#include "precomp.hpp"
#define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0
static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p)
{
return *(cvflann::IndexParams*)(p.params);
}
cv::flann::IndexParams::~IndexParams()
{
delete &get_params(*this);
}
namespace cv
{
namespace flann
{
using namespace cvflann;
IndexParams::IndexParams()
{
params = new ::cvflann::IndexParams();
}
template<typename T>
T getParam(const IndexParams& _p, const String& key, const T& defaultVal=T())
{
::cvflann::IndexParams& p = get_params(_p);
::cvflann::IndexParams::const_iterator it = p.find(key);
if( it == p.end() )
return defaultVal;
return it->second.cast<T>();
}
template<typename T>
void setParam(IndexParams& _p, const String& key, const T& value)
{
::cvflann::IndexParams& p = get_params(_p);
p[key] = value;
}
String IndexParams::getString(const String& key, const String& defaultVal) const
{
return getParam(*this, key, defaultVal);
}
int IndexParams::getInt(const String& key, int defaultVal) const
{
return getParam(*this, key, defaultVal);
}
double IndexParams::getDouble(const String& key, double defaultVal) const
{
return getParam(*this, key, defaultVal);
}
void IndexParams::setString(const String& key, const String& value)
{
setParam(*this, key, value);
}
void IndexParams::setInt(const String& key, int value)
{
setParam(*this, key, value);
}
void IndexParams::setDouble(const String& key, double value)
{
setParam(*this, key, value);
}
void IndexParams::setFloat(const String& key, float value)
{
setParam(*this, key, value);
}
void IndexParams::setBool(const String& key, bool value)
{
setParam(*this, key, value);
}
void IndexParams::setAlgorithm(int value)
{
setParam(*this, "algorithm", (cvflann::flann_algorithm_t)value);
}
void IndexParams::getAll(std::vector<String>& names,
std::vector<int>& types,
std::vector<String>& strValues,
std::vector<double>& numValues) const
{
names.clear();
types.clear();
strValues.clear();
numValues.clear();
::cvflann::IndexParams& p = get_params(*this);
::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end();
for( ; it != it_end; ++it )
{
names.push_back(it->first);
try
{
String val = it->second.cast<String>();
types.push_back(CV_USRTYPE1);
strValues.push_back(val);
numValues.push_back(-1);
continue;
}
catch (...) {}
strValues.push_back(it->second.type().name());
try
{
double val = it->second.cast<double>();
types.push_back( CV_64F );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
float val = it->second.cast<float>();
types.push_back( CV_32F );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
int val = it->second.cast<int>();
types.push_back( CV_32S );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
short val = it->second.cast<short>();
types.push_back( CV_16S );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
ushort val = it->second.cast<ushort>();
types.push_back( CV_16U );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
char val = it->second.cast<char>();
types.push_back( CV_8S );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
uchar val = it->second.cast<uchar>();
types.push_back( CV_8U );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
bool val = it->second.cast<bool>();
types.push_back( CV_MAKETYPE(CV_USRTYPE1,2) );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
cvflann::flann_algorithm_t val = it->second.cast<cvflann::flann_algorithm_t>();
types.push_back( CV_MAKETYPE(CV_USRTYPE1,3) );
numValues.push_back(val);
continue;
}
catch (...) {}
types.push_back(-1); // unknown type
numValues.push_back(-1);
}
}
KDTreeIndexParams::KDTreeIndexParams(int trees)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KDTREE;
p["trees"] = trees;
}
LinearIndexParams::LinearIndexParams()
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_LINEAR;
}
CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations,
flann_centers_init_t centers_init, float cb_index )
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KMEANS;
// number of randomized trees to use (for kdtree)
p["trees"] = trees;
// branching factor
p["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
p["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
p["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
p["cb_index"] = cb_index;
}
AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight,
float memory_weight, float sample_fraction)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_AUTOTUNED;
// precision desired (used for autotuning, -1 otherwise)
p["target_precision"] = target_precision;
// build tree time weighting factor
p["build_weight"] = build_weight;
// index memory weighting factor
p["memory_weight"] = memory_weight;
// what fraction of the dataset to use for autotuning
p["sample_fraction"] = sample_fraction;
}
KMeansIndexParams::KMeansIndexParams(int branching, int iterations,
flann_centers_init_t centers_init, float cb_index )
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KMEANS;
// branching factor
p["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
p["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
p["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
p["cb_index"] = cb_index;
}
HierarchicalClusteringIndexParams::HierarchicalClusteringIndexParams(int branching ,
flann_centers_init_t centers_init,
int trees, int leaf_size)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_HIERARCHICAL;
// The branching factor used in the hierarchical clustering
p["branching"] = branching;
// Algorithm used for picking the initial cluster centers
p["centers_init"] = centers_init;
// number of parallel trees to build
p["trees"] = trees;
// maximum leaf size
p["leaf_size"] = leaf_size;
}
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_LSH;
// The number of hash tables to use
p["table_number"] = table_number;
// The length of the key in the hash tables
p["key_size"] = key_size;
// Number of levels to use in multi-probe (0 for standard LSH)
p["multi_probe_level"] = multi_probe_level;
}
SavedIndexParams::SavedIndexParams(const String& _filename)
{
String filename = _filename;
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_SAVED;
p["filename"] = filename;
}
SearchParams::SearchParams( int checks, float eps, bool sorted )
{
::cvflann::IndexParams& p = get_params(*this);
// how many leafs to visit when searching for neighbours (-1 for unlimited)
p["checks"] = checks;
// search for eps-approximate neighbours (default: 0)
p["eps"] = eps;
// only for radius search, require neighbours sorted by distance (default: true)
p["sorted"] = sorted;
}
template<typename Distance, typename IndexType> void
buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
{
typedef typename Distance::ElementType ElementType;
if(DataType<ElementType>::type != data.type())
CV_Error_(Error::StsUnsupportedFormat, ("type=%d\n", data.type()));
if(!data.isContinuous())
CV_Error(Error::StsBadArg, "Only continuous arrays are supported");
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
IndexType* _index = new IndexType(dataset, get_params(params), dist);
_index->buildIndex();
index = _index;
}
template<typename Distance> void
buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
{
buildIndex_<Distance, ::cvflann::Index<Distance> >(index, data, params, dist);
}
#if CV_NEON
typedef ::cvflann::Hamming<uchar> HammingDistance;
#else
typedef ::cvflann::HammingLUT HammingDistance;
#endif
Index::Index()
{
index = 0;
featureType = CV_32F;
algo = FLANN_INDEX_LINEAR;
distType = FLANN_DIST_L2;
}
Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType)
{
index = 0;
featureType = CV_32F;
algo = FLANN_INDEX_LINEAR;
distType = FLANN_DIST_L2;
build(_data, params, _distType);
}
void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType)
{
release();
algo = getParam<flann_algorithm_t>(params, "algorithm", FLANN_INDEX_LINEAR);
if( algo == FLANN_INDEX_SAVED )
{
load(_data, getParam<String>(params, "filename", String()));
return;
}
Mat data = _data.getMat();
index = 0;
featureType = data.type();
distType = _distType;
if ( algo == FLANN_INDEX_LSH)
{
distType = FLANN_DIST_HAMMING;
}
switch( distType )
{
case FLANN_DIST_HAMMING:
buildIndex< HammingDistance >(index, data, params);
break;
case FLANN_DIST_L2:
buildIndex< ::cvflann::L2<float> >(index, data, params);
break;
case FLANN_DIST_L1:
buildIndex< ::cvflann::L1<float> >(index, data, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params);
break;
case FLANN_DIST_HIST_INTERSECT:
buildIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, params);
break;
case FLANN_DIST_HELLINGER:
buildIndex< ::cvflann::HellingerDistance<float> >(index, data, params);
break;
case FLANN_DIST_CHI_SQUARE:
buildIndex< ::cvflann::ChiSquareDistance<float> >(index, data, params);
break;
case FLANN_DIST_KL:
buildIndex< ::cvflann::KL_Divergence<float> >(index, data, params);
break;
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
}
template<typename IndexType> void deleteIndex_(void* index)
{
delete (IndexType*)index;
}
template<typename Distance> void deleteIndex(void* index)
{
deleteIndex_< ::cvflann::Index<Distance> >(index);
}
Index::~Index()
{
release();
}
void Index::release()
{
if( !index )
return;
switch( distType )
{
case FLANN_DIST_HAMMING:
deleteIndex< HammingDistance >(index);
break;
case FLANN_DIST_L2:
deleteIndex< ::cvflann::L2<float> >(index);
break;
case FLANN_DIST_L1:
deleteIndex< ::cvflann::L1<float> >(index);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
deleteIndex< ::cvflann::MaxDistance<float> >(index);
break;
case FLANN_DIST_HIST_INTERSECT:
deleteIndex< ::cvflann::HistIntersectionDistance<float> >(index);
break;
case FLANN_DIST_HELLINGER:
deleteIndex< ::cvflann::HellingerDistance<float> >(index);
break;
case FLANN_DIST_CHI_SQUARE:
deleteIndex< ::cvflann::ChiSquareDistance<float> >(index);
break;
case FLANN_DIST_KL:
deleteIndex< ::cvflann::KL_Divergence<float> >(index);
break;
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
index = 0;
}
template<typename Distance, typename IndexType>
void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
int knn, const SearchParams& params)
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
int type = DataType<ElementType>::type;
int dtype = DataType<DistanceType>::type;
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
::cvflann::Matrix<int> _indices(indices.ptr<int>(), indices.rows, indices.cols);
::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols);
((IndexType*)index)->knnSearch(_query, _indices, _dists, knn,
(const ::cvflann::SearchParams&)get_params(params));
}
template<typename Distance>
void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
int knn, const SearchParams& params)
{
runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params);
}
template<typename Distance, typename IndexType>
int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
double radius, const SearchParams& params)
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
int type = DataType<ElementType>::type;
int dtype = DataType<DistanceType>::type;
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
::cvflann::Matrix<int> _indices(indices.ptr<int>(), indices.rows, indices.cols);
::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols);
return ((IndexType*)index)->radiusSearch(_query, _indices, _dists,
saturate_cast<float>(radius),
(const ::cvflann::SearchParams&)get_params(params));
}
template<typename Distance>
int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
double radius, const SearchParams& params)
{
return runRadiusSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, radius, params);
}
static void createIndicesDists(OutputArray _indices, OutputArray _dists,
Mat& indices, Mat& dists, int rows,
int minCols, int maxCols, int dtype)
{
if( _indices.needed() )
{
indices = _indices.getMat();
if( !indices.isContinuous() || indices.type() != CV_32S ||
indices.rows != rows || indices.cols < minCols || indices.cols > maxCols )
{
if( !indices.isContinuous() )
_indices.release();
_indices.create( rows, minCols, CV_32S );
indices = _indices.getMat();
}
}
else
indices.create( rows, minCols, CV_32S );
if( _dists.needed() )
{
dists = _dists.getMat();
if( !dists.isContinuous() || dists.type() != dtype ||
dists.rows != rows || dists.cols < minCols || dists.cols > maxCols )
{
if( !indices.isContinuous() )
_dists.release();
_dists.create( rows, minCols, dtype );
dists = _dists.getMat();
}
}
else
dists.create( rows, minCols, dtype );
}
void Index::knnSearch(InputArray _query, OutputArray _indices,
OutputArray _dists, int knn, const SearchParams& params)
{
Mat query = _query.getMat(), indices, dists;
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F;
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
switch( distType )
{
case FLANN_DIST_HAMMING:
runKnnSearch<HammingDistance>(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_L2:
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_L1:
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_HIST_INTERSECT:
runKnnSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_HELLINGER:
runKnnSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_CHI_SQUARE:
runKnnSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_KL:
runKnnSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, knn, params);
break;
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
}
int Index::radiusSearch(InputArray _query, OutputArray _indices,
OutputArray _dists, double radius, int maxResults,
const SearchParams& params)
{
Mat query = _query.getMat(), indices, dists;
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F;
CV_Assert( maxResults > 0 );
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
if( algo == FLANN_INDEX_LSH )
CV_Error( Error::StsNotImplemented, "LSH index does not support radiusSearch operation" );
switch( distType )
{
case FLANN_DIST_HAMMING:
return runRadiusSearch< HammingDistance >(index, query, indices, dists, radius, params);
case FLANN_DIST_L2:
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_L1:
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params);
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HIST_INTERSECT:
return runRadiusSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HELLINGER:
return runRadiusSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_CHI_SQUARE:
return runRadiusSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_KL:
return runRadiusSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, radius, params);
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
return -1;
}
flann_distance_t Index::getDistance() const
{
return distType;
}
flann_algorithm_t Index::getAlgorithm() const
{
return algo;
}
template<typename IndexType> void saveIndex_(const Index* index0, const void* index, FILE* fout)
{
IndexType* _index = (IndexType*)index;
::cvflann::save_header(fout, *_index);
// some compilers may store short enumerations as bytes,
// so make sure we always write integers (which are 4-byte values in any modern C compiler)
int idistType = (int)index0->getDistance();
::cvflann::save_value<int>(fout, idistType);
_index->saveIndex(fout);
}
template<typename Distance> void saveIndex(const Index* index0, const void* index, FILE* fout)
{
saveIndex_< ::cvflann::Index<Distance> >(index0, index, fout);
}
void Index::save(const String& filename) const
{
FILE* fout = fopen(filename.c_str(), "wb");
if (fout == NULL)
CV_Error_( Error::StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) );
switch( distType )
{
case FLANN_DIST_HAMMING:
saveIndex< HammingDistance >(this, index, fout);
break;
case FLANN_DIST_L2:
saveIndex< ::cvflann::L2<float> >(this, index, fout);
break;
case FLANN_DIST_L1:
saveIndex< ::cvflann::L1<float> >(this, index, fout);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout);
break;
case FLANN_DIST_HIST_INTERSECT:
saveIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, fout);
break;
case FLANN_DIST_HELLINGER:
saveIndex< ::cvflann::HellingerDistance<float> >(this, index, fout);
break;
case FLANN_DIST_CHI_SQUARE:
saveIndex< ::cvflann::ChiSquareDistance<float> >(this, index, fout);
break;
case FLANN_DIST_KL:
saveIndex< ::cvflann::KL_Divergence<float> >(this, index, fout);
break;
#endif
default:
fclose(fout);
fout = 0;
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
if( fout )
fclose(fout);
}
template<typename Distance, typename IndexType>
bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
{
typedef typename Distance::ElementType ElementType;
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
::cvflann::IndexParams params;
params["algorithm"] = index0->getAlgorithm();
IndexType* _index = new IndexType(dataset, params, dist);
_index->loadIndex(fin);
index = _index;
return true;
}
template<typename Distance>
bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
{
return loadIndex_<Distance, ::cvflann::Index<Distance> >(index0, index, data, fin, dist);
}
bool Index::load(InputArray _data, const String& filename)
{
Mat data = _data.getMat();
bool ok = true;
release();
FILE* fin = fopen(filename.c_str(), "rb");
if (fin == NULL)
return false;
::cvflann::IndexHeader header = ::cvflann::load_header(fin);
algo = header.index_type;
featureType = header.data_type == FLANN_UINT8 ? CV_8U :
header.data_type == FLANN_INT8 ? CV_8S :
header.data_type == FLANN_UINT16 ? CV_16U :
header.data_type == FLANN_INT16 ? CV_16S :
header.data_type == FLANN_INT32 ? CV_32S :
header.data_type == FLANN_FLOAT32 ? CV_32F :
header.data_type == FLANN_FLOAT64 ? CV_64F : -1;
if( (int)header.rows != data.rows || (int)header.cols != data.cols ||
featureType != data.type() )
{
fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n",
(int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type());
fclose(fin);
return false;
}
int idistType = 0;
::cvflann::load_value(fin, idistType);
distType = (flann_distance_t)idistType;
if( !((distType == FLANN_DIST_HAMMING && featureType == CV_8U) ||
(distType != FLANN_DIST_HAMMING && featureType == CV_32F)) )
{
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
fclose(fin);
return false;
}
switch( distType )
{
case FLANN_DIST_HAMMING:
loadIndex< HammingDistance >(this, index, data, fin);
break;
case FLANN_DIST_L2:
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
break;
case FLANN_DIST_L1:
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_HIST_INTERSECT:
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin);
break;
case FLANN_DIST_HELLINGER:
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_CHI_SQUARE:
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_KL:
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
break;
#endif
default:
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
ok = false;
}
if( fin )
fclose(fin);
return ok;
}
}
}