C++程序  |  171行  |  3.76 KB

#include "precomp.hpp"
#include "polynom_solver.h"

#include <math.h>
#include <iostream>

int solve_deg2(double a, double b, double c, double & x1, double & x2)
{
  double delta = b * b - 4 * a * c;

  if (delta < 0) return 0;

  double inv_2a = 0.5 / a;

  if (delta == 0) {
    x1 = -b * inv_2a;
    x2 = x1;
    return 1;
  }

  double sqrt_delta = sqrt(delta);
  x1 = (-b + sqrt_delta) * inv_2a;
  x2 = (-b - sqrt_delta) * inv_2a;
  return 2;
}


/// Reference : Eric W. Weisstein. "Cubic Equation." From MathWorld--A Wolfram Web Resource.
/// http://mathworld.wolfram.com/CubicEquation.html
/// \return Number of real roots found.
int solve_deg3(double a, double b, double c, double d,
               double & x0, double & x1, double & x2)
{
  if (a == 0) {
    // Solve second order sytem
    if (b == 0)	{
      // Solve first order system
      if (c == 0)
    return 0;

      x0 = -d / c;
      return 1;
    }

    x2 = 0;
    return solve_deg2(b, c, d, x0, x1);
  }

  // Calculate the normalized form x^3 + a2 * x^2 + a1 * x + a0 = 0
  double inv_a = 1. / a;
  double b_a = inv_a * b, b_a2 = b_a * b_a;
  double c_a = inv_a * c;
  double d_a = inv_a * d;

  // Solve the cubic equation
  double Q = (3 * c_a - b_a2) / 9;
  double R = (9 * b_a * c_a - 27 * d_a - 2 * b_a * b_a2) / 54;
  double Q3 = Q * Q * Q;
  double D = Q3 + R * R;
  double b_a_3 = (1. / 3.) * b_a;

  if (Q == 0) {
    if(R == 0) {
      x0 = x1 = x2 = - b_a_3;
      return 3;
    }
    else {
      x0 = pow(2 * R, 1 / 3.0) - b_a_3;
      return 1;
    }
  }

  if (D <= 0) {
    // Three real roots
    double theta = acos(R / sqrt(-Q3));
    double sqrt_Q = sqrt(-Q);
    x0 = 2 * sqrt_Q * cos(theta             / 3.0) - b_a_3;
    x1 = 2 * sqrt_Q * cos((theta + 2 * CV_PI)/ 3.0) - b_a_3;
    x2 = 2 * sqrt_Q * cos((theta + 4 * CV_PI)/ 3.0) - b_a_3;

    return 3;
  }

  // D > 0, only one real root
  double AD = pow(fabs(R) + sqrt(D), 1.0 / 3.0) * (R > 0 ? 1 : (R < 0 ? -1 : 0));
  double BD = (AD == 0) ? 0 : -Q / AD;

  // Calculate the only real root
  x0 = AD + BD - b_a_3;

  return 1;
}

/// Reference : Eric W. Weisstein. "Quartic Equation." From MathWorld--A Wolfram Web Resource.
/// http://mathworld.wolfram.com/QuarticEquation.html
/// \return Number of real roots found.
int solve_deg4(double a, double b, double c, double d, double e,
               double & x0, double & x1, double & x2, double & x3)
{
  if (a == 0) {
    x3 = 0;
    return solve_deg3(b, c, d, e, x0, x1, x2);
  }

  // Normalize coefficients
  double inv_a = 1. / a;
  b *= inv_a; c *= inv_a; d *= inv_a; e *= inv_a;
  double b2 = b * b, bc = b * c, b3 = b2 * b;

  // Solve resultant cubic
  double r0, r1, r2;
  int n = solve_deg3(1, -c, d * b - 4 * e, 4 * c * e - d * d - b2 * e, r0, r1, r2);
  if (n == 0) return 0;

  // Calculate R^2
  double R2 = 0.25 * b2 - c + r0, R;
  if (R2 < 0)
    return 0;

  R = sqrt(R2);
  double inv_R = 1. / R;

  int nb_real_roots = 0;

  // Calculate D^2 and E^2
  double D2, E2;
  if (R < 10E-12) {
    double temp = r0 * r0 - 4 * e;
    if (temp < 0)
      D2 = E2 = -1;
    else {
      double sqrt_temp = sqrt(temp);
      D2 = 0.75 * b2 - 2 * c + 2 * sqrt_temp;
      E2 = D2 - 4 * sqrt_temp;
    }
  }
  else {
    double u = 0.75 * b2 - 2 * c - R2,
      v = 0.25 * inv_R * (4 * bc - 8 * d - b3);
    D2 = u + v;
    E2 = u - v;
  }

  double b_4 = 0.25 * b, R_2 = 0.5 * R;
  if (D2 >= 0) {
    double D = sqrt(D2);
    nb_real_roots = 2;
    double D_2 = 0.5 * D;
    x0 = R_2 + D_2 - b_4;
    x1 = x0 - D;
  }

  // Calculate E^2
  if (E2 >= 0) {
    double E = sqrt(E2);
    double E_2 = 0.5 * E;
    if (nb_real_roots == 0) {
      x0 = - R_2 + E_2 - b_4;
      x1 = x0 - E;
      nb_real_roots = 2;
    }
    else {
      x2 = - R_2 + E_2 - b_4;
      x3 = x2 - E;
      nb_real_roots = 4;
    }
  }

  return nb_real_roots;
}