//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import org.opencv.core.Mat;
import org.opencv.core.TermCriteria;
// C++: class LogisticRegression
//javadoc: LogisticRegression
public class LogisticRegression extends StatModel {
protected LogisticRegression(long addr) { super(addr); }
public static final int
REG_DISABLE = -1,
REG_L1 = 0,
REG_L2 = 1,
BATCH = 0,
MINI_BATCH = 1;
//
// C++: double getLearningRate()
//
//javadoc: LogisticRegression::getLearningRate()
public double getLearningRate()
{
double retVal = getLearningRate_0(nativeObj);
return retVal;
}
//
// C++: void setLearningRate(double val)
//
//javadoc: LogisticRegression::setLearningRate(val)
public void setLearningRate(double val)
{
setLearningRate_0(nativeObj, val);
return;
}
//
// C++: int getIterations()
//
//javadoc: LogisticRegression::getIterations()
public int getIterations()
{
int retVal = getIterations_0(nativeObj);
return retVal;
}
//
// C++: void setIterations(int val)
//
//javadoc: LogisticRegression::setIterations(val)
public void setIterations(int val)
{
setIterations_0(nativeObj, val);
return;
}
//
// C++: int getRegularization()
//
//javadoc: LogisticRegression::getRegularization()
public int getRegularization()
{
int retVal = getRegularization_0(nativeObj);
return retVal;
}
//
// C++: void setRegularization(int val)
//
//javadoc: LogisticRegression::setRegularization(val)
public void setRegularization(int val)
{
setRegularization_0(nativeObj, val);
return;
}
//
// C++: int getTrainMethod()
//
//javadoc: LogisticRegression::getTrainMethod()
public int getTrainMethod()
{
int retVal = getTrainMethod_0(nativeObj);
return retVal;
}
//
// C++: void setTrainMethod(int val)
//
//javadoc: LogisticRegression::setTrainMethod(val)
public void setTrainMethod(int val)
{
setTrainMethod_0(nativeObj, val);
return;
}
//
// C++: int getMiniBatchSize()
//
//javadoc: LogisticRegression::getMiniBatchSize()
public int getMiniBatchSize()
{
int retVal = getMiniBatchSize_0(nativeObj);
return retVal;
}
//
// C++: void setMiniBatchSize(int val)
//
//javadoc: LogisticRegression::setMiniBatchSize(val)
public void setMiniBatchSize(int val)
{
setMiniBatchSize_0(nativeObj, val);
return;
}
//
// C++: TermCriteria getTermCriteria()
//
//javadoc: LogisticRegression::getTermCriteria()
public TermCriteria getTermCriteria()
{
TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
return retVal;
}
//
// C++: void setTermCriteria(TermCriteria val)
//
//javadoc: LogisticRegression::setTermCriteria(val)
public void setTermCriteria(TermCriteria val)
{
setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
return;
}
//
// C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0)
//
//javadoc: LogisticRegression::predict(samples, results, flags)
public float predict(Mat samples, Mat results, int flags)
{
float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags);
return retVal;
}
//javadoc: LogisticRegression::predict(samples)
public float predict(Mat samples)
{
float retVal = predict_1(nativeObj, samples.nativeObj);
return retVal;
}
//
// C++: Mat get_learnt_thetas()
//
//javadoc: LogisticRegression::get_learnt_thetas()
public Mat get_learnt_thetas()
{
Mat retVal = new Mat(get_learnt_thetas_0(nativeObj));
return retVal;
}
//
// C++: static Ptr_LogisticRegression create()
//
//javadoc: LogisticRegression::create()
public static LogisticRegression create()
{
LogisticRegression retVal = new LogisticRegression(create_0());
return retVal;
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: double getLearningRate()
private static native double getLearningRate_0(long nativeObj);
// C++: void setLearningRate(double val)
private static native void setLearningRate_0(long nativeObj, double val);
// C++: int getIterations()
private static native int getIterations_0(long nativeObj);
// C++: void setIterations(int val)
private static native void setIterations_0(long nativeObj, int val);
// C++: int getRegularization()
private static native int getRegularization_0(long nativeObj);
// C++: void setRegularization(int val)
private static native void setRegularization_0(long nativeObj, int val);
// C++: int getTrainMethod()
private static native int getTrainMethod_0(long nativeObj);
// C++: void setTrainMethod(int val)
private static native void setTrainMethod_0(long nativeObj, int val);
// C++: int getMiniBatchSize()
private static native int getMiniBatchSize_0(long nativeObj);
// C++: void setMiniBatchSize(int val)
private static native void setMiniBatchSize_0(long nativeObj, int val);
// C++: TermCriteria getTermCriteria()
private static native double[] getTermCriteria_0(long nativeObj);
// C++: void setTermCriteria(TermCriteria val)
private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
// C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0)
private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags);
private static native float predict_1(long nativeObj, long samples_nativeObj);
// C++: Mat get_learnt_thetas()
private static native long get_learnt_thetas_0(long nativeObj);
// C++: static Ptr_LogisticRegression create()
private static native long create_0();
// native support for java finalize()
private static native void delete(long nativeObj);
}