/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
#define USE_IPP_CANNY 1
#else
#undef USE_IPP_CANNY
#endif
namespace cv
{
#ifdef USE_IPP_CANNY
static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high)
{
int size = 0, size1 = 0;
IppiSize roi = { _src.cols, _src.rows };
if (ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size) < 0)
return false;
if (ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1) < 0)
return false;
size = std::max(size, size1);
if (ippiCannyGetSize(roi, &size1) < 0)
return false;
size = std::max(size, size1);
AutoBuffer<uchar> buf(size + 64);
uchar* buffer = alignPtr((uchar*)buf, 32);
Mat _dx(_src.rows, _src.cols, CV_16S);
if( ippiFilterSobelNegVertBorder_8u16s_C1R(_src.ptr(), (int)_src.step,
_dx.ptr<short>(), (int)_dx.step, roi,
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )
return false;
Mat _dy(_src.rows, _src.cols, CV_16S);
if( ippiFilterSobelHorizBorder_8u16s_C1R(_src.ptr(), (int)_src.step,
_dy.ptr<short>(), (int)_dy.step, roi,
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )
return false;
if( ippiCanny_16s8u_C1R(_dx.ptr<short>(), (int)_dx.step,
_dy.ptr<short>(), (int)_dy.step,
_dst.ptr(), (int)_dst.step, roi, low, high, buffer) < 0 )
return false;
return true;
}
#endif
#ifdef HAVE_OPENCL
static bool ocl_Canny(InputArray _src, OutputArray _dst, float low_thresh, float high_thresh,
int aperture_size, bool L2gradient, int cn, const Size & size)
{
UMat map;
const ocl::Device &dev = ocl::Device::getDefault();
int max_wg_size = (int)dev.maxWorkGroupSize();
int lSizeX = 32;
int lSizeY = max_wg_size / 32;
if (lSizeY == 0)
{
lSizeX = 16;
lSizeY = max_wg_size / 16;
}
if (lSizeY == 0)
{
lSizeY = 1;
}
if (L2gradient)
{
low_thresh = std::min(32767.0f, low_thresh);
high_thresh = std::min(32767.0f, high_thresh);
if (low_thresh > 0)
low_thresh *= low_thresh;
if (high_thresh > 0)
high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh), high = cvFloor(high_thresh);
if (aperture_size == 3 && !_src.isSubmatrix())
{
/*
stage1_with_sobel:
Sobel operator
Calc magnitudes
Non maxima suppression
Double thresholding
*/
char cvt[40];
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, ocl::memopTypeToStr(_src.depth()),
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt),
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)),
lSizeX, lSizeY,
L2gradient ? " -D L2GRAD" : ""));
if (with_sobel.empty())
return false;
UMat src = _src.getUMat();
map.create(size, CV_32S);
with_sobel.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(map),
(float) low, (float) high);
size_t globalsize[2] = { size.width, size.height },
localsize[2] = { lSizeX, lSizeY };
if (!with_sobel.run(2, globalsize, localsize, false))
return false;
}
else
{
/*
stage1_without_sobel:
Calc magnitudes
Non maxima suppression
Double thresholding
*/
UMat dx, dy;
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : ""));
if (without_sobel.empty())
return false;
map.create(size, CV_32S);
without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy),
ocl::KernelArg::WriteOnly(map),
low, high);
size_t globalsize[2] = { size.width, size.height },
localsize[2] = { lSizeX, lSizeY };
if (!without_sobel.run(2, globalsize, localsize, false))
return false;
}
int PIX_PER_WI = 8;
/*
stage2:
hysteresis (add weak edges if they are connected with strong edges)
*/
int sizey = lSizeY / PIX_PER_WI;
if (sizey == 0)
sizey = 1;
size_t globalsize[2] = { size.width, (size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { lSizeX, sizey };
ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc,
format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d",
PIX_PER_WI, lSizeX, sizey));
if (edgesHysteresis.empty())
return false;
edgesHysteresis.args(ocl::KernelArg::ReadWrite(map));
if (!edgesHysteresis.run(2, globalsize, localsize, false))
return false;
// get edges
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc,
format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI));
if (getEdgesKernel.empty())
return false;
_dst.create(size, CV_8UC1);
UMat dst = _dst.getUMat();
getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst));
return getEdgesKernel.run(2, globalsize, NULL, false);
}
#endif
#ifdef HAVE_TBB
// Queue with peaks that will processed serially.
static tbb::concurrent_queue<uchar*> borderPeaks;
class tbbCanny
{
public:
tbbCanny(const Range _boundaries, const Mat& _src, uchar* _map, int _low,
int _high, int _aperture_size, bool _L2gradient)
: boundaries(_boundaries), src(_src), map(_map), low(_low), high(_high),
aperture_size(_aperture_size), L2gradient(_L2gradient)
{}
// This parallel version of Canny algorithm splits the src image in threadsNumber horizontal slices.
// The first row of each slice contains the last row of the previous slice and
// the last row of each slice contains the first row of the next slice
// so that each slice is independent and no mutexes are required.
void operator()() const
{
#if CV_SSE2
bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#endif
const int type = src.type(), cn = CV_MAT_CN(type);
Mat dx, dy;
ptrdiff_t mapstep = src.cols + 2;
// In sobel transform we calculate ksize2 extra lines for the first and last rows of each slice
// because IPPDerivSobel expects only isolated ROIs, in contrast with the opencv version which
// uses the pixels outside of the ROI to form a border.
uchar ksize2 = aperture_size / 2;
if (boundaries.start == 0 && boundaries.end == src.rows)
{
Mat tempdx(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn));
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));
Sobel(src, tempdx.rowRange(1, tempdx.rows - 1), CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src, tempdy.rowRange(1, tempdy.rows - 1), CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx;
dy = tempdy;
}
else if (boundaries.start == 0)
{
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short));
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdx.rowRange(1, tempdx.rows),
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdy.rowRange(1, tempdy.rows),
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx.rowRange(0, tempdx.rows - ksize2);
dy = tempdy.rowRange(0, tempdy.rows - ksize2);
}
else if (boundaries.end == src.rows)
{
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn));
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short));
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short));
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdx.rowRange(0, tempdx.rows - 1),
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdy.rowRange(0, tempdy.rows - 1),
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx.rowRange(ksize2, tempdx.rows);
dy = tempdy.rowRange(ksize2, tempdy.rows);
}
else
{
Mat tempdx(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
Mat tempdy(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn));
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdx,
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdy,
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
dx = tempdx.rowRange(ksize2, tempdx.rows - ksize2);
dy = tempdy.rowRange(ksize2, tempdy.rows - ksize2);
}
int maxsize = std::max(1 << 10, src.cols * (boundaries.end - boundaries.start) / 10);
std::vector<uchar*> stack(maxsize);
uchar **stack_top = &stack[0];
uchar **stack_bottom = &stack[0];
AutoBuffer<uchar> buffer(cn * mapstep * 3 * sizeof(int));
int* mag_buf[3];
mag_buf[0] = (int*)(uchar*)buffer;
mag_buf[1] = mag_buf[0] + mapstep*cn;
mag_buf[2] = mag_buf[1] + mapstep*cn;
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (int i = boundaries.start - 1; i <= boundaries.end; i++)
{
int* _norm = mag_buf[(i > boundaries.start) - (i == boundaries.start - 1) + 1] + 1;
short* _dx = dx.ptr<short>(i - boundaries.start + 1);
short* _dy = dy.ptr<short>(i - boundaries.start + 1);
if (!L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SSE2
if (haveSSE2)
{
__m128i v_zero = _mm_setzero_si128();
for ( ; j <= width - 8; j += 8)
{
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx));
v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy));
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero));
_mm_storeu_si128((__m128i *)(_norm + j), v_norm);
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero));
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
}
}
#elif CV_NEON
for ( ; j <= width - 8; j += 8)
{
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))),
vabsq_s32(vmovl_s16(vget_low_s16(v_dy)))));
vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))),
vabsq_s32(vmovl_s16(vget_high_s16(v_dy)))));
}
#endif
for ( ; j < width; ++j)
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
}
else
{
int j = 0, width = src.cols * cn;
#if CV_SSE2
if (haveSSE2)
{
for ( ; j <= width - 8; j += 8)
{
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
__m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx);
__m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy);
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh));
_mm_storeu_si128((__m128i *)(_norm + j), v_norm);
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh));
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
}
}
#elif CV_NEON
for ( ; j <= width - 8; j += 8)
{
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy);
int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
vst1q_s32(_norm + j, v_dst);
v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy);
v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
vst1q_s32(_norm + j + 4, v_dst);
}
#endif
for ( ; j < width; ++j)
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
}
if (cn > 1)
{
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
_norm[j] = _norm[maxIdx];
_dx[j] = _dx[maxIdx];
_dy[j] = _dy[maxIdx];
}
}
_norm[-1] = _norm[src.cols] = 0;
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i <= boundaries.start)
continue;
uchar* _map = map + mapstep*i + 1;
_map[-1] = _map[src.cols] = 1;
int* _mag = mag_buf[1] + 1; // take the central row
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];
const short* _x = dx.ptr<short>(i - boundaries.start);
const short* _y = dy.ptr<short>(i - boundaries.start);
if ((stack_top - stack_bottom) + src.cols > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = std::max(maxsize * 3/2, sz + src.cols);
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
int prev_flag = 0;
bool canny_push = false;
for (int j = 0; j < src.cols; j++)
{
#define CANNY_SHIFT 15
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);
int m = _mag[j];
if (m > low)
{
int xs = _x[j];
int ys = _y[j];
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag[j-1] && m >= _mag[j+1]) canny_push = true;
}
else
{
int tg67x = tg22x + (x << (CANNY_SHIFT+1));
if (y > tg67x)
{
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) canny_push = true;
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) canny_push = true;
}
}
}
if (!canny_push)
{
prev_flag = 0;
_map[j] = uchar(1);
continue;
}
else
{
// _map[j-mapstep] is short-circuited at the start because previous thread is
// responsible for initializing it.
if (!prev_flag && m > high && (i <= boundaries.start+1 || _map[j-mapstep] != 2) )
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = 0;
canny_push = false;
}
}
// scroll the ring buffer
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
while (stack_top > stack_bottom)
{
if ((stack_top - stack_bottom) + 8 > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = maxsize * 3/2;
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
uchar* m;
CANNY_POP(m);
// Stops thresholding from expanding to other slices by sending pixels in the borders of each
// slice in a queue to be serially processed later.
if ( (m < map + (boundaries.start + 2) * mapstep) || (m >= map + boundaries.end * mapstep) )
{
borderPeaks.push(m);
continue;
}
if (!m[-1]) CANNY_PUSH(m - 1);
if (!m[1]) CANNY_PUSH(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
}
}
private:
const Range boundaries;
const Mat& src;
uchar* map;
int low;
int high;
int aperture_size;
bool L2gradient;
};
#endif
} // namespace cv
void cv::Canny( InputArray _src, OutputArray _dst,
double low_thresh, double high_thresh,
int aperture_size, bool L2gradient )
{
const int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
const Size size = _src.size();
CV_Assert( depth == CV_8U );
_dst.create(size, CV_8U);
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
{
// backward compatibility
aperture_size &= ~CV_CANNY_L2_GRADIENT;
L2gradient = true;
}
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
CV_Error(CV_StsBadFlag, "Aperture size should be odd");
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
CV_OCL_RUN(_dst.isUMat() && (cn == 1 || cn == 3),
ocl_Canny(_src, _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, cn, size))
Mat src = _src.getMat(), dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))
return;
#endif
#ifdef USE_IPP_CANNY
CV_IPP_CHECK()
{
if( aperture_size == 3 && !L2gradient && 1 == cn )
{
if (ippCanny(src, dst, (float)low_thresh, (float)high_thresh))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
}
#endif
#ifdef HAVE_TBB
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
ptrdiff_t mapstep = src.cols + 2;
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2));
uchar* map = (uchar*)buffer;
memset(map, 1, mapstep);
memset(map + mapstep*(src.rows + 1), 1, mapstep);
int threadsNumber = tbb::task_scheduler_init::default_num_threads();
int grainSize = src.rows / threadsNumber;
// Make a fallback for pictures with too few rows.
uchar ksize2 = aperture_size / 2;
int minGrainSize = 1 + ksize2;
int maxGrainSize = src.rows - 2 - 2*ksize2;
if ( !( minGrainSize <= grainSize && grainSize <= maxGrainSize ) )
{
threadsNumber = 1;
grainSize = src.rows;
}
tbb::task_group g;
for (int i = 0; i < threadsNumber; ++i)
{
if (i < threadsNumber - 1)
g.run(tbbCanny(Range(i * grainSize, (i + 1) * grainSize), src, map, low, high, aperture_size, L2gradient));
else
g.run(tbbCanny(Range(i * grainSize, src.rows), src, map, low, high, aperture_size, L2gradient));
}
g.wait();
#define CANNY_PUSH_SERIAL(d) *(d) = uchar(2), borderPeaks.push(d)
// now track the edges (hysteresis thresholding)
uchar* m;
while (borderPeaks.try_pop(m))
{
if (!m[-1]) CANNY_PUSH_SERIAL(m - 1);
if (!m[1]) CANNY_PUSH_SERIAL(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH_SERIAL(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH_SERIAL(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH_SERIAL(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH_SERIAL(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH_SERIAL(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH_SERIAL(m + mapstep + 1);
}
#else
Mat dx(src.rows, src.cols, CV_16SC(cn));
Mat dy(src.rows, src.cols, CV_16SC(cn));
Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
ptrdiff_t mapstep = src.cols + 2;
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int));
int* mag_buf[3];
mag_buf[0] = (int*)(uchar*)buffer;
mag_buf[1] = mag_buf[0] + mapstep*cn;
mag_buf[2] = mag_buf[1] + mapstep*cn;
memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int));
uchar* map = (uchar*)(mag_buf[2] + mapstep*cn);
memset(map, 1, mapstep);
memset(map + mapstep*(src.rows + 1), 1, mapstep);
int maxsize = std::max(1 << 10, src.cols * src.rows / 10);
std::vector<uchar*> stack(maxsize);
uchar **stack_top = &stack[0];
uchar **stack_bottom = &stack[0];
/* sector numbers
(Top-Left Origin)
1 2 3
* * *
* * *
0*******0
* * *
* * *
3 2 1
*/
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
#if CV_SSE2
bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#endif
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (int i = 0; i <= src.rows; i++)
{
int* _norm = mag_buf[(i > 0) + 1] + 1;
if (i < src.rows)
{
short* _dx = dx.ptr<short>(i);
short* _dy = dy.ptr<short>(i);
if (!L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SSE2
if (haveSSE2)
{
__m128i v_zero = _mm_setzero_si128();
for ( ; j <= width - 8; j += 8)
{
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx));
v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy));
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero));
_mm_storeu_si128((__m128i *)(_norm + j), v_norm);
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero));
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
}
}
#elif CV_NEON
for ( ; j <= width - 8; j += 8)
{
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))),
vabsq_s32(vmovl_s16(vget_low_s16(v_dy)))));
vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))),
vabsq_s32(vmovl_s16(vget_high_s16(v_dy)))));
}
#endif
for ( ; j < width; ++j)
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
}
else
{
int j = 0, width = src.cols * cn;
#if CV_SSE2
if (haveSSE2)
{
for ( ; j <= width - 8; j += 8)
{
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j));
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j));
__m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx);
__m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy);
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh));
_mm_storeu_si128((__m128i *)(_norm + j), v_norm);
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh));
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm);
}
}
#elif CV_NEON
for ( ; j <= width - 8; j += 8)
{
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j);
int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy);
int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
vst1q_s32(_norm + j, v_dst);
v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy);
v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp);
vst1q_s32(_norm + j + 4, v_dst);
}
#endif
for ( ; j < width; ++j)
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
}
if (cn > 1)
{
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
_norm[j] = _norm[maxIdx];
_dx[j] = _dx[maxIdx];
_dy[j] = _dy[maxIdx];
}
}
_norm[-1] = _norm[src.cols] = 0;
}
else
memset(_norm-1, 0, /* cn* */mapstep*sizeof(int));
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i == 0)
continue;
uchar* _map = map + mapstep*i + 1;
_map[-1] = _map[src.cols] = 1;
int* _mag = mag_buf[1] + 1; // take the central row
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];
const short* _x = dx.ptr<short>(i-1);
const short* _y = dy.ptr<short>(i-1);
if ((stack_top - stack_bottom) + src.cols > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = std::max(maxsize * 3/2, sz + src.cols);
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
int prev_flag = 0;
for (int j = 0; j < src.cols; j++)
{
#define CANNY_SHIFT 15
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);
int m = _mag[j];
if (m > low)
{
int xs = _x[j];
int ys = _y[j];
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push;
}
else
{
int tg67x = tg22x + (x << (CANNY_SHIFT+1));
if (y > tg67x)
{
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push;
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push;
}
}
}
prev_flag = 0;
_map[j] = uchar(1);
continue;
__ocv_canny_push:
if (!prev_flag && m > high && _map[j-mapstep] != 2)
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = 0;
}
// scroll the ring buffer
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
while (stack_top > stack_bottom)
{
uchar* m;
if ((stack_top - stack_bottom) + 8 > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = maxsize * 3/2;
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
CANNY_POP(m);
if (!m[-1]) CANNY_PUSH(m - 1);
if (!m[1]) CANNY_PUSH(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
}
#endif
// the final pass, form the final image
const uchar* pmap = map + mapstep + 1;
uchar* pdst = dst.ptr();
for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step)
{
for (int j = 0; j < src.cols; j++)
pdst[j] = (uchar)-(pmap[j] >> 1);
}
}
void cvCanny( const CvArr* image, CvArr* edges, double threshold1,
double threshold2, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges);
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U );
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255,
(aperture_size & CV_CANNY_L2_GRADIENT) != 0);
}
/* End of file. */