/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if (defined(__cplusplus) && __cplusplus > 199711L) || (defined(_MSC_VER) && _MSC_VER >= 1700)
#define USE_STD_THREADS
#endif
#if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID) || defined(USE_STD_THREADS)
#include "opencv2/core/utility.hpp"
#ifdef USE_STD_THREADS
#include <thread>
#include <mutex>
#include <condition_variable>
#else
#include <pthread.h>
#endif
#if defined(DEBUG) || defined(_DEBUG)
#undef DEBUGLOGS
#define DEBUGLOGS 1
#endif
#ifndef DEBUGLOGS
#define DEBUGLOGS 0
#endif
#ifdef ANDROID
#include <android/log.h>
#define LOG_TAG "OBJECT_DETECTOR"
#define LOGD0(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#define LOGI0(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__))
#define LOGW0(...) ((void)__android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__))
#define LOGE0(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
#else
#include <stdio.h>
#define LOGD0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#define LOGI0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#define LOGW0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#define LOGE0(_str, ...) (printf(_str , ## __VA_ARGS__), printf("\n"), fflush(stdout))
#endif
#if DEBUGLOGS
#define LOGD(_str, ...) LOGD0(_str , ## __VA_ARGS__)
#define LOGI(_str, ...) LOGI0(_str , ## __VA_ARGS__)
#define LOGW(_str, ...) LOGW0(_str , ## __VA_ARGS__)
#define LOGE(_str, ...) LOGE0(_str , ## __VA_ARGS__)
#else
#define LOGD(...)
#define LOGI(...)
#define LOGW(...)
#define LOGE(...)
#endif
using namespace cv;
static inline cv::Point2f centerRect(const cv::Rect& r)
{
return cv::Point2f(r.x+((float)r.width)/2, r.y+((float)r.height)/2);
}
static inline cv::Rect scale_rect(const cv::Rect& r, float scale)
{
cv::Point2f m=centerRect(r);
float width = r.width * scale;
float height = r.height * scale;
int x=cvRound(m.x - width/2);
int y=cvRound(m.y - height/2);
return cv::Rect(x, y, cvRound(width), cvRound(height));
}
namespace cv
{
void* workcycleObjectDetectorFunction(void* p);
}
class cv::DetectionBasedTracker::SeparateDetectionWork
{
public:
SeparateDetectionWork(cv::DetectionBasedTracker& _detectionBasedTracker, cv::Ptr<DetectionBasedTracker::IDetector> _detector);
virtual ~SeparateDetectionWork();
bool communicateWithDetectingThread(const Mat& imageGray, std::vector<Rect>& rectsWhereRegions);
bool run();
void stop();
void resetTracking();
inline bool isWorking()
{
return (stateThread==STATE_THREAD_WORKING_SLEEPING) || (stateThread==STATE_THREAD_WORKING_WITH_IMAGE);
}
inline void lock()
{
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
}
inline void unlock()
{
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
}
protected:
DetectionBasedTracker& detectionBasedTracker;
cv::Ptr<DetectionBasedTracker::IDetector> cascadeInThread;
#ifdef USE_STD_THREADS
std::thread second_workthread;
std::mutex mtx;
std::unique_lock<std::mutex> mtx_lock;
std::condition_variable objectDetectorRun;
std::condition_variable objectDetectorThreadStartStop;
#else
pthread_t second_workthread;
pthread_mutex_t mutex;
pthread_cond_t objectDetectorRun;
pthread_cond_t objectDetectorThreadStartStop;
#endif
std::vector<cv::Rect> resultDetect;
volatile bool isObjectDetectingReady;
volatile bool shouldObjectDetectingResultsBeForgot;
enum StateSeparatedThread {
STATE_THREAD_STOPPED=0,
STATE_THREAD_WORKING_SLEEPING,
STATE_THREAD_WORKING_WITH_IMAGE,
STATE_THREAD_WORKING,
STATE_THREAD_STOPPING
};
volatile StateSeparatedThread stateThread;
cv::Mat imageSeparateDetecting;
void workcycleObjectDetector();
friend void* workcycleObjectDetectorFunction(void* p);
long long timeWhenDetectingThreadStartedWork;
};
cv::DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(DetectionBasedTracker& _detectionBasedTracker, cv::Ptr<DetectionBasedTracker::IDetector> _detector)
:detectionBasedTracker(_detectionBasedTracker),
cascadeInThread(),
isObjectDetectingReady(false),
shouldObjectDetectingResultsBeForgot(false),
stateThread(STATE_THREAD_STOPPED),
timeWhenDetectingThreadStartedWork(-1)
{
CV_Assert(_detector);
cascadeInThread = _detector;
#ifdef USE_STD_THREADS
mtx_lock = std::unique_lock<std::mutex>(mtx);
mtx_lock.unlock();
#else
int res=0;
res=pthread_mutex_init(&mutex, NULL);//TODO: should be attributes?
if (res) {
LOGE("ERROR in DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork in pthread_mutex_init(&mutex, NULL) is %d", res);
throw(std::exception());
}
res=pthread_cond_init (&objectDetectorRun, NULL);
if (res) {
LOGE("ERROR in DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork in pthread_cond_init(&objectDetectorRun,, NULL) is %d", res);
pthread_mutex_destroy(&mutex);
throw(std::exception());
}
res=pthread_cond_init (&objectDetectorThreadStartStop, NULL);
if (res) {
LOGE("ERROR in DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork in pthread_cond_init(&objectDetectorThreadStartStop,, NULL) is %d", res);
pthread_cond_destroy(&objectDetectorRun);
pthread_mutex_destroy(&mutex);
throw(std::exception());
}
#endif
}
cv::DetectionBasedTracker::SeparateDetectionWork::~SeparateDetectionWork()
{
if(stateThread!=STATE_THREAD_STOPPED) {
LOGE("\n\n\nATTENTION!!! dangerous algorithm error: destructor DetectionBasedTracker::DetectionBasedTracker::~SeparateDetectionWork is called before stopping the workthread");
}
#ifndef USE_STD_THREADS
pthread_cond_destroy(&objectDetectorThreadStartStop);
pthread_cond_destroy(&objectDetectorRun);
pthread_mutex_destroy(&mutex);
#endif
}
bool cv::DetectionBasedTracker::SeparateDetectionWork::run()
{
LOGD("DetectionBasedTracker::SeparateDetectionWork::run() --- start");
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
if (stateThread != STATE_THREAD_STOPPED) {
LOGE("DetectionBasedTracker::SeparateDetectionWork::run is called while the previous run is not stopped");
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
return false;
}
stateThread=STATE_THREAD_WORKING_SLEEPING;
#ifdef USE_STD_THREADS
second_workthread = std::thread(workcycleObjectDetectorFunction, (void*)this); //TODO: add attributes?
objectDetectorThreadStartStop.wait(mtx_lock);
mtx_lock.unlock();
#else
pthread_create(&second_workthread, NULL, workcycleObjectDetectorFunction, (void*)this); //TODO: add attributes?
pthread_cond_wait(&objectDetectorThreadStartStop, &mutex);
pthread_mutex_unlock(&mutex);
#endif
LOGD("DetectionBasedTracker::SeparateDetectionWork::run --- end");
return true;
}
#define CATCH_ALL_AND_LOG(_block) \
try { \
_block; \
} \
catch(cv::Exception& e) { \
LOGE0("\n %s: ERROR: OpenCV Exception caught: \n'%s'\n\n", CV_Func, e.what()); \
} catch(std::exception& e) { \
LOGE0("\n %s: ERROR: Exception caught: \n'%s'\n\n", CV_Func, e.what()); \
} catch(...) { \
LOGE0("\n %s: ERROR: UNKNOWN Exception caught\n\n", CV_Func); \
}
void* cv::workcycleObjectDetectorFunction(void* p)
{
CATCH_ALL_AND_LOG({ ((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->workcycleObjectDetector(); });
try{
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->lock();
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->stateThread = cv::DetectionBasedTracker::SeparateDetectionWork::STATE_THREAD_STOPPED;
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->isObjectDetectingReady=false;
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->shouldObjectDetectingResultsBeForgot=false;
#ifdef USE_STD_THREADS
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->objectDetectorThreadStartStop.notify_one();
#else
pthread_cond_signal(&(((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->objectDetectorThreadStartStop));
#endif
((cv::DetectionBasedTracker::SeparateDetectionWork*)p)->unlock();
} catch(...) {
LOGE0("DetectionBasedTracker: workcycleObjectDetectorFunction: ERROR concerning pointer, received as the function parameter");
}
return NULL;
}
void cv::DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector()
{
static double freq = getTickFrequency();
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- start");
std::vector<Rect> objects;
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
{
#ifdef USE_STD_THREADS
objectDetectorThreadStartStop.notify_one();
#else
pthread_cond_signal(&objectDetectorThreadStartStop);
#endif
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- before waiting");
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
#ifdef USE_STD_THREADS
objectDetectorRun.wait(mtx_lock);
#else
pthread_cond_wait(&objectDetectorRun, &mutex);
#endif
if (isWorking()) {
stateThread=STATE_THREAD_WORKING_WITH_IMAGE;
}
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- after waiting");
}
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
bool isFirstStep=true;
isObjectDetectingReady=false;
while(isWorking())
{
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- next step");
if (! isFirstStep) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- before waiting");
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
if (!isWorking()) {//it is a rare case, but may cause a crash
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- go out from the workcycle from inner part of lock just before waiting");
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
break;
}
CV_Assert(stateThread==STATE_THREAD_WORKING_SLEEPING);
#ifdef USE_STD_THREADS
objectDetectorRun.wait(mtx_lock);
#else
pthread_cond_wait(&objectDetectorRun, &mutex);
#endif
if (isWorking()) {
stateThread=STATE_THREAD_WORKING_WITH_IMAGE;
}
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- after waiting");
} else {
isFirstStep=false;
}
if (!isWorking()) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- go out from the workcycle just after waiting");
break;
}
if (imageSeparateDetecting.empty()) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- imageSeparateDetecting is empty, continue");
continue;
}
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- start handling imageSeparateDetecting, img.size=%dx%d, img.data=0x%p",
imageSeparateDetecting.size().width, imageSeparateDetecting.size().height, (void*)imageSeparateDetecting.data);
int64 t1_detect=getTickCount();
cascadeInThread->detect(imageSeparateDetecting, objects);
/*cascadeInThread.detectMultiScale( imageSeparateDetecting, objects,
detectionBasedTracker.parameters.scaleFactor, detectionBasedTracker.parameters.minNeighbors, 0
|CV_HAAR_SCALE_IMAGE
,
min_objectSize,
max_objectSize
);
*/
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- end handling imageSeparateDetecting");
if (!isWorking()) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- go out from the workcycle just after detecting");
break;
}
int64 t2_detect = getTickCount();
int64 dt_detect = t2_detect-t1_detect;
double dt_detect_ms=((double)dt_detect)/freq * 1000.0;
(void)(dt_detect_ms);
LOGI("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector() --- objects num==%d, t_ms=%.4f", (int)objects.size(), dt_detect_ms);
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
if (!shouldObjectDetectingResultsBeForgot) {
resultDetect=objects;
isObjectDetectingReady=true;
} else { //shouldObjectDetectingResultsBeForgot==true
resultDetect.clear();
isObjectDetectingReady=false;
shouldObjectDetectingResultsBeForgot=false;
}
if(isWorking()) {
stateThread=STATE_THREAD_WORKING_SLEEPING;
}
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
objects.clear();
}// while(isWorking())
LOGI("DetectionBasedTracker::SeparateDetectionWork::workcycleObjectDetector: Returning");
}
void cv::DetectionBasedTracker::SeparateDetectionWork::stop()
{
//FIXME: TODO: should add quickStop functionality
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
if (!isWorking()) {
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
LOGE("SimpleHighguiDemoCore::stop is called but the SimpleHighguiDemoCore pthread is not active");
return;
}
stateThread=STATE_THREAD_STOPPING;
LOGD("DetectionBasedTracker::SeparateDetectionWork::stop: before going to sleep to wait for the signal from the workthread");
#ifdef USE_STD_THREADS
objectDetectorRun.notify_one();
objectDetectorThreadStartStop.wait(mtx_lock);
LOGD("DetectionBasedTracker::SeparateDetectionWork::stop: after receiving the signal from the workthread, stateThread=%d", (int)stateThread);
mtx_lock.unlock();
#else
pthread_cond_signal(&objectDetectorRun);
pthread_cond_wait(&objectDetectorThreadStartStop, &mutex);
LOGD("DetectionBasedTracker::SeparateDetectionWork::stop: after receiving the signal from the workthread, stateThread=%d", (int)stateThread);
pthread_mutex_unlock(&mutex);
#endif
}
void cv::DetectionBasedTracker::SeparateDetectionWork::resetTracking()
{
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking");
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
if (stateThread == STATE_THREAD_WORKING_WITH_IMAGE) {
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking: since workthread is detecting objects at the moment, we should make cascadeInThread stop detecting and forget the detecting results");
shouldObjectDetectingResultsBeForgot=true;
//cascadeInThread.setStopFlag();//FIXME: TODO: this feature also should be contributed to OpenCV
} else {
LOGD("DetectionBasedTracker::SeparateDetectionWork::resetTracking: since workthread is NOT detecting objects at the moment, we should NOT make any additional actions");
}
resultDetect.clear();
isObjectDetectingReady=false;
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
}
bool cv::DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread(const Mat& imageGray, std::vector<Rect>& rectsWhereRegions)
{
static double freq = getTickFrequency();
bool shouldCommunicateWithDetectingThread = (stateThread==STATE_THREAD_WORKING_SLEEPING);
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: shouldCommunicateWithDetectingThread=%d", (shouldCommunicateWithDetectingThread?1:0));
if (!shouldCommunicateWithDetectingThread) {
return false;
}
bool shouldHandleResult = false;
#ifdef USE_STD_THREADS
mtx_lock.lock();
#else
pthread_mutex_lock(&mutex);
#endif
if (isObjectDetectingReady) {
shouldHandleResult=true;
rectsWhereRegions = resultDetect;
isObjectDetectingReady=false;
double lastBigDetectionDuration = 1000.0 * (((double)(getTickCount() - timeWhenDetectingThreadStartedWork )) / freq);
(void)(lastBigDetectionDuration);
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: lastBigDetectionDuration=%f ms", (double)lastBigDetectionDuration);
}
bool shouldSendNewDataToWorkThread = true;
if (timeWhenDetectingThreadStartedWork > 0) {
double time_from_previous_launch_in_ms=1000.0 * (((double)(getTickCount() - timeWhenDetectingThreadStartedWork )) / freq); //the same formula as for lastBigDetectionDuration
shouldSendNewDataToWorkThread = (time_from_previous_launch_in_ms >= detectionBasedTracker.parameters.minDetectionPeriod);
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: shouldSendNewDataToWorkThread was 1, now it is %d, since time_from_previous_launch_in_ms=%.2f, minDetectionPeriod=%d",
(shouldSendNewDataToWorkThread?1:0), time_from_previous_launch_in_ms, detectionBasedTracker.parameters.minDetectionPeriod);
}
if (shouldSendNewDataToWorkThread) {
imageSeparateDetecting.create(imageGray.size(), CV_8UC1);
imageGray.copyTo(imageSeparateDetecting);//may change imageSeparateDetecting ptr. But should not.
timeWhenDetectingThreadStartedWork = getTickCount() ;
#ifdef USE_STD_THREADS
objectDetectorRun.notify_one();
#else
pthread_cond_signal(&objectDetectorRun);
#endif
}
#ifdef USE_STD_THREADS
mtx_lock.unlock();
#else
pthread_mutex_unlock(&mutex);
#endif
LOGD("DetectionBasedTracker::SeparateDetectionWork::communicateWithDetectingThread: result: shouldHandleResult=%d", (shouldHandleResult?1:0));
return shouldHandleResult;
}
cv::DetectionBasedTracker::Parameters::Parameters()
{
maxTrackLifetime=5;
minDetectionPeriod=0;
}
cv::DetectionBasedTracker::InnerParameters::InnerParameters()
{
numLastPositionsToTrack=4;
numStepsToWaitBeforeFirstShow=6;
numStepsToTrackWithoutDetectingIfObjectHasNotBeenShown=3;
numStepsToShowWithoutDetecting=3;
coeffTrackingWindowSize=2.0;
coeffObjectSizeToTrack=0.85f;
coeffObjectSpeedUsingInPrediction=0.8f;
}
cv::DetectionBasedTracker::DetectionBasedTracker(cv::Ptr<IDetector> mainDetector, cv::Ptr<IDetector> trackingDetector, const Parameters& params)
:separateDetectionWork(),
parameters(params),
innerParameters(),
numTrackedSteps(0),
cascadeForTracking(trackingDetector)
{
CV_Assert( (params.maxTrackLifetime >= 0)
// && mainDetector
&& trackingDetector );
if (mainDetector) {
separateDetectionWork.reset(new SeparateDetectionWork(*this, mainDetector));
}
weightsPositionsSmoothing.push_back(1);
weightsSizesSmoothing.push_back(0.5);
weightsSizesSmoothing.push_back(0.3f);
weightsSizesSmoothing.push_back(0.2f);
}
cv::DetectionBasedTracker::~DetectionBasedTracker()
{
}
void DetectionBasedTracker::process(const Mat& imageGray)
{
CV_Assert(imageGray.type()==CV_8UC1);
if ( separateDetectionWork && !separateDetectionWork->isWorking() ) {
separateDetectionWork->run();
}
static double freq = getTickFrequency();
static long long time_when_last_call_started=getTickCount();
{
double delta_time_from_prev_call=1000.0 * (((double)(getTickCount() - time_when_last_call_started)) / freq);
(void)(delta_time_from_prev_call);
LOGD("DetectionBasedTracker::process: time from the previous call is %f ms", (double)delta_time_from_prev_call);
time_when_last_call_started=getTickCount();
}
Mat imageDetect=imageGray;
std::vector<Rect> rectsWhereRegions;
bool shouldHandleResult=false;
if (separateDetectionWork) {
shouldHandleResult = separateDetectionWork->communicateWithDetectingThread(imageGray, rectsWhereRegions);
}
if (shouldHandleResult) {
LOGD("DetectionBasedTracker::process: get _rectsWhereRegions were got from resultDetect");
} else {
LOGD("DetectionBasedTracker::process: get _rectsWhereRegions from previous positions");
for(size_t i = 0; i < trackedObjects.size(); i++) {
size_t n = trackedObjects[i].lastPositions.size();
CV_Assert(n > 0);
Rect r = trackedObjects[i].lastPositions[n-1];
if(r.area() == 0) {
LOGE("DetectionBasedTracker::process: ERROR: ATTENTION: strange algorithm's behavior: trackedObjects[i].rect() is empty");
continue;
}
//correction by speed of rectangle
if (n > 1) {
Point2f center = centerRect(r);
Point2f center_prev = centerRect(trackedObjects[i].lastPositions[n-2]);
Point2f shift = (center - center_prev) * innerParameters.coeffObjectSpeedUsingInPrediction;
r.x += cvRound(shift.x);
r.y += cvRound(shift.y);
}
rectsWhereRegions.push_back(r);
}
}
LOGI("DetectionBasedTracker::process: tracked objects num==%d", (int)trackedObjects.size());
std::vector<Rect> detectedObjectsInRegions;
LOGD("DetectionBasedTracker::process: rectsWhereRegions.size()=%d", (int)rectsWhereRegions.size());
for(size_t i=0; i < rectsWhereRegions.size(); i++) {
Rect r = rectsWhereRegions[i];
detectInRegion(imageDetect, r, detectedObjectsInRegions);
}
LOGD("DetectionBasedTracker::process: detectedObjectsInRegions.size()=%d", (int)detectedObjectsInRegions.size());
updateTrackedObjects(detectedObjectsInRegions);
}
void cv::DetectionBasedTracker::getObjects(std::vector<cv::Rect>& result) const
{
result.clear();
for(size_t i=0; i < trackedObjects.size(); i++) {
Rect r=calcTrackedObjectPositionToShow((int)i);
if (r.area()==0) {
continue;
}
result.push_back(r);
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}", r.width, r.height, r.x, r.y, r.width, r.height);
}
}
void cv::DetectionBasedTracker::getObjects(std::vector<Object>& result) const
{
result.clear();
for(size_t i=0; i < trackedObjects.size(); i++) {
Rect r=calcTrackedObjectPositionToShow((int)i);
if (r.area()==0) {
continue;
}
result.push_back(Object(r, trackedObjects[i].id));
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}", r.width, r.height, r.x, r.y, r.width, r.height);
}
}
void cv::DetectionBasedTracker::getObjects(std::vector<ExtObject>& result) const
{
result.clear();
for(size_t i=0; i < trackedObjects.size(); i++) {
ObjectStatus status;
Rect r=calcTrackedObjectPositionToShow((int)i, status);
result.push_back(ExtObject(trackedObjects[i].id, r, status));
LOGD("DetectionBasedTracker::process: found a object with SIZE %d x %d, rect={%d, %d, %d x %d}, status = %d", r.width, r.height, r.x, r.y, r.width, r.height, (int)status);
}
}
bool cv::DetectionBasedTracker::run()
{
if (separateDetectionWork) {
return separateDetectionWork->run();
}
return false;
}
void cv::DetectionBasedTracker::stop()
{
if (separateDetectionWork) {
separateDetectionWork->stop();
}
}
void cv::DetectionBasedTracker::resetTracking()
{
if (separateDetectionWork) {
separateDetectionWork->resetTracking();
}
trackedObjects.clear();
}
void cv::DetectionBasedTracker::updateTrackedObjects(const std::vector<Rect>& detectedObjects)
{
enum {
NEW_RECTANGLE=-1,
INTERSECTED_RECTANGLE=-2
};
int N1=(int)trackedObjects.size();
int N2=(int)detectedObjects.size();
LOGD("DetectionBasedTracker::updateTrackedObjects: N1=%d, N2=%d", N1, N2);
for(int i=0; i < N1; i++) {
trackedObjects[i].numDetectedFrames++;
}
std::vector<int> correspondence(detectedObjects.size(), NEW_RECTANGLE);
correspondence.clear();
correspondence.resize(detectedObjects.size(), NEW_RECTANGLE);
for(int i=0; i < N1; i++) {
LOGD("DetectionBasedTracker::updateTrackedObjects: i=%d", i);
TrackedObject& curObject=trackedObjects[i];
int bestIndex=-1;
int bestArea=-1;
int numpositions=(int)curObject.lastPositions.size();
CV_Assert(numpositions > 0);
Rect prevRect=curObject.lastPositions[numpositions-1];
LOGD("DetectionBasedTracker::updateTrackedObjects: prevRect[%d]={%d, %d, %d x %d}", i, prevRect.x, prevRect.y, prevRect.width, prevRect.height);
for(int j=0; j < N2; j++) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d", j);
if (correspondence[j] >= 0) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d is rejected, because it has correspondence=%d", j, correspondence[j]);
continue;
}
if (correspondence[j] !=NEW_RECTANGLE) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d is rejected, because it is intersected with another rectangle", j);
continue;
}
LOGD("DetectionBasedTracker::updateTrackedObjects: detectedObjects[%d]={%d, %d, %d x %d}",
j, detectedObjects[j].x, detectedObjects[j].y, detectedObjects[j].width, detectedObjects[j].height);
Rect r=prevRect & detectedObjects[j];
if ( (r.width > 0) && (r.height > 0) ) {
LOGD("DetectionBasedTracker::updateTrackedObjects: There is intersection between prevRect and detectedRect, r={%d, %d, %d x %d}",
r.x, r.y, r.width, r.height);
correspondence[j]=INTERSECTED_RECTANGLE;
if ( r.area() > bestArea) {
LOGD("DetectionBasedTracker::updateTrackedObjects: The area of intersection is %d, it is better than bestArea=%d", r.area(), bestArea);
bestIndex=j;
bestArea=r.area();
}
}
}
if (bestIndex >= 0) {
LOGD("DetectionBasedTracker::updateTrackedObjects: The best correspondence for i=%d is j=%d", i, bestIndex);
correspondence[bestIndex]=i;
for(int j=0; j < N2; j++) {
if (correspondence[j] >= 0)
continue;
Rect r=detectedObjects[j] & detectedObjects[bestIndex];
if ( (r.width > 0) && (r.height > 0) ) {
LOGD("DetectionBasedTracker::updateTrackedObjects: Found intersection between "
"rectangles j=%d and bestIndex=%d, rectangle j=%d is marked as intersected", j, bestIndex, j);
correspondence[j]=INTERSECTED_RECTANGLE;
}
}
} else {
LOGD("DetectionBasedTracker::updateTrackedObjects: There is no correspondence for i=%d ", i);
curObject.numFramesNotDetected++;
}
}
LOGD("DetectionBasedTracker::updateTrackedObjects: start second cycle");
for(int j=0; j < N2; j++) {
LOGD("DetectionBasedTracker::updateTrackedObjects: j=%d", j);
int i=correspondence[j];
if (i >= 0) {//add position
LOGD("DetectionBasedTracker::updateTrackedObjects: add position");
trackedObjects[i].lastPositions.push_back(detectedObjects[j]);
while ((int)trackedObjects[i].lastPositions.size() > (int) innerParameters.numLastPositionsToTrack) {
trackedObjects[i].lastPositions.erase(trackedObjects[i].lastPositions.begin());
}
trackedObjects[i].numFramesNotDetected=0;
} else if (i==NEW_RECTANGLE){ //new object
LOGD("DetectionBasedTracker::updateTrackedObjects: new object");
trackedObjects.push_back(detectedObjects[j]);
} else {
LOGD("DetectionBasedTracker::updateTrackedObjects: was auxiliary intersection");
}
}
std::vector<TrackedObject>::iterator it=trackedObjects.begin();
while( it != trackedObjects.end() ) {
if ( (it->numFramesNotDetected > parameters.maxTrackLifetime)
||
(
(it->numDetectedFrames <= innerParameters.numStepsToWaitBeforeFirstShow)
&&
(it->numFramesNotDetected > innerParameters.numStepsToTrackWithoutDetectingIfObjectHasNotBeenShown)
)
)
{
int numpos=(int)it->lastPositions.size();
CV_Assert(numpos > 0);
Rect r = it->lastPositions[numpos-1];
(void)(r);
LOGD("DetectionBasedTracker::updateTrackedObjects: deleted object {%d, %d, %d x %d}",
r.x, r.y, r.width, r.height);
it=trackedObjects.erase(it);
} else {
it++;
}
}
}
int cv::DetectionBasedTracker::addObject(const Rect& location)
{
LOGD("DetectionBasedTracker::addObject: new object {%d, %d %dx%d}",location.x, location.y, location.width, location.height);
trackedObjects.push_back(TrackedObject(location));
int newId = trackedObjects.back().id;
LOGD("DetectionBasedTracker::addObject: newId = %d", newId);
return newId;
}
Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i) const
{
ObjectStatus status;
return calcTrackedObjectPositionToShow(i, status);
}
Rect cv::DetectionBasedTracker::calcTrackedObjectPositionToShow(int i, ObjectStatus& status) const
{
if ( (i < 0) || (i >= (int)trackedObjects.size()) ) {
LOGE("DetectionBasedTracker::calcTrackedObjectPositionToShow: ERROR: wrong i=%d", i);
status = WRONG_OBJECT;
return Rect();
}
if (trackedObjects[i].numDetectedFrames <= innerParameters.numStepsToWaitBeforeFirstShow){
LOGI("DetectionBasedTracker::calcTrackedObjectPositionToShow: trackedObjects[%d].numDetectedFrames=%d <= numStepsToWaitBeforeFirstShow=%d --- return empty Rect()",
i, trackedObjects[i].numDetectedFrames, innerParameters.numStepsToWaitBeforeFirstShow);
status = DETECTED_NOT_SHOWN_YET;
return Rect();
}
if (trackedObjects[i].numFramesNotDetected > innerParameters.numStepsToShowWithoutDetecting) {
status = DETECTED_TEMPORARY_LOST;
return Rect();
}
const TrackedObject::PositionsVector& lastPositions=trackedObjects[i].lastPositions;
int N=(int)lastPositions.size();
if (N<=0) {
LOGE("DetectionBasedTracker::calcTrackedObjectPositionToShow: ERROR: no positions for i=%d", i);
status = WRONG_OBJECT;
return Rect();
}
int Nsize=std::min(N, (int)weightsSizesSmoothing.size());
int Ncenter= std::min(N, (int)weightsPositionsSmoothing.size());
Point2f center;
double w=0, h=0;
if (Nsize > 0) {
double sum=0;
for(int j=0; j < Nsize; j++) {
int k=N-j-1;
w += lastPositions[k].width * weightsSizesSmoothing[j];
h += lastPositions[k].height * weightsSizesSmoothing[j];
sum+=weightsSizesSmoothing[j];
}
w /= sum;
h /= sum;
} else {
w=lastPositions[N-1].width;
h=lastPositions[N-1].height;
}
if (Ncenter > 0) {
double sum=0;
for(int j=0; j < Ncenter; j++) {
int k=N-j-1;
Point tl(lastPositions[k].tl());
Point br(lastPositions[k].br());
Point2f c1;
c1=tl;
c1=c1* 0.5f;
Point2f c2;
c2=br;
c2=c2*0.5f;
c1=c1+c2;
center=center+ (c1 * weightsPositionsSmoothing[j]);
sum+=weightsPositionsSmoothing[j];
}
center *= (float)(1 / sum);
} else {
int k=N-1;
Point tl(lastPositions[k].tl());
Point br(lastPositions[k].br());
Point2f c1;
c1=tl;
c1=c1* 0.5f;
Point2f c2;
c2=br;
c2=c2*0.5f;
center=c1+c2;
}
Point2f tl=center-Point2f((float)w*0.5f,(float)h*0.5f);
Rect res(cvRound(tl.x), cvRound(tl.y), cvRound(w), cvRound(h));
LOGD("DetectionBasedTracker::calcTrackedObjectPositionToShow: Result for i=%d: {%d, %d, %d x %d}", i, res.x, res.y, res.width, res.height);
status = DETECTED;
return res;
}
void cv::DetectionBasedTracker::detectInRegion(const Mat& img, const Rect& r, std::vector<Rect>& detectedObjectsInRegions)
{
Rect r0(Point(), img.size());
Rect r1 = scale_rect(r, innerParameters.coeffTrackingWindowSize);
r1 = r1 & r0;
if ( (r1.width <=0) || (r1.height <= 0) ) {
LOGD("DetectionBasedTracker::detectInRegion: Empty intersection");
return;
}
int d = cvRound(std::min(r.width, r.height) * innerParameters.coeffObjectSizeToTrack);
std::vector<Rect> tmpobjects;
Mat img1(img, r1);//subimage for rectangle -- without data copying
LOGD("DetectionBasedTracker::detectInRegion: img1.size()=%d x %d, d=%d",
img1.size().width, img1.size().height, d);
cascadeForTracking->setMinObjectSize(Size(d, d));
cascadeForTracking->detect(img1, tmpobjects);
/*
detectMultiScale( img1, tmpobjects,
parameters.scaleFactor, parameters.minNeighbors, 0
|CV_HAAR_FIND_BIGGEST_OBJECT
|CV_HAAR_SCALE_IMAGE
,
Size(d,d),
max_objectSize
);*/
for(size_t i=0; i < tmpobjects.size(); i++) {
Rect curres(tmpobjects[i].tl() + r1.tl(), tmpobjects[i].size());
detectedObjectsInRegions.push_back(curres);
}
}
bool cv::DetectionBasedTracker::setParameters(const Parameters& params)
{
if ( params.maxTrackLifetime < 0 )
{
LOGE("DetectionBasedTracker::setParameters: ERROR: wrong parameters value");
return false;
}
if (separateDetectionWork) {
separateDetectionWork->lock();
}
parameters=params;
if (separateDetectionWork) {
separateDetectionWork->unlock();
}
return true;
}
const cv::DetectionBasedTracker::Parameters& DetectionBasedTracker::getParameters() const
{
return parameters;
}
#endif