//=============================================================================
//
// KAZE.cpp
// Author: Pablo F. Alcantarilla
// Institution: University d'Auvergne
// Address: Clermont Ferrand, France
// Date: 21/01/2012
// Email: pablofdezalc@gmail.com
//
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
// All Rights Reserved
// See LICENSE for the license information
//=============================================================================
/**
* @file KAZEFeatures.cpp
* @brief Main class for detecting and describing features in a nonlinear
* scale space
* @date Jan 21, 2012
* @author Pablo F. Alcantarilla
*/
#include "../precomp.hpp"
#include "KAZEFeatures.h"
#include "utils.h"
namespace cv
{
// Namespaces
using namespace std;
/* ************************************************************************* */
/**
* @brief KAZE constructor with input options
* @param options KAZE configuration options
* @note The constructor allocates memory for the nonlinear scale space
*/
KAZEFeatures::KAZEFeatures(KAZEOptions& options)
: options_(options)
{
ncycles_ = 0;
reordering_ = true;
// Now allocate memory for the evolution
Allocate_Memory_Evolution();
}
/* ************************************************************************* */
/**
* @brief This method allocates the memory for the nonlinear diffusion evolution
*/
void KAZEFeatures::Allocate_Memory_Evolution(void) {
// Allocate the dimension of the matrices for the evolution
for (int i = 0; i <= options_.omax - 1; i++)
{
for (int j = 0; j <= options_.nsublevels - 1; j++)
{
TEvolution aux;
aux.Lx = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Ly = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Lxx = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Lxy = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Lyy = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Lt = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Lsmooth = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.Ldet = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
aux.esigma = options_.soffset*pow((float)2.0f, (float)(j) / (float)(options_.nsublevels)+i);
aux.etime = 0.5f*(aux.esigma*aux.esigma);
aux.sigma_size = fRound(aux.esigma);
aux.octave = i;
aux.sublevel = j;
evolution_.push_back(aux);
}
}
// Allocate memory for the FED number of cycles and time steps
for (size_t i = 1; i < evolution_.size(); i++)
{
int naux = 0;
vector<float> tau;
float ttime = 0.0;
ttime = evolution_[i].etime - evolution_[i - 1].etime;
naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau);
nsteps_.push_back(naux);
tsteps_.push_back(tau);
ncycles_++;
}
}
/* ************************************************************************* */
/**
* @brief This method creates the nonlinear scale space for a given image
* @param img Input image for which the nonlinear scale space needs to be created
* @return 0 if the nonlinear scale space was created successfully. -1 otherwise
*/
int KAZEFeatures::Create_Nonlinear_Scale_Space(const Mat &img)
{
CV_Assert(evolution_.size() > 0);
// Copy the original image to the first level of the evolution
img.copyTo(evolution_[0].Lt);
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset);
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lsmooth, 0, 0, options_.sderivatives);
// Firstly compute the kcontrast factor
Compute_KContrast(evolution_[0].Lt, options_.kcontrast_percentille);
// Allocate memory for the flow and step images
Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
// Now generate the rest of evolution levels
for (size_t i = 1; i < evolution_.size(); i++)
{
evolution_[i - 1].Lt.copyTo(evolution_[i].Lt);
gaussian_2D_convolution(evolution_[i - 1].Lt, evolution_[i].Lsmooth, 0, 0, options_.sderivatives);
// Compute the Gaussian derivatives Lx and Ly
Scharr(evolution_[i].Lsmooth, evolution_[i].Lx, CV_32F, 1, 0, 1, 0, BORDER_DEFAULT);
Scharr(evolution_[i].Lsmooth, evolution_[i].Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT);
// Compute the conductivity equation
if (options_.diffusivity == KAZE::DIFF_PM_G1)
pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
else if (options_.diffusivity == KAZE::DIFF_PM_G2)
pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
else if (options_.diffusivity == KAZE::DIFF_WEICKERT)
weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
// Perform FED n inner steps
for (int j = 0; j < nsteps_[i - 1]; j++)
nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]);
}
return 0;
}
/* ************************************************************************* */
/**
* @brief This method computes the k contrast factor
* @param img Input image
* @param kpercentile Percentile of the gradient histogram
*/
void KAZEFeatures::Compute_KContrast(const Mat &img, const float &kpercentile)
{
options_.kcontrast = compute_k_percentile(img, kpercentile, options_.sderivatives, options_.kcontrast_bins, 0, 0);
}
/* ************************************************************************* */
/**
* @brief This method computes the feature detector response for the nonlinear scale space
* @note We use the Hessian determinant as feature detector
*/
void KAZEFeatures::Compute_Detector_Response(void)
{
float lxx = 0.0, lxy = 0.0, lyy = 0.0;
// Firstly compute the multiscale derivatives
Compute_Multiscale_Derivatives();
for (size_t i = 0; i < evolution_.size(); i++)
{
for (int ix = 0; ix < options_.img_height; ix++)
{
for (int jx = 0; jx < options_.img_width; jx++)
{
lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx);
lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx);
lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx);
*(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy);
}
}
}
}
/* ************************************************************************* */
/**
* @brief This method selects interesting keypoints through the nonlinear scale space
* @param kpts Vector of keypoints
*/
void KAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts)
{
kpts.clear();
Compute_Detector_Response();
Determinant_Hessian(kpts);
Do_Subpixel_Refinement(kpts);
}
/* ************************************************************************* */
class MultiscaleDerivativesKAZEInvoker : public ParallelLoopBody
{
public:
explicit MultiscaleDerivativesKAZEInvoker(std::vector<TEvolution>& ev) : evolution_(&ev)
{
}
void operator()(const Range& range) const
{
std::vector<TEvolution>& evolution = *evolution_;
for (int i = range.start; i < range.end; i++)
{
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Lx, 1, 0, evolution[i].sigma_size);
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Ly, 0, 1, evolution[i].sigma_size);
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxx, 1, 0, evolution[i].sigma_size);
compute_scharr_derivatives(evolution[i].Ly, evolution[i].Lyy, 0, 1, evolution[i].sigma_size);
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxy, 0, 1, evolution[i].sigma_size);
evolution[i].Lx = evolution[i].Lx*((evolution[i].sigma_size));
evolution[i].Ly = evolution[i].Ly*((evolution[i].sigma_size));
evolution[i].Lxx = evolution[i].Lxx*((evolution[i].sigma_size)*(evolution[i].sigma_size));
evolution[i].Lxy = evolution[i].Lxy*((evolution[i].sigma_size)*(evolution[i].sigma_size));
evolution[i].Lyy = evolution[i].Lyy*((evolution[i].sigma_size)*(evolution[i].sigma_size));
}
}
private:
std::vector<TEvolution>* evolution_;
};
/* ************************************************************************* */
/**
* @brief This method computes the multiscale derivatives for the nonlinear scale space
*/
void KAZEFeatures::Compute_Multiscale_Derivatives(void)
{
parallel_for_(Range(0, (int)evolution_.size()),
MultiscaleDerivativesKAZEInvoker(evolution_));
}
/* ************************************************************************* */
class FindExtremumKAZEInvoker : public ParallelLoopBody
{
public:
explicit FindExtremumKAZEInvoker(std::vector<TEvolution>& ev, std::vector<std::vector<KeyPoint> >& kpts_par,
const KAZEOptions& options) : evolution_(&ev), kpts_par_(&kpts_par), options_(options)
{
}
void operator()(const Range& range) const
{
std::vector<TEvolution>& evolution = *evolution_;
std::vector<std::vector<KeyPoint> >& kpts_par = *kpts_par_;
for (int i = range.start; i < range.end; i++)
{
float value = 0.0;
bool is_extremum = false;
for (int ix = 1; ix < options_.img_height - 1; ix++)
{
for (int jx = 1; jx < options_.img_width - 1; jx++)
{
is_extremum = false;
value = *(evolution[i].Ldet.ptr<float>(ix)+jx);
// Filter the points with the detector threshold
if (value > options_.dthreshold)
{
if (value >= *(evolution[i].Ldet.ptr<float>(ix)+jx - 1))
{
// First check on the same scale
if (check_maximum_neighbourhood(evolution[i].Ldet, 1, value, ix, jx, 1))
{
// Now check on the lower scale
if (check_maximum_neighbourhood(evolution[i - 1].Ldet, 1, value, ix, jx, 0))
{
// Now check on the upper scale
if (check_maximum_neighbourhood(evolution[i + 1].Ldet, 1, value, ix, jx, 0))
is_extremum = true;
}
}
}
}
// Add the point of interest!!
if (is_extremum)
{
KeyPoint point;
point.pt.x = (float)jx;
point.pt.y = (float)ix;
point.response = fabs(value);
point.size = evolution[i].esigma;
point.octave = (int)evolution[i].octave;
point.class_id = i;
// We use the angle field for the sublevel value
// Then, we will replace this angle field with the main orientation
point.angle = static_cast<float>(evolution[i].sublevel);
kpts_par[i - 1].push_back(point);
}
}
}
}
}
private:
std::vector<TEvolution>* evolution_;
std::vector<std::vector<KeyPoint> >* kpts_par_;
KAZEOptions options_;
};
/* ************************************************************************* */
/**
* @brief This method performs the detection of keypoints by using the normalized
* score of the Hessian determinant through the nonlinear scale space
* @param kpts Vector of keypoints
* @note We compute features for each of the nonlinear scale space level in a different processing thread
*/
void KAZEFeatures::Determinant_Hessian(std::vector<KeyPoint>& kpts)
{
int level = 0;
float dist = 0.0, smax = 3.0;
int npoints = 0, id_repeated = 0;
int left_x = 0, right_x = 0, up_y = 0, down_y = 0;
bool is_extremum = false, is_repeated = false, is_out = false;
// Delete the memory of the vector of keypoints vectors
// In case we use the same kaze object for multiple images
for (size_t i = 0; i < kpts_par_.size(); i++) {
vector<KeyPoint>().swap(kpts_par_[i]);
}
kpts_par_.clear();
vector<KeyPoint> aux;
// Allocate memory for the vector of vectors
for (size_t i = 1; i < evolution_.size() - 1; i++) {
kpts_par_.push_back(aux);
}
parallel_for_(Range(1, (int)evolution_.size()-1),
FindExtremumKAZEInvoker(evolution_, kpts_par_, options_));
// Now fill the vector of keypoints!!!
for (int i = 0; i < (int)kpts_par_.size(); i++)
{
for (int j = 0; j < (int)kpts_par_[i].size(); j++)
{
level = i + 1;
is_extremum = true;
is_repeated = false;
is_out = false;
// Check in case we have the same point as maxima in previous evolution levels
for (int ik = 0; ik < (int)kpts.size(); ik++) {
if (kpts[ik].class_id == level || kpts[ik].class_id == level + 1 || kpts[ik].class_id == level - 1) {
dist = pow(kpts_par_[i][j].pt.x - kpts[ik].pt.x, 2) + pow(kpts_par_[i][j].pt.y - kpts[ik].pt.y, 2);
if (dist < evolution_[level].sigma_size*evolution_[level].sigma_size) {
if (kpts_par_[i][j].response > kpts[ik].response) {
id_repeated = ik;
is_repeated = true;
}
else {
is_extremum = false;
}
break;
}
}
}
if (is_extremum == true) {
// Check that the point is under the image limits for the descriptor computation
left_x = fRound(kpts_par_[i][j].pt.x - smax*kpts_par_[i][j].size);
right_x = fRound(kpts_par_[i][j].pt.x + smax*kpts_par_[i][j].size);
up_y = fRound(kpts_par_[i][j].pt.y - smax*kpts_par_[i][j].size);
down_y = fRound(kpts_par_[i][j].pt.y + smax*kpts_par_[i][j].size);
if (left_x < 0 || right_x >= evolution_[level].Ldet.cols ||
up_y < 0 || down_y >= evolution_[level].Ldet.rows) {
is_out = true;
}
is_out = false;
if (is_out == false) {
if (is_repeated == false) {
kpts.push_back(kpts_par_[i][j]);
npoints++;
}
else {
kpts[id_repeated] = kpts_par_[i][j];
}
}
}
}
}
}
/* ************************************************************************* */
/**
* @brief This method performs subpixel refinement of the detected keypoints
* @param kpts Vector of detected keypoints
*/
void KAZEFeatures::Do_Subpixel_Refinement(std::vector<KeyPoint> &kpts) {
int step = 1;
int x = 0, y = 0;
float Dx = 0.0, Dy = 0.0, Ds = 0.0, dsc = 0.0;
float Dxx = 0.0, Dyy = 0.0, Dss = 0.0, Dxy = 0.0, Dxs = 0.0, Dys = 0.0;
Mat A = Mat::zeros(3, 3, CV_32F);
Mat b = Mat::zeros(3, 1, CV_32F);
Mat dst = Mat::zeros(3, 1, CV_32F);
vector<KeyPoint> kpts_(kpts);
for (size_t i = 0; i < kpts_.size(); i++) {
x = static_cast<int>(kpts_[i].pt.x);
y = static_cast<int>(kpts_[i].pt.y);
// Compute the gradient
Dx = (1.0f / (2.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x + step)
- *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x - step));
Dy = (1.0f / (2.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x)
- *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x));
Ds = 0.5f*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x)
- *(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x));
// Compute the Hessian
Dxx = (1.0f / (step*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x + step)
+ *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x - step)
- 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x)));
Dyy = (1.0f / (step*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x)
+ *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x)
- 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x)));
Dss = *(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x)
+ *(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x)
- 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x));
Dxy = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x + step)
+ (*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x - step)))
- (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x + step)
+ (*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x - step)));
Dxs = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x + step)
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x - step)))
- (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x - step)
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x + step)));
Dys = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y + step) + x)
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y - step) + x)))
- (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y - step) + x)
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y + step) + x)));
// Solve the linear system
*(A.ptr<float>(0)) = Dxx;
*(A.ptr<float>(1) + 1) = Dyy;
*(A.ptr<float>(2) + 2) = Dss;
*(A.ptr<float>(0) + 1) = *(A.ptr<float>(1)) = Dxy;
*(A.ptr<float>(0) + 2) = *(A.ptr<float>(2)) = Dxs;
*(A.ptr<float>(1) + 2) = *(A.ptr<float>(2) + 1) = Dys;
*(b.ptr<float>(0)) = -Dx;
*(b.ptr<float>(1)) = -Dy;
*(b.ptr<float>(2)) = -Ds;
solve(A, b, dst, DECOMP_LU);
if (fabs(*(dst.ptr<float>(0))) <= 1.0f && fabs(*(dst.ptr<float>(1))) <= 1.0f && fabs(*(dst.ptr<float>(2))) <= 1.0f) {
kpts_[i].pt.x += *(dst.ptr<float>(0));
kpts_[i].pt.y += *(dst.ptr<float>(1));
dsc = kpts_[i].octave + (kpts_[i].angle + *(dst.ptr<float>(2))) / ((float)(options_.nsublevels));
// In OpenCV the size of a keypoint is the diameter!!
kpts_[i].size = 2.0f*options_.soffset*pow((float)2.0f, dsc);
kpts_[i].angle = 0.0;
}
// Set the points to be deleted after the for loop
else {
kpts_[i].response = -1;
}
}
// Clear the vector of keypoints
kpts.clear();
for (size_t i = 0; i < kpts_.size(); i++) {
if (kpts_[i].response != -1) {
kpts.push_back(kpts_[i]);
}
}
}
/* ************************************************************************* */
class KAZE_Descriptor_Invoker : public ParallelLoopBody
{
public:
KAZE_Descriptor_Invoker(std::vector<KeyPoint> &kpts, Mat &desc, std::vector<TEvolution>& evolution, const KAZEOptions& options)
: kpts_(&kpts)
, desc_(&desc)
, evolution_(&evolution)
, options_(options)
{
}
virtual ~KAZE_Descriptor_Invoker()
{
}
void operator() (const Range& range) const
{
std::vector<KeyPoint> &kpts = *kpts_;
Mat &desc = *desc_;
std::vector<TEvolution> &evolution = *evolution_;
for (int i = range.start; i < range.end; i++)
{
kpts[i].angle = 0.0;
if (options_.upright)
{
kpts[i].angle = 0.0;
if (options_.extended)
Get_KAZE_Upright_Descriptor_128(kpts[i], desc.ptr<float>((int)i));
else
Get_KAZE_Upright_Descriptor_64(kpts[i], desc.ptr<float>((int)i));
}
else
{
KAZEFeatures::Compute_Main_Orientation(kpts[i], evolution, options_);
if (options_.extended)
Get_KAZE_Descriptor_128(kpts[i], desc.ptr<float>((int)i));
else
Get_KAZE_Descriptor_64(kpts[i], desc.ptr<float>((int)i));
}
}
}
private:
void Get_KAZE_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const;
void Get_KAZE_Descriptor_64(const KeyPoint& kpt, float* desc) const;
void Get_KAZE_Upright_Descriptor_128(const KeyPoint& kpt, float* desc) const;
void Get_KAZE_Descriptor_128(const KeyPoint& kpt, float *desc) const;
std::vector<KeyPoint> * kpts_;
Mat * desc_;
std::vector<TEvolution> * evolution_;
KAZEOptions options_;
};
/* ************************************************************************* */
/**
* @brief This method computes the set of descriptors through the nonlinear scale space
* @param kpts Vector of keypoints
* @param desc Matrix with the feature descriptors
*/
void KAZEFeatures::Feature_Description(std::vector<KeyPoint> &kpts, Mat &desc)
{
for(size_t i = 0; i < kpts.size(); i++)
{
CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size()));
}
// Allocate memory for the matrix of descriptors
if (options_.extended == true) {
desc = Mat::zeros((int)kpts.size(), 128, CV_32FC1);
}
else {
desc = Mat::zeros((int)kpts.size(), 64, CV_32FC1);
}
parallel_for_(Range(0, (int)kpts.size()), KAZE_Descriptor_Invoker(kpts, desc, evolution_, options_));
}
/* ************************************************************************* */
/**
* @brief This method computes the main orientation for a given keypoint
* @param kpt Input keypoint
* @note The orientation is computed using a similar approach as described in the
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
*/
void KAZEFeatures::Compute_Main_Orientation(KeyPoint &kpt, const std::vector<TEvolution>& evolution_, const KAZEOptions& options)
{
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
float xf = 0.0, yf = 0.0, gweight = 0.0;
vector<float> resX(109), resY(109), Ang(109);
// Variables for computing the dominant direction
float sumX = 0.0, sumY = 0.0, max = 0.0, ang1 = 0.0, ang2 = 0.0;
// Get the information from the keypoint
xf = kpt.pt.x;
yf = kpt.pt.y;
level = kpt.class_id;
s = fRound(kpt.size / 2.0f);
// Calculate derivatives responses for points within radius of 6*scale
for (int i = -6; i <= 6; ++i) {
for (int j = -6; j <= 6; ++j) {
if (i*i + j*j < 36) {
iy = fRound(yf + j*s);
ix = fRound(xf + i*s);
if (iy >= 0 && iy < options.img_height && ix >= 0 && ix < options.img_width) {
gweight = gaussian(iy - yf, ix - xf, 2.5f*s);
resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix));
resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix));
}
else {
resX[idx] = 0.0;
resY[idx] = 0.0;
}
Ang[idx] = getAngle(resX[idx], resY[idx]);
++idx;
}
}
}
// Loop slides pi/3 window around feature point
for (ang1 = 0; ang1 < 2.0f*CV_PI; ang1 += 0.15f) {
ang2 = (ang1 + (float)(CV_PI / 3.0) > (float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0));
sumX = sumY = 0.f;
for (size_t k = 0; k < Ang.size(); ++k) {
// Get angle from the x-axis of the sample point
const float & ang = Ang[k];
// Determine whether the point is within the window
if (ang1 < ang2 && ang1 < ang && ang < ang2) {
sumX += resX[k];
sumY += resY[k];
}
else if (ang2 < ang1 &&
((ang > 0 && ang < ang2) || (ang > ang1 && ang < (float)(2.0*CV_PI)))) {
sumX += resX[k];
sumY += resY[k];
}
}
// if the vector produced from this window is longer than all
// previous vectors then this forms the new dominant direction
if (sumX*sumX + sumY*sumY > max) {
// store largest orientation
max = sumX*sumX + sumY*sumY;
kpt.angle = getAngle(sumX, sumY);
}
}
}
/* ************************************************************************* */
/**
* @brief This method computes the upright descriptor (not rotation invariant) of
* the provided keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void KAZE_Descriptor_Invoker::Get_KAZE_Upright_Descriptor_64(const KeyPoint &kpt, float *desc) const
{
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0;
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
int dsize = 0, scale = 0, level = 0;
std::vector<TEvolution>& evolution = *evolution_;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
// Set the descriptor size and the sample and pattern sizes
dsize = 64;
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
yf = kpt.pt.y;
xf = kpt.pt.x;
scale = fRound(kpt.size / 2.0f);
level = kpt.class_id;
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dx = dy = mdx = mdy = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
ys = yf + (ky*scale);
xs = xf + (kx*scale);
for (int k = i; k < i + 9; k++) {
for (int l = j; l < j + 9; l++) {
sample_y = k*scale + yf;
sample_x = l*scale + xf;
//Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = (int)(sample_y - 0.5f);
x1 = (int)(sample_x - 0.5f);
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
y2 = (int)(sample_y + 0.5f);
x2 = (int)(sample_x + 0.5f);
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
rx = gauss_s1*rx;
ry = gauss_s1*ry;
// Sum the derivatives to the cumulative descriptor
dx += rx;
dy += ry;
mdx += fabs(rx);
mdy += fabs(ry);
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dx*gauss_s2;
desc[dcount++] = dy*gauss_s2;
desc[dcount++] = mdx*gauss_s2;
desc[dcount++] = mdy*gauss_s2;
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
// convert to unit vector
len = sqrt(len);
for (i = 0; i < dsize; i++) {
desc[i] /= len;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the descriptor of the provided keypoint given the
* main orientation of the keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void KAZE_Descriptor_Invoker::Get_KAZE_Descriptor_64(const KeyPoint &kpt, float *desc) const
{
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
int dsize = 0, scale = 0, level = 0;
std::vector<TEvolution>& evolution = *evolution_;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
// Set the descriptor size and the sample and pattern sizes
dsize = 64;
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
yf = kpt.pt.y;
xf = kpt.pt.x;
scale = fRound(kpt.size / 2.0f);
angle = kpt.angle;
level = kpt.class_id;
co = cos(angle);
si = sin(angle);
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dx = dy = mdx = mdy = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
xs = xf + (-kx*scale*si + ky*scale*co);
ys = yf + (kx*scale*co + ky*scale*si);
for (int k = i; k < i + 9; ++k) {
for (int l = j; l < j + 9; ++l) {
// Get coords of sample point on the rotated axis
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
// Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = fRound(sample_y - 0.5f);
x1 = fRound(sample_x - 0.5f);
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
y2 = (int)(sample_y + 0.5f);
x2 = (int)(sample_x + 0.5f);
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
// Get the x and y derivatives on the rotated axis
rry = gauss_s1*(rx*co + ry*si);
rrx = gauss_s1*(-rx*si + ry*co);
// Sum the derivatives to the cumulative descriptor
dx += rrx;
dy += rry;
mdx += fabs(rrx);
mdy += fabs(rry);
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dx*gauss_s2;
desc[dcount++] = dy*gauss_s2;
desc[dcount++] = mdx*gauss_s2;
desc[dcount++] = mdy*gauss_s2;
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
// convert to unit vector
len = sqrt(len);
for (i = 0; i < dsize; i++) {
desc[i] /= len;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the extended upright descriptor (not rotation invariant) of
* the provided keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 128. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void KAZE_Descriptor_Invoker::Get_KAZE_Upright_Descriptor_128(const KeyPoint &kpt, float *desc) const
{
float gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0;
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
float dxp = 0.0, dyp = 0.0, mdxp = 0.0, mdyp = 0.0;
float dxn = 0.0, dyn = 0.0, mdxn = 0.0, mdyn = 0.0;
int dsize = 0, scale = 0, level = 0;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
std::vector<TEvolution>& evolution = *evolution_;
// Set the descriptor size and the sample and pattern sizes
dsize = 128;
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
yf = kpt.pt.y;
xf = kpt.pt.x;
scale = fRound(kpt.size / 2.0f);
level = kpt.class_id;
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dxp = dxn = mdxp = mdxn = 0.0;
dyp = dyn = mdyp = mdyn = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
ys = yf + (ky*scale);
xs = xf + (kx*scale);
for (int k = i; k < i + 9; k++) {
for (int l = j; l < j + 9; l++) {
sample_y = k*scale + yf;
sample_x = l*scale + xf;
//Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = (int)(sample_y - 0.5f);
x1 = (int)(sample_x - 0.5f);
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
y2 = (int)(sample_y + 0.5f);
x2 = (int)(sample_x + 0.5f);
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
rx = gauss_s1*rx;
ry = gauss_s1*ry;
// Sum the derivatives to the cumulative descriptor
if (ry >= 0.0) {
dxp += rx;
mdxp += fabs(rx);
}
else {
dxn += rx;
mdxn += fabs(rx);
}
if (rx >= 0.0) {
dyp += ry;
mdyp += fabs(ry);
}
else {
dyn += ry;
mdyn += fabs(ry);
}
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dxp*gauss_s2;
desc[dcount++] = dxn*gauss_s2;
desc[dcount++] = mdxp*gauss_s2;
desc[dcount++] = mdxn*gauss_s2;
desc[dcount++] = dyp*gauss_s2;
desc[dcount++] = dyn*gauss_s2;
desc[dcount++] = mdyp*gauss_s2;
desc[dcount++] = mdyn*gauss_s2;
// Store the current length^2 of the vector
len += (dxp*dxp + dxn*dxn + mdxp*mdxp + mdxn*mdxn +
dyp*dyp + dyn*dyn + mdyp*mdyp + mdyn*mdyn)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
// convert to unit vector
len = sqrt(len);
for (i = 0; i < dsize; i++) {
desc[i] /= len;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the extended G-SURF descriptor of the provided keypoint
* given the main orientation of the keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 128. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void KAZE_Descriptor_Invoker::Get_KAZE_Descriptor_128(const KeyPoint &kpt, float *desc) const
{
float gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
float dxp = 0.0, dyp = 0.0, mdxp = 0.0, mdyp = 0.0;
float dxn = 0.0, dyn = 0.0, mdxn = 0.0, mdyn = 0.0;
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
int dsize = 0, scale = 0, level = 0;
std::vector<TEvolution>& evolution = *evolution_;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
// Set the descriptor size and the sample and pattern sizes
dsize = 128;
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
yf = kpt.pt.y;
xf = kpt.pt.x;
scale = fRound(kpt.size / 2.0f);
angle = kpt.angle;
level = kpt.class_id;
co = cos(angle);
si = sin(angle);
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dxp = dxn = mdxp = mdxn = 0.0;
dyp = dyn = mdyp = mdyn = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
xs = xf + (-kx*scale*si + ky*scale*co);
ys = yf + (kx*scale*co + ky*scale*si);
for (int k = i; k < i + 9; ++k) {
for (int l = j; l < j + 9; ++l) {
// Get coords of sample point on the rotated axis
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
// Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = fRound(sample_y - 0.5f);
x1 = fRound(sample_x - 0.5f);
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
y2 = (int)(sample_y + 0.5f);
x2 = (int)(sample_x + 0.5f);
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
// Get the x and y derivatives on the rotated axis
rry = gauss_s1*(rx*co + ry*si);
rrx = gauss_s1*(-rx*si + ry*co);
// Sum the derivatives to the cumulative descriptor
if (rry >= 0.0) {
dxp += rrx;
mdxp += fabs(rrx);
}
else {
dxn += rrx;
mdxn += fabs(rrx);
}
if (rrx >= 0.0) {
dyp += rry;
mdyp += fabs(rry);
}
else {
dyn += rry;
mdyn += fabs(rry);
}
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dxp*gauss_s2;
desc[dcount++] = dxn*gauss_s2;
desc[dcount++] = mdxp*gauss_s2;
desc[dcount++] = mdxn*gauss_s2;
desc[dcount++] = dyp*gauss_s2;
desc[dcount++] = dyn*gauss_s2;
desc[dcount++] = mdyp*gauss_s2;
desc[dcount++] = mdyn*gauss_s2;
// Store the current length^2 of the vector
len += (dxp*dxp + dxn*dxn + mdxp*mdxp + mdxn*mdxn +
dyp*dyp + dyn*dyn + mdyp*mdyp + mdyn*mdyn)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
// convert to unit vector
len = sqrt(len);
for (i = 0; i < dsize; i++) {
desc[i] /= len;
}
}
}