriptors2=_descriptors2.getMat();
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
_costMatrix.create(costrows, costrows, CV_32F);
Mat costMatrix=_costMatrix.getMat();
// Obtain copies of the descriptors //
cv::Mat scd1 = descriptors1.clone();
cv::Mat scd2 = descriptors2.clone();
// row normalization //
for(int i=0; i<scd1.rows; i++)
{
scd1.row(i)/=(sum(scd1.row(i))[0]+FLT_EPSILON);
}
for(int i=0; i<scd2.rows; i++)
{
scd2.row(i)/=(sum(scd2.row(i))[0]+FLT_EPSILON);
}
// Compute the Cost Matrix //
for(int i=0; i<costrows; i++)
{
for(int j=0; j<costrows; j++)
{
if (i<scd1.rows && j<scd2.rows)
{
Mat columnDiff = scd1.row(i)-scd2.row(j);
costMatrix.at<float>(i,j)=(float)norm(columnDiff, flag);
}
else
{
costMatrix.at<float>(i,j)=defaultCost;
}
}
}
}
Ptr <HistogramCostExtractor> createNormHistogramCostExtractor(int flag, int nDummies, float defaultCost)
{
return Ptr <HistogramCostExtractor>( new NormHistogramCostExtractorImpl(flag, nDummies, defaultCost) );
}
/*! */
class EMDHistogramCostExtractorImpl : public EMDHistogramCostExtractor
{
public:
/* Constructors */
EMDHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost)
{
flag=_flag;
nDummies=_nDummies;
defaultCost=_defaultCost;
name_ = "HistogramCostExtractor.EMD";
}
/* Destructor */
~EMDHistogramCostExtractorImpl()
{
}
//! the main operator
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix);
//! Setters/Getters
void setNDummies(int _nDummies)
{
nDummies=_nDummies;
}
int getNDummies() const
{
return nDummies;
}
void setDefaultCost(float _defaultCost)
{
defaultCost=_defaultCost;
}
float getDefaultCost() const
{
return defaultCost;
}
virtual void setNormFlag(int _flag)
{
flag=_flag;
}
virtual int getNormFlag() const
{
return flag;
}
//! write/read
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "flag" << flag
<< "dummies" << nDummies
<< "default" << defaultCost;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
flag = (int)fn["flag"];
nDummies = (int)fn["dummies"];
defaultCost = (float)fn["default"];
}
private:
int flag;
int nDummies;
float defaultCost;
protected:
String name_;
};
void EMDHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
{
// size of the costMatrix with dummies //
Mat descriptors1=_descriptors1.getMat();
Mat descriptors2=_descriptors2.getMat();
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
_costMatrix.create(costrows, costrows, CV_32F);
Mat costMatrix=_costMatrix.getMat();
// Obtain copies of the descriptors //
cv::Mat scd1=descriptors1.clone();
cv::Mat scd2=descriptors2.clone();
// row normalization //
for(int i=0; i<scd1.rows; i++)
{
cv::Mat row = scd1.row(i);
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON);
}
for(int i=0; i<scd2.rows; i++)
{
cv::Mat row = scd2.row(i);
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON);
}
// Compute the Cost Matrix //
for(int i=0; i<costrows; i++)
{
for(int j=0; j<costrows; j++)
{
if (i<scd1.rows && j<scd2.rows)
{
cv::Mat sig1(scd1.cols,2,CV_32F), sig2(scd2.cols,2,CV_32F);
sig1.col(0)=scd1.row(i).t();
sig2.col(0)=scd2.row(j).t();
for (int k=0; k<sig1.rows; k++)
{
sig1.at<float>(k,1)=float(k);
}
for (int k=0; k<sig2.rows; k++)
{
sig2.at<float>(k,1)=float(k);
}
costMatrix.at<float>(i,j) = cv::EMD(sig1, sig2, flag);
}
else
{
costMatrix.at<float>(i,j) = defaultCost;
}
}
}
}
Ptr <HistogramCostExtractor> createEMDHistogramCostExtractor(int flag, int nDummies, float defaultCost)
{
return Ptr <HistogramCostExtractor>( new EMDHistogramCostExtractorImpl(flag, nDummies, defaultCost) );
}
/*! */
class ChiHistogramCostExtractorImpl : public ChiHistogramCostExtractor
{
public:
/* Constructors */
ChiHistogramCostExtractorImpl(int _nDummies, float _defaultCost)
{
name_ = "HistogramCostExtractor.CHI";
nDummies=_nDummies;
defaultCost=_defaultCost;
}
/* Destructor */
~ChiHistogramCostExtractorImpl()
{
}
//! the main operator
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix);
//! setters / getters
void setNDummies(int _nDummies)
{
nDummies=_nDummies;
}
int getNDummies() const
{
return nDummies;
}
void setDefaultCost(float _defaultCost)
{
defaultCost=_defaultCost;
}
float getDefaultCost() const
{
return defaultCost;
}
//! write/read
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "dummies" << nDummies
<< "default" << defaultCost;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
nDummies = (int)fn["dummies"];
defaultCost = (float)fn["default"];
}
protected:
String name_;
int nDummies;
float defaultCost;
};
void ChiHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
{
// size of the costMatrix with dummies //
Mat descriptors1=_descriptors1.getMat();
Mat descriptors2=_descriptors2.getMat();
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
_costMatrix.create(costrows, costrows, CV_32FC1);
Mat costMatrix=_costMatrix.getMat();
// Obtain copies of the descriptors //
cv::Mat scd1=descriptors1.clone();
cv::Mat scd2=descriptors2.clone();
// row normalization //
for(int i=0; i<scd1.rows; i++)
{
cv::Mat row = scd1.row(i);
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON);
}
for(int i=0; i<scd2.rows; i++)
{
cv::Mat row = scd2.row(i);
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON);
}
// Compute the Cost Matrix //
for(int i=0; i<costrows; i++)
{
for(int j=0; j<costrows; j++)
{
if (i<scd1.rows && j<scd2.rows)
{
float csum = 0;
for(int k=0; k<scd2.cols; k++)
{
float resta=scd1.at<float>(i,k)-scd2.at<float>(j,k);
float suma=scd1.at<float>(i,k)+scd2.at<float>(j,k);
csum += resta*resta/(FLT_EPSILON+suma);
}
costMatrix.at<float>(i,j)=csum/2;
}
else
{
costMatrix.at<float>(i,j)=defaultCost;
}
}
}
}
Ptr <HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies, float defaultCost)
{
return Ptr <HistogramCostExtractor>( new ChiHistogramCostExtractorImpl(nDummies, defaultCost) );
}
/*! */
class EMDL1HistogramCostExtractorImpl : public EMDL1HistogramCostExtractor
{
public:
/* Constructors */
EMDL1HistogramCostExtractorImpl(int _nDummies, float _defaultCost)
{
name_ = "HistogramCostExtractor.CHI";
nDummies=_nDummies;
defaultCost=_defaultCost;
}
/* Destructor */
~EMDL1HistogramCostExtractorImpl()
{
}
//! the main operator
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix);
//! setters / getters
void setNDummies(int _nDummies)
{
nDummies=_nDummies;
}
int getNDummies() const
{
return nDummies;
}
void setDefaultCost(float _defaultCost)
{
defaultCost=_defaultCost;
}
float getDefaultCost() const
{
return defaultCost;
}
//! write/read
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "dummies" << nDummies
<< "default" << defaultCost;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
nDummies = (int)fn["dummies"];
defaultCost = (float)fn["default"];
}
protected:
String name_;
int nDummies;
float defaultCost;
};
void EMDL1HistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
{
// size of the costMatrix with dummies //
Mat descriptors1=_descriptors1.getMat();
Mat descriptors2=_descriptors2.getMat();
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
_costMatrix.create(costrows, costrows, CV_32F);
Mat costMatrix=_costMatrix.getMat();
// Obtain copies of the descriptors //
cv::Mat scd1=descriptors1.clone();
cv::Mat scd2=descriptors2.clone();
// row normalization //
for(int i=0; i<scd1.rows; i++)
{
cv::Mat row = scd1.row(i);
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON);
}
for(int i=0; i<scd2.rows; i++)
{
cv::Mat row = scd2.row(i);
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON);
}
// Compute the Cost Matrix //
for(int i=0; i<costrows; i++)
{
for(int j=0; j<costrows; j++)
{
if (i<scd1.rows && j<scd2.rows)
{
cv::Mat sig1(scd1.cols,1,CV_32F), sig2(scd2.cols,1,CV_32F);
sig1.col(0)=scd1.row(i).t();
sig2.col(0)=scd2.row(j).t();
costMatrix.at<float>(i,j) = cv::EMDL1(sig1, sig2);
}
else
{
costMatrix.at<float>(i,j) = defaultCost;
}
}
}
}
Ptr <HistogramCostExtractor> createEMDL1HistogramCostExtractor(int nDummies, float defaultCost)
{
return Ptr <HistogramCostExtractor>( new EMDL1HistogramCostExtractorImpl(nDummies, defaultCost) );
}
} // cv