/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cvaux.h"
//#include "cvtypes.h"
#include <float.h>
#include <limits.h>
//#include "cv.h"
//#include "windows.h"
#include <stdio.h>
/* Valery Mosyagin */
/* Function defenitions */
/* ----------------- */
void cvOptimizeLevenbergMarquardtBundle( CvMat** projMatrs, CvMat** observProjPoints,
CvMat** pointsPres, int numImages,
CvMat** resultProjMatrs, CvMat* resultPoints4D,int maxIter,double epsilon );
int icvComputeProjectMatrices6Points( CvMat* points1,CvMat* points2,CvMat* points3,
CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3);
void icvFindBaseTransform(CvMat* points,CvMat* resultT);
void GetGeneratorReduceFundSolution(CvMat* points1,CvMat* points2,CvMat* fundReduceCoef1,CvMat* fundReduceCoef2);
int GetGoodReduceFundamMatrFromTwo(CvMat* fundReduceCoef1,CvMat* fundReduceCoef2,CvMat* resFundReduceCoef);
void GetProjMatrFromReducedFundamental(CvMat* fundReduceCoefs,CvMat* projMatrCoefs);
void icvComputeProjectMatrix(CvMat* objPoints,CvMat* projPoints,CvMat* projMatr);
void icvComputeTransform4D(CvMat* points1,CvMat* points2,CvMat* transMatr);
int icvComputeProjectMatricesNPoints( CvMat* points1,CvMat* points2,CvMat* points3,
CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
double threshold,/* Threshold for good point */
double p,/* Probability of good result. */
CvMat* status,
CvMat* points4D);
int icvComputeProjectMatricesNPoints( CvMat* points1,CvMat* points2,CvMat* points3,
CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
double threshold,/* Threshold for good point */
double p,/* Probability of good result. */
CvMat* status,
CvMat* points4D);
void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
CvMat* projPoints1,CvMat* projPoints2,CvMat* projPoints3,
CvMat* points4D);
void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
CvMat* projPoints1,CvMat* projPoints2,CvMat* projPoints3,
CvMat* points4D);
/*==========================================================================================*/
/* Functions for calculation the tensor */
/*==========================================================================================*/
#if 1
void fprintMatrix(FILE* file,CvMat* matrix)
{
int i,j;
fprintf(file,"\n");
for( i=0;i<matrix->rows;i++ )
{
for(j=0;j<matrix->cols;j++)
{
fprintf(file,"%10.7lf ",cvmGet(matrix,i,j));
}
fprintf(file,"\n");
}
}
#endif
/*==========================================================================================*/
void icvNormalizePoints( CvMat* points, CvMat* normPoints,CvMat* cameraMatr )
{
/* Normalize image points using camera matrix */
CV_FUNCNAME( "icvNormalizePoints" );
__BEGIN__;
/* Test for null pointers */
if( points == 0 || normPoints == 0 || cameraMatr == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points) || !CV_IS_MAT(normPoints) || !CV_IS_MAT(cameraMatr) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
int numPoints;
numPoints = points->cols;
if( numPoints <= 0 || numPoints != normPoints->cols )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be the same and more than 0" );
}
if( normPoints->rows != 2 || normPoints->rows != points->rows )
{
CV_ERROR( CV_StsUnmatchedSizes, "Points must have 2 coordinates" );
}
if(cameraMatr->rows != 3 || cameraMatr->cols != 3)
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of camera matrix must be 3x3" );
}
double fx,fy,cx,cy;
fx = cvmGet(cameraMatr,0,0);
fy = cvmGet(cameraMatr,1,1);
cx = cvmGet(cameraMatr,0,2);
cy = cvmGet(cameraMatr,1,2);
int i;
for( i = 0; i < numPoints; i++ )
{
cvmSet(normPoints, 0, i, (cvmGet(points,0,i) - cx) / fx );
cvmSet(normPoints, 1, i, (cvmGet(points,1,i) - cy) / fy );
}
__END__;
return;
}
/*=====================================================================================*/
/*
Computes projection matrices for given 6 points on 3 images
May returns 3 results. */
int icvComputeProjectMatrices6Points( CvMat* points1,CvMat* points2,CvMat* points3,
CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3/*,
CvMat* points4D*/)
{
/* Test input data correctness */
int numSol = 0;
CV_FUNCNAME( "icvComputeProjectMatrices6Points" );
__BEGIN__;
/* Test for null pointers */
if( points1 == 0 || points2 == 0 || points3 == 0 ||
projMatr1 == 0 || projMatr2 == 0 || projMatr3 == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points1) || !CV_IS_MAT(points2) || !CV_IS_MAT(points3) ||
!CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) || !CV_IS_MAT(projMatr3) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
if( (points1->cols != points2->cols) || (points1->cols != points3->cols) || (points1->cols != 6) /* || (points4D->cols !=6) */)
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be same and == 6" );
}
if( points1->rows != 2 || points2->rows != 2 || points3->rows != 2 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points coordinates must be 2" );
}
if( projMatr1->cols != 4 || projMatr2->cols != 4 || projMatr3->cols != 4 ||
!(projMatr1->rows == 3 && projMatr2->rows == 3 && projMatr3->rows == 3) &&
!(projMatr1->rows == 9 && projMatr2->rows == 9 && projMatr3->rows == 9) )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of project matrix must be 3x4 or 9x4 (for 3 matrices)" );
}
#if 0
if( points4D->row != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of coordinates of points4D must be 4" );
}
#endif
/* Find transform matrix for each camera */
int i;
CvMat* points[3];
points[0] = points1;
points[1] = points2;
points[2] = points3;
CvMat* projMatrs[3];
projMatrs[0] = projMatr1;
projMatrs[1] = projMatr2;
projMatrs[2] = projMatr3;
CvMat transMatr;
double transMatr_dat[9];
transMatr = cvMat(3,3,CV_64F,transMatr_dat);
CvMat corrPoints1;
CvMat corrPoints2;
double corrPoints_dat[3*3*2];/* 3-point(images) by 3-coordinates by 2-correspondence*/
corrPoints1 = cvMat(3,3,CV_64F,corrPoints_dat); /* 3-coordinates for each of 3-points(3-image) */
corrPoints2 = cvMat(3,3,CV_64F,corrPoints_dat+9);/* 3-coordinates for each of 3-points(3-image) */
for( i = 0; i < 3; i++ )/* for each image */
{
/* Get last 4 points for computing transformation */
CvMat tmpPoints;
/* find base points transform for last four points on i-th image */
cvGetSubRect(points[i],&tmpPoints,cvRect(2,0,4,2));
icvFindBaseTransform(&tmpPoints,&transMatr);
{/* We have base transform. Compute error scales for three first points */
CvMat trPoint;
double trPoint_dat[3*3];
trPoint = cvMat(3,3,CV_64F,trPoint_dat);
/* fill points */
for( int kk = 0; kk < 3; kk++ )
{
cvmSet(&trPoint,0,kk,cvmGet(points[i],0,kk+2));
cvmSet(&trPoint,1,kk,cvmGet(points[i],1,kk+2));
cvmSet(&trPoint,2,kk,1);
}
/* Transform points */
CvMat resPnts;
double resPnts_dat[9];
resPnts = cvMat(3,3,CV_64F,resPnts_dat);
cvmMul(&transMatr,&trPoint,&resPnts);
}
/* Transform two first points */
for( int j = 0; j < 2; j++ )
{
CvMat pnt;
double pnt_dat[3];
pnt = cvMat(3,1,CV_64F,pnt_dat);
pnt_dat[0] = cvmGet(points[i],0,j);
pnt_dat[1] = cvmGet(points[i],1,j);
pnt_dat[2] = 1.0;
CvMat trPnt;
double trPnt_dat[3];
trPnt = cvMat(3,1,CV_64F,trPnt_dat);
cvmMul(&transMatr,&pnt,&trPnt);
/* Collect transformed points */
corrPoints_dat[j * 9 + 0 * 3 + i] = trPnt_dat[0];/* x */
corrPoints_dat[j * 9 + 1 * 3 + i] = trPnt_dat[1];/* y */
corrPoints_dat[j * 9 + 2 * 3 + i] = trPnt_dat[2];/* w */
}
}
/* We have computed corr points. Now we can compute generators for reduced fundamental matrix */
/* Compute generators for reduced fundamental matrix from 3 pair of collect points */
CvMat fundReduceCoef1;
CvMat fundReduceCoef2;
double fundReduceCoef1_dat[5];
double fundReduceCoef2_dat[5];
fundReduceCoef1 = cvMat(1,5,CV_64F,fundReduceCoef1_dat);
fundReduceCoef2 = cvMat(1,5,CV_64F,fundReduceCoef2_dat);
GetGeneratorReduceFundSolution(&corrPoints1, &corrPoints2, &fundReduceCoef1, &fundReduceCoef2);
/* Choose best solutions for two generators. We can get 3 solutions */
CvMat resFundReduceCoef;
double resFundReduceCoef_dat[3*5];
resFundReduceCoef = cvMat(3,5,CV_64F,resFundReduceCoef_dat);
numSol = GetGoodReduceFundamMatrFromTwo(&fundReduceCoef1, &fundReduceCoef2,&resFundReduceCoef);
int maxSol;
maxSol = projMatrs[0]->rows / 3;
int currSol;
for( currSol = 0; (currSol < numSol && currSol < maxSol); currSol++ )
{
/* For current solution compute projection matrix */
CvMat fundCoefs;
cvGetSubRect(&resFundReduceCoef, &fundCoefs, cvRect(0,currSol,5,1));
CvMat projMatrCoefs;
double projMatrCoefs_dat[4];
projMatrCoefs = cvMat(1,4,CV_64F,projMatrCoefs_dat);
GetProjMatrFromReducedFundamental(&fundCoefs,&projMatrCoefs);
/* we have computed coeffs for reduced project matrix */
CvMat objPoints;
double objPoints_dat[4*6];
objPoints = cvMat(4,6,CV_64F,objPoints_dat);
cvZero(&objPoints);
/* fill object points */
for( i =0; i < 4; i++ )
{
objPoints_dat[i*6] = 1;
objPoints_dat[i*6+1] = projMatrCoefs_dat[i];
objPoints_dat[i*7+2] = 1;
}
int currCamera;
for( currCamera = 0; currCamera < 3; currCamera++ )
{
CvMat projPoints;
double projPoints_dat[3*6];
projPoints = cvMat(3,6,CV_64F,projPoints_dat);
/* fill projected points for current camera */
for( i = 0; i < 6; i++ )/* for each points for current camera */
{
projPoints_dat[6*0+i] = cvmGet(points[currCamera],0,i);/* x */
projPoints_dat[6*1+i] = cvmGet(points[currCamera],1,i);/* y */
projPoints_dat[6*2+i] = 1;/* w */
}
/* compute project matrix for current camera */
CvMat projMatrix;
double projMatrix_dat[3*4];
projMatrix = cvMat(3,4,CV_64F,projMatrix_dat);
icvComputeProjectMatrix(&objPoints,&projPoints,&projMatrix);
/* Add this matrix to result */
CvMat tmpSubRes;
cvGetSubRect(projMatrs[currCamera],&tmpSubRes,cvRect(0,currSol*3,4,3));
cvConvert(&projMatrix,&tmpSubRes);
}
/* We know project matrices. And we can reconstruct 6 3D-points if need */
#if 0
if( points4D )
{
if( currSol < points4D->rows / 4 )
{
CvMat tmpPoints4D;
double tmpPoints4D_dat[4*6];
tmpPoints4D = cvMat(4,6,CV_64F,tmpPoints4D_dat);
icvReconstructPointsFor3View( &wProjMatr[0], &wProjMatr[1], &wProjMatr[2],
points1, points2, points3,
&tmpPoints4D);
CvMat tmpSubRes;
cvGetSubRect(points4D,tmpSubRes,cvRect(0,currSol*4,6,4));
cvConvert(tmpPoints4D,points4D);
}
}
#endif
}/* for all sollutions */
__END__;
return numSol;
}
/*==========================================================================================*/
int icvGetRandNumbers(int range,int count,int* arr)
{
/* Generate random numbers [0,range-1] */
CV_FUNCNAME( "icvGetRandNumbers" );
__BEGIN__;
/* Test input data */
if( arr == 0 )
{
CV_ERROR( CV_StsNullPtr, "Parameter 'arr' is a NULL pointer" );
}
/* Test for errors input data */
if( range < count || range <= 0 )
{
CV_ERROR( CV_StsOutOfRange, "Can't generate such numbers. Count must be <= range and range must be > 0" );
}
int i,j;
int newRand;
for( i = 0; i < count; i++ )
{
int haveRep = 0;/* firstly we have not repeats */
do
{
/* generate new number */
newRand = rand()%range;
haveRep = 0;
/* Test for repeats in previous numbers */
for( j = 0; j < i; j++ )
{
if( arr[j] == newRand )
{
haveRep = 1;
break;
}
}
} while(haveRep);
/* We have good random number */
arr[i] = newRand;
}
__END__;
return 1;
}
/*==========================================================================================*/
void icvSelectColsByNumbers(CvMat* srcMatr, CvMat* dstMatr, int* indexes,int number)
{
CV_FUNCNAME( "icvSelectColsByNumbers" );
__BEGIN__;
/* Test input data */
if( srcMatr == 0 || dstMatr == 0 || indexes == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(srcMatr) || !CV_IS_MAT(dstMatr) )
{
CV_ERROR( CV_StsUnsupportedFormat, "srcMatr and dstMatr must be a matrices" );
}
int srcSize;
int numRows;
numRows = srcMatr->rows;
srcSize = srcMatr->cols;
if( numRows != dstMatr->rows )
{
CV_ERROR( CV_StsOutOfRange, "Number of rows of matrices must be the same" );
}
int dst;
for( dst = 0; dst < number; dst++ )
{
int src = indexes[dst];
if( src >=0 && src < srcSize )
{
/* Copy each elements in column */
int i;
for( i = 0; i < numRows; i++ )
{
cvmSet(dstMatr,i,dst,cvmGet(srcMatr,i,src));
}
}
}
__END__;
return;
}
/*==========================================================================================*/
void icvProject4DPoints(CvMat* points4D,CvMat* projMatr, CvMat* projPoints)
{
CvMat* tmpProjPoints = 0;
CV_FUNCNAME( "icvProject4DPoints" );
__BEGIN__;
if( points4D == 0 || projMatr == 0 || projPoints == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points4D) || !CV_IS_MAT(projMatr) || !CV_IS_MAT(projPoints) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
int numPoints;
numPoints = points4D->cols;
if( numPoints < 1 )
{
CV_ERROR( CV_StsOutOfRange, "Number of points4D must be more than zero" );
}
if( numPoints != projPoints->cols )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be the same");
}
if( projPoints->rows != 2 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of coordinates of projected points must be 2");
}
if( points4D->rows != 4 )
{
CV_ERROR(CV_StsUnmatchedSizes, "Number of coordinates of 4D points must be 4");
}
if( projMatr->cols != 4 || projMatr->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4");
}
CV_CALL( tmpProjPoints = cvCreateMat(3,numPoints,CV_64F) );
cvmMul(projMatr,points4D,tmpProjPoints);
/* Scale points */
int i;
for( i = 0; i < numPoints; i++ )
{
double scale,x,y;
scale = cvmGet(tmpProjPoints,2,i);
x = cvmGet(tmpProjPoints,0,i);
y = cvmGet(tmpProjPoints,1,i);
if( fabs(scale) > 1e-7 )
{
x /= scale;
y /= scale;
}
else
{
x = 1e8;
y = 1e8;
}
cvmSet(projPoints,0,i,x);
cvmSet(projPoints,1,i,y);
}
__END__;
cvReleaseMat(&tmpProjPoints);
return;
}
/*==========================================================================================*/
int icvCompute3ProjectMatricesNPointsStatus( CvMat** points,/* 3 arrays of points on image */
CvMat** projMatrs,/* array of 3 prejection matrices */
CvMat** statuses,/* 3 arrays of status of points */
double threshold,/* Threshold for good point */
double p,/* Probability of good result. */
CvMat* resStatus,
CvMat* points4D)
{
int numProjMatrs = 0;
unsigned char *comStat = 0;
CvMat *triPoints[3] = {0,0,0};
CvMat *status = 0;
CvMat *triPoints4D = 0;
CV_FUNCNAME( "icvCompute3ProjectMatricesNPointsStatus" );
__BEGIN__;
/* Test for errors */
if( points == 0 || projMatrs == 0 || statuses == 0 || resStatus == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
int currImage;
for( currImage = 0; currImage < 3; currImage++ )
{
/* Test for null pointers */
if( points[currImage] == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of points arrays is a NULL pointer" );
}
if( projMatrs[currImage] == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of projMatr is a NULL pointer" );
}
if( statuses[currImage] == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of status arrays is a NULL pointer" );
}
/* Test for matrices */
if( !CV_IS_MAT(points[currImage]) )
{
CV_ERROR( CV_StsNullPtr, "Some of points arrays is not a matrix" );
}
if( !CV_IS_MAT(projMatrs[currImage]) )
{
CV_ERROR( CV_StsNullPtr, "Some of projMatr is not a matrix" );
}
if( !CV_IS_MASK_ARR(statuses[currImage]) )
{
CV_ERROR( CV_StsNullPtr, "Some of status arrays is not a mask array" );
}
}
int numPoints;
numPoints = points[0]->cols;
if( numPoints < 6 )
{
CV_ERROR( CV_StsOutOfRange, "Number points must be more than 6" );
}
for( currImage = 0; currImage < 3; currImage++ )
{
if( points[currImage]->cols != numPoints || statuses[currImage]->cols != numPoints )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points and statuses must be the same" );
}
if( points[currImage]->rows != 2 )
{
CV_ERROR( CV_StsOutOfRange, "Number of points coordinates must be == 2" );
}
if( statuses[currImage]->rows != 1 )
{
CV_ERROR( CV_StsOutOfRange, "Each of status must be matrix 1xN" );
}
if( projMatrs[currImage]->rows != 3 || projMatrs[currImage]->cols != 4 )
{
CV_ERROR( CV_StsOutOfRange, "Each of projection matrix must be 3x4" );
}
}
/* Create common status for all points */
int i;
CV_CALL( comStat = (unsigned char*)cvAlloc(sizeof(unsigned char)*numPoints) );
unsigned char *stats[3];
stats[0] = statuses[0]->data.ptr;
stats[1] = statuses[1]->data.ptr;
stats[2] = statuses[2]->data.ptr;
int numTripl;
numTripl = 0;
for( i = 0; i < numPoints; i++ )
{
comStat[i] = (unsigned char)(stats[0][i] * stats[1][i] * stats[2][i]);
numTripl += comStat[i];
}
if( numTripl > 0 )
{
/* Create new arrays with points */
CV_CALL( triPoints[0] = cvCreateMat(2,numTripl,CV_64F) );
CV_CALL( triPoints[1] = cvCreateMat(2,numTripl,CV_64F) );
CV_CALL( triPoints[2] = cvCreateMat(2,numTripl,CV_64F) );
if( points4D )
{
CV_CALL( triPoints4D = cvCreateMat(4,numTripl,CV_64F) );
}
/* Create status array */
CV_CALL( status = cvCreateMat(1,numTripl,CV_64F) );
/* Copy points to new arrays */
int currPnt = 0;
for( i = 0; i < numPoints; i++ )
{
if( comStat[i] )
{
for( currImage = 0; currImage < 3; currImage++ )
{
cvmSet(triPoints[currImage],0,currPnt,cvmGet(points[currImage],0,i));
cvmSet(triPoints[currImage],1,currPnt,cvmGet(points[currImage],1,i));
}
currPnt++;
}
}
/* Call function */
numProjMatrs = icvComputeProjectMatricesNPoints( triPoints[0],triPoints[1],triPoints[2],
projMatrs[0],projMatrs[1],projMatrs[2],
threshold,/* Threshold for good point */
p,/* Probability of good result. */
status,
triPoints4D);
/* Get computed status and set to result */
cvZero(resStatus);
currPnt = 0;
for( i = 0; i < numPoints; i++ )
{
if( comStat[i] )
{
if( cvmGet(status,0,currPnt) > 0 )
{
resStatus->data.ptr[i] = 1;
}
currPnt++;
}
}
if( triPoints4D )
{
/* Copy copmuted 4D points */
cvZero(points4D);
currPnt = 0;
for( i = 0; i < numPoints; i++ )
{
if( comStat[i] )
{
if( cvmGet(status,0,currPnt) > 0 )
{
cvmSet( points4D, 0, i, cvmGet( triPoints4D , 0, currPnt) );
cvmSet( points4D, 1, i, cvmGet( triPoints4D , 1, currPnt) );
cvmSet( points4D, 2, i, cvmGet( triPoints4D , 2, currPnt) );
cvmSet( points4D, 3, i, cvmGet( triPoints4D , 3, currPnt) );
}
currPnt++;
}
}
}
}
__END__;
/* Free allocated memory */
cvReleaseMat(&status);
cvFree( &comStat);
cvReleaseMat(&status);
cvReleaseMat(&triPoints[0]);
cvReleaseMat(&triPoints[1]);
cvReleaseMat(&triPoints[2]);
cvReleaseMat(&triPoints4D);
return numProjMatrs;
}
/*==========================================================================================*/
int icvComputeProjectMatricesNPoints( CvMat* points1,CvMat* points2,CvMat* points3,
CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
double threshold,/* Threshold for good point */
double p,/* Probability of good result. */
CvMat* status,
CvMat* points4D)
{
/* Returns status for each point, Good or bad */
/* Compute projection matrices using N points */
char* flags = 0;
char* bestFlags = 0;
int numProjMatrs = 0;
CvMat* tmpProjPoints[3]={0,0,0};
CvMat* recPoints4D = 0;
CvMat *reconPoints4D = 0;
CV_FUNCNAME( "icvComputeProjectMatricesNPoints" );
__BEGIN__;
CvMat* points[3];
points[0] = points1;
points[1] = points2;
points[2] = points3;
/* Test for errors */
if( points1 == 0 || points2 == 0 || points3 == 0 ||
projMatr1 == 0 || projMatr2 == 0 || projMatr3 == 0 ||
status == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points1) || !CV_IS_MAT(points2) || !CV_IS_MAT(points3) ||
!CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) || !CV_IS_MAT(projMatr3) ||
!CV_IS_MAT(status) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
int numPoints;
numPoints = points1->cols;
if( numPoints < 6 )
{
CV_ERROR( CV_StsOutOfRange, "Number points must be more than 6" );
}
if( numPoints != points2->cols || numPoints != points3->cols )
{
CV_ERROR( CV_StsUnmatchedSizes, "number of points must be the same" );
}
if( p < 0 || p > 1.0 )
{
CV_ERROR( CV_StsOutOfRange, "Probability must be >=0 and <=1" );
}
if( threshold < 0 )
{
CV_ERROR( CV_StsOutOfRange, "Threshold for good points must be at least >= 0" );
}
CvMat* projMatrs[3];
projMatrs[0] = projMatr1;
projMatrs[1] = projMatr2;
projMatrs[2] = projMatr3;
int i;
for( i = 0; i < 3; i++ )
{
if( projMatrs[i]->cols != 4 || projMatrs[i]->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of projection matrices must be 3x4" );
}
}
for( i = 0; i < 3; i++ )
{
if( points[i]->rows != 2)
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of coordinates of points must be 2" );
}
}
/* use RANSAC algorithm to compute projection matrices */
CV_CALL( recPoints4D = cvCreateMat(4,numPoints,CV_64F) );
CV_CALL( tmpProjPoints[0] = cvCreateMat(2,numPoints,CV_64F) );
CV_CALL( tmpProjPoints[1] = cvCreateMat(2,numPoints,CV_64F) );
CV_CALL( tmpProjPoints[2] = cvCreateMat(2,numPoints,CV_64F) );
CV_CALL( flags = (char*)cvAlloc(sizeof(char)*numPoints) );
CV_CALL( bestFlags = (char*)cvAlloc(sizeof(char)*numPoints) );
{
int NumSamples = 500;/* just init number of samples */
int wasCount = 0; /* count of choosing samples */
int maxGoodPoints = 0;
int numGoodPoints = 0;
double bestProjMatrs_dat[36];
CvMat bestProjMatrs[3];
bestProjMatrs[0] = cvMat(3,4,CV_64F,bestProjMatrs_dat);
bestProjMatrs[1] = cvMat(3,4,CV_64F,bestProjMatrs_dat+12);
bestProjMatrs[2] = cvMat(3,4,CV_64F,bestProjMatrs_dat+24);
double tmpProjMatr_dat[36*3];
CvMat tmpProjMatr[3];
tmpProjMatr[0] = cvMat(9,4,CV_64F,tmpProjMatr_dat);
tmpProjMatr[1] = cvMat(9,4,CV_64F,tmpProjMatr_dat+36);
tmpProjMatr[2] = cvMat(9,4,CV_64F,tmpProjMatr_dat+72);
/* choosen points */
while( wasCount < NumSamples )
{
/* select samples */
int randNumbs[6];
icvGetRandNumbers(numPoints,6,randNumbs);
/* random numbers of points was generated */
/* select points */
double selPoints_dat[2*6*3];
CvMat selPoints[3];
selPoints[0] = cvMat(2,6,CV_64F,selPoints_dat);
selPoints[1] = cvMat(2,6,CV_64F,selPoints_dat+12);
selPoints[2] = cvMat(2,6,CV_64F,selPoints_dat+24);
/* Copy 6 point for random indexes */
icvSelectColsByNumbers( points[0], &selPoints[0], randNumbs,6);
icvSelectColsByNumbers( points[1], &selPoints[1], randNumbs,6);
icvSelectColsByNumbers( points[2], &selPoints[2], randNumbs,6);
/* Compute projection matrices for this points */
int numProj = icvComputeProjectMatrices6Points( &selPoints[0],&selPoints[1],&selPoints[2],
&tmpProjMatr[0],&tmpProjMatr[1],&tmpProjMatr[2]);
/* Compute number of good points for each matrix */
CvMat proj6[3];
for( int currProj = 0; currProj < numProj; currProj++ )
{
cvGetSubArr(&tmpProjMatr[0],&proj6[0],cvRect(0,currProj*3,4,3));
cvGetSubArr(&tmpProjMatr[1],&proj6[1],cvRect(0,currProj*3,4,3));
cvGetSubArr(&tmpProjMatr[2],&proj6[2],cvRect(0,currProj*3,4,3));
/* Reconstruct points for projection matrices */
icvReconstructPointsFor3View( &proj6[0],&proj6[1],&proj6[2],
points[0], points[1], points[2],
recPoints4D);
/* Project points to images using projection matrices */
icvProject4DPoints(recPoints4D,&proj6[0],tmpProjPoints[0]);
icvProject4DPoints(recPoints4D,&proj6[1],tmpProjPoints[1]);
icvProject4DPoints(recPoints4D,&proj6[2],tmpProjPoints[2]);
/* Compute distances and number of good points (inliers) */
int i;
int currImage;
numGoodPoints = 0;
for( i = 0; i < numPoints; i++ )
{
double dist=-1;
dist = 0;
/* Choose max distance for each of three points */
for( currImage = 0; currImage < 3; currImage++ )
{
double x1,y1,x2,y2;
x1 = cvmGet(tmpProjPoints[currImage],0,i);
y1 = cvmGet(tmpProjPoints[currImage],1,i);
x2 = cvmGet(points[currImage],0,i);
y2 = cvmGet(points[currImage],1,i);
double dx,dy;
dx = x1-x2;
dy = y1-y2;
#if 1
double newDist = dx*dx+dy*dy;
if( newDist > dist )
{
dist = newDist;
}
#else
dist += sqrt(dx*dx+dy*dy)/3.0;
#endif
}
dist = sqrt(dist);
flags[i] = (char)(dist > threshold ? 0 : 1);
numGoodPoints += flags[i];
}
if( numGoodPoints > maxGoodPoints )
{/* Copy current projection matrices as best */
cvCopy(&proj6[0],&bestProjMatrs[0]);
cvCopy(&proj6[1],&bestProjMatrs[1]);
cvCopy(&proj6[2],&bestProjMatrs[2]);
maxGoodPoints = numGoodPoints;
/* copy best flags */
memcpy(bestFlags,flags,sizeof(flags[0])*numPoints);
/* Adaptive number of samples to count*/
double ep = 1 - (double)numGoodPoints / (double)numPoints;
if( ep == 1 )
{
ep = 0.5;/* if there is not good points set ration of outliers to 50% */
}
double newNumSamples = (log(1-p) / log(1-pow(1-ep,6)));
if( newNumSamples < double(NumSamples) )
{
NumSamples = cvRound(newNumSamples);
}
}
}
wasCount++;
}
#if 0
char str[300];
sprintf(str,"Initial numPoints = %d\nmaxGoodPoints=%d\nRANSAC made %d steps",
numPoints,
maxGoodPoints,
cvRound(wasCount));
MessageBox(0,str,"Info",MB_OK|MB_TASKMODAL);
#endif
/* we may have best 6-point projection matrices. */
/* and best points */
/* use these points to improve matrices */
if( maxGoodPoints < 6 )
{
/* matrix not found */
numProjMatrs = 0;
}
else
{
/* We may Improove matrices using ---- method */
/* We may try to use Levenberg-Marquardt optimization */
//int currIter = 0;
int finalGoodPoints = 0;
char *goodFlags = 0;
goodFlags = (char*)cvAlloc(numPoints*sizeof(char));
int needRepeat;
do
{
#if 0
/* Version without using status for Levenberg-Marquardt minimization */
CvMat *optStatus;
optStatus = cvCreateMat(1,numPoints,CV_64F);
int testNumber = 0;
for( i=0;i<numPoints;i++ )
{
cvmSet(optStatus,0,i,(double)bestFlags[i]);
testNumber += bestFlags[i];
}
char str2[200];
sprintf(str2,"test good num=%d\nmaxGoodPoints=%d",testNumber,maxGoodPoints);
MessageBox(0,str2,"Info",MB_OK|MB_TASKMODAL);
CvMat *gPresPoints;
gPresPoints = cvCreateMat(1,maxGoodPoints,CV_64F);
for( i = 0; i < maxGoodPoints; i++)
{
cvmSet(gPresPoints,0,i,1.0);
}
/* Create array of points pres */
CvMat *pointsPres[3];
pointsPres[0] = gPresPoints;
pointsPres[1] = gPresPoints;
pointsPres[2] = gPresPoints;
/* Create just good points 2D */
CvMat *gPoints[3];
icvCreateGoodPoints(points[0],&gPoints[0],optStatus);
icvCreateGoodPoints(points[1],&gPoints[1],optStatus);
icvCreateGoodPoints(points[2],&gPoints[2],optStatus);
/* Create 4D points array for good points */
CvMat *resPoints4D;
resPoints4D = cvCreateMat(4,maxGoodPoints,CV_64F);
CvMat* projMs[3];
projMs[0] = &bestProjMatrs[0];
projMs[1] = &bestProjMatrs[1];
projMs[2] = &bestProjMatrs[2];
CvMat resProjMatrs[3];
double resProjMatrs_dat[36];
resProjMatrs[0] = cvMat(3,4,CV_64F,resProjMatrs_dat);
resProjMatrs[1] = cvMat(3,4,CV_64F,resProjMatrs_dat+12);
resProjMatrs[2] = cvMat(3,4,CV_64F,resProjMatrs_dat+24);
CvMat* resMatrs[3];
resMatrs[0] = &resProjMatrs[0];
resMatrs[1] = &resProjMatrs[1];
resMatrs[2] = &resProjMatrs[2];
cvOptimizeLevenbergMarquardtBundle( projMs,//projMs,
gPoints,//points,//points2D,
pointsPres,//pointsPres,
3,
resMatrs,//resProjMatrs,
resPoints4D,//resPoints4D,
100, 1e-9 );
/* We found optimized projection matrices */
CvMat *reconPoints4D;
reconPoints4D = cvCreateMat(4,numPoints,CV_64F);
/* Reconstruct all points using found projection matrices */
icvReconstructPointsFor3View( &resProjMatrs[0],&resProjMatrs[1],&resProjMatrs[2],
points[0], points[1], points[2],
reconPoints4D);
/* Project points to images using projection matrices */
icvProject4DPoints(reconPoints4D,&resProjMatrs[0],tmpProjPoints[0]);
icvProject4DPoints(reconPoints4D,&resProjMatrs[1],tmpProjPoints[1]);
icvProject4DPoints(reconPoints4D,&resProjMatrs[2],tmpProjPoints[2]);
/* Compute error for each point and select good */
int currImage;
finalGoodPoints = 0;
for( i = 0; i < numPoints; i++ )
{
double dist=-1;
/* Choose max distance for each of three points */
for( currImage = 0; currImage < 3; currImage++ )
{
double x1,y1,x2,y2;
x1 = cvmGet(tmpProjPoints[currImage],0,i);
y1 = cvmGet(tmpProjPoints[currImage],1,i);
x2 = cvmGet(points[currImage],0,i);
y2 = cvmGet(points[currImage],1,i);
double dx,dy;
dx = x1-x2;
dy = y1-y2;
double newDist = dx*dx+dy*dy;
if( newDist > dist )
{
dist = newDist;
}
}
dist = sqrt(dist);
goodFlags[i] = (char)(dist > threshold ? 0 : 1);
finalGoodPoints += goodFlags[i];
}
char str[200];
sprintf(str,"Was num = %d\nNew num=%d",maxGoodPoints,finalGoodPoints);
MessageBox(0,str,"Info",MB_OK|MB_TASKMODAL);
if( finalGoodPoints > maxGoodPoints )
{
/* Copy new version of projection matrices */
cvCopy(&resProjMatrs[0],&bestProjMatrs[0]);
cvCopy(&resProjMatrs[1],&bestProjMatrs[1]);
cvCopy(&resProjMatrs[2],&bestProjMatrs[2]);
memcpy(bestFlags,goodFlags,numPoints*sizeof(char));
maxGoodPoints = finalGoodPoints;
}
cvReleaseMat(&optStatus);
cvReleaseMat(&resPoints4D);
#else
/* Version with using status for Levenberd-Marquardt minimization */
/* Create status */
CvMat *optStatus;
optStatus = cvCreateMat(1,numPoints,CV_64F);
for( i=0;i<numPoints;i++ )
{
cvmSet(optStatus,0,i,(double)bestFlags[i]);
}
CvMat *pointsPres[3];
pointsPres[0] = optStatus;
pointsPres[1] = optStatus;
pointsPres[2] = optStatus;
/* Create 4D points array for good points */
CvMat *resPoints4D;
resPoints4D = cvCreateMat(4,numPoints,CV_64F);
CvMat* projMs[3];
projMs[0] = &bestProjMatrs[0];
projMs[1] = &bestProjMatrs[1];
projMs[2] = &bestProjMatrs[2];
CvMat resProjMatrs[3];
double resProjMatrs_dat[36];
resProjMatrs[0] = cvMat(3,4,CV_64F,resProjMatrs_dat);
resProjMatrs[1] = cvMat(3,4,CV_64F,resProjMatrs_dat+12);
resProjMatrs[2] = cvMat(3,4,CV_64F,resProjMatrs_dat+24);
CvMat* resMatrs[3];
resMatrs[0] = &resProjMatrs[0];
resMatrs[1] = &resProjMatrs[1];
resMatrs[2] = &resProjMatrs[2];
cvOptimizeLevenbergMarquardtBundle( projMs,//projMs,
points,//points2D,
pointsPres,//pointsPres,
3,
resMatrs,//resProjMatrs,
resPoints4D,//resPoints4D,
100, 1e-9 );
/* We found optimized projection matrices */
reconPoints4D = cvCreateMat(4,numPoints,CV_64F);
/* Reconstruct all points using found projection matrices */
icvReconstructPointsFor3View( &resProjMatrs[0],&resProjMatrs[1],&resProjMatrs[2],
points[0], points[1], points[2],
reconPoints4D);
/* Project points to images using projection matrices */
icvProject4DPoints(reconPoints4D,&resProjMatrs[0],tmpProjPoints[0]);
icvProject4DPoints(reconPoints4D,&resProjMatrs[1],tmpProjPoints[1]);
icvProject4DPoints(reconPoints4D,&resProjMatrs[2],tmpProjPoints[2]);
/* Compute error for each point and select good */
int currImage;
finalGoodPoints = 0;
for( i = 0; i < numPoints; i++ )
{
double dist=-1;
/* Choose max distance for each of three points */
for( currImage = 0; currImage < 3; currImage++ )
{
double x1,y1,x2,y2;
x1 = cvmGet(tmpProjPoints[currImage],0,i);
y1 = cvmGet(tmpProjPoints[currImage],1,i);
x2 = cvmGet(points[currImage],0,i);
y2 = cvmGet(points[currImage],1,i);
double dx,dy;
dx = x1-x2;
dy = y1-y2;
double newDist = dx*dx+dy*dy;
if( newDist > dist )
{
dist = newDist;
}
}
dist = sqrt(dist);
goodFlags[i] = (char)(dist > threshold ? 0 : 1);
finalGoodPoints += goodFlags[i];
}
/*char str[200];
sprintf(str,"Was num = %d\nNew num=%d",maxGoodPoints,finalGoodPoints);
MessageBox(0,str,"Info",MB_OK|MB_TASKMODAL);*/
needRepeat = 0;
if( finalGoodPoints > maxGoodPoints )
{
/* Copy new version of projection matrices */
cvCopy(&resProjMatrs[0],&bestProjMatrs[0]);
cvCopy(&resProjMatrs[1],&bestProjMatrs[1]);
cvCopy(&resProjMatrs[2],&bestProjMatrs[2]);
memcpy(bestFlags,goodFlags,numPoints*sizeof(char));
maxGoodPoints = finalGoodPoints;
needRepeat = 1;
}
cvReleaseMat(&optStatus);
cvReleaseMat(&resPoints4D);
#endif
} while ( needRepeat );
cvFree( &goodFlags);
numProjMatrs = 1;
/* Copy projection matrices */
cvConvert(&bestProjMatrs[0],projMatr1);
cvConvert(&bestProjMatrs[1],projMatr2);
cvConvert(&bestProjMatrs[2],projMatr3);
if( status )
{
/* copy status for each points if need */
for( int i = 0; i < numPoints; i++)
{
cvmSet(status,0,i,(double)bestFlags[i]);
}
}
}
}
if( points4D )
{/* Fill reconstructed points */
cvZero(points4D);
icvReconstructPointsFor3View( projMatr1,projMatr2,projMatr3,
points[0], points[1], points[2],
points4D);
}
__END__;
cvFree( &flags);
cvFree( &bestFlags);
cvReleaseMat(&recPoints4D);
cvReleaseMat(&tmpProjPoints[0]);
cvReleaseMat(&tmpProjPoints[1]);
cvReleaseMat(&tmpProjPoints[2]);
return numProjMatrs;
}
/*==========================================================================================*/
void icvFindBaseTransform(CvMat* points,CvMat* resultT)
{
CV_FUNCNAME( "icvFindBaseTransform" );
__BEGIN__;
if( points == 0 || resultT == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points) || !CV_IS_MAT(resultT) )
{
CV_ERROR( CV_StsUnsupportedFormat, "points and resultT must be a matrices" );
}
if( points->rows != 2 || points->cols != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be 4. And they must have 2 coordinates" );
}
if( resultT->rows != 3 || resultT->cols != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "size of matrix resultT must be 3x3" );
}
/* Function gets four points and compute transformation to e1=(100) e2=(010) e3=(001) e4=(111) */
/* !!! test each three points not collinear. Need to test */
/* Create matrices */
CvMat matrA;
CvMat vectB;
double matrA_dat[3*3];
double vectB_dat[3];
matrA = cvMat(3,3,CV_64F,matrA_dat);
vectB = cvMat(3,1,CV_64F,vectB_dat);
/* fill matrices */
int i;
for( i = 0; i < 3; i++ )
{
cvmSet(&matrA,0,i,cvmGet(points,0,i));
cvmSet(&matrA,1,i,cvmGet(points,1,i));
cvmSet(&matrA,2,i,1);
}
/* Fill vector B */
cvmSet(&vectB,0,0,cvmGet(points,0,3));
cvmSet(&vectB,1,0,cvmGet(points,1,3));
cvmSet(&vectB,2,0,1);
/* result scale */
CvMat scale;
double scale_dat[3];
scale = cvMat(3,1,CV_64F,scale_dat);
cvSolve(&matrA,&vectB,&scale,CV_SVD);
/* multiply by scale */
int j;
for( j = 0; j < 3; j++ )
{
double sc = scale_dat[j];
for( i = 0; i < 3; i++ )
{
matrA_dat[i*3+j] *= sc;
}
}
/* Convert inverse matrix */
CvMat tmpRes;
double tmpRes_dat[9];
tmpRes = cvMat(3,3,CV_64F,tmpRes_dat);
cvInvert(&matrA,&tmpRes);
cvConvert(&tmpRes,resultT);
__END__;
return;
}
/*==========================================================================================*/
void GetGeneratorReduceFundSolution(CvMat* points1,CvMat* points2,CvMat* fundReduceCoef1,CvMat* fundReduceCoef2)
{
CV_FUNCNAME( "GetGeneratorReduceFundSolution" );
__BEGIN__;
/* Test input data for errors */
if( points1 == 0 || points2 == 0 || fundReduceCoef1 == 0 || fundReduceCoef2 == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points1) || !CV_IS_MAT(points2) || !CV_IS_MAT(fundReduceCoef1) || !CV_IS_MAT(fundReduceCoef2) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
if( points1->rows != 3 || points1->cols != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points1 must be 3 and and have 3 coordinates" );
}
if( points2->rows != 3 || points2->cols != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points2 must be 3 and and have 3 coordinates" );
}
if( fundReduceCoef1->rows != 1 || fundReduceCoef1->cols != 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of fundReduceCoef1 must be 1x5" );
}
if( fundReduceCoef2->rows != 1 || fundReduceCoef2->cols != 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of fundReduceCoef2 must be 1x5" );
}
/* Using 3 corr. points compute reduce */
/* Create matrix */
CvMat matrA;
double matrA_dat[3*5];
matrA = cvMat(3,5,CV_64F,matrA_dat);
int i;
for( i = 0; i < 3; i++ )
{
double x1,y1,w1,x2,y2,w2;
x1 = cvmGet(points1,0,i);
y1 = cvmGet(points1,1,i);
w1 = cvmGet(points1,2,i);
x2 = cvmGet(points2,0,i);
y2 = cvmGet(points2,1,i);
w2 = cvmGet(points2,2,i);
cvmSet(&matrA,i,0,y1*x2-y1*w2);
cvmSet(&matrA,i,1,w1*x2-y1*w2);
cvmSet(&matrA,i,2,x1*y2-y1*w2);
cvmSet(&matrA,i,3,w1*y2-y1*w2);
cvmSet(&matrA,i,4,x1*w2-y1*w2);
}
/* solve system using svd */
CvMat matrU;
CvMat matrW;
CvMat matrV;
double matrU_dat[3*3];
double matrW_dat[3*5];
double matrV_dat[5*5];
matrU = cvMat(3,3,CV_64F,matrU_dat);
matrW = cvMat(3,5,CV_64F,matrW_dat);
matrV = cvMat(5,5,CV_64F,matrV_dat);
/* From svd we need just two last vectors of V or two last row V' */
/* We get transposed matrixes U and V */
cvSVD(&matrA,&matrW,0,&matrV,CV_SVD_V_T);
/* copy results to fundamental matrices */
for(i=0;i<5;i++)
{
cvmSet(fundReduceCoef1,0,i,cvmGet(&matrV,3,i));
cvmSet(fundReduceCoef2,0,i,cvmGet(&matrV,4,i));
}
__END__;
return;
}
/*==========================================================================================*/
int GetGoodReduceFundamMatrFromTwo(CvMat* fundReduceCoef1,CvMat* fundReduceCoef2,CvMat* resFundReduceCoef)
{
int numRoots = 0;
CV_FUNCNAME( "GetGoodReduceFundamMatrFromTwo" );
__BEGIN__;
if( fundReduceCoef1 == 0 || fundReduceCoef2 == 0 || resFundReduceCoef == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(fundReduceCoef1) || !CV_IS_MAT(fundReduceCoef2) || !CV_IS_MAT(resFundReduceCoef) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
/* using two fundamental matrix comute matrixes for det(F)=0 */
/* May compute 1 or 3 matrices. Returns number of solutions */
/* Here we will use case F=a*F1+(1-a)*F2 instead of F=m*F1+l*F2 */
/* Test for errors */
if( fundReduceCoef1->rows != 1 || fundReduceCoef1->cols != 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of fundReduceCoef1 must be 1x5" );
}
if( fundReduceCoef2->rows != 1 || fundReduceCoef2->cols != 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of fundReduceCoef2 must be 1x5" );
}
if( (resFundReduceCoef->rows != 1 && resFundReduceCoef->rows != 3) || resFundReduceCoef->cols != 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of resFundReduceCoef must be 1x5" );
}
double p1,q1,r1,s1,t1;
double p2,q2,r2,s2,t2;
p1 = cvmGet(fundReduceCoef1,0,0);
q1 = cvmGet(fundReduceCoef1,0,1);
r1 = cvmGet(fundReduceCoef1,0,2);
s1 = cvmGet(fundReduceCoef1,0,3);
t1 = cvmGet(fundReduceCoef1,0,4);
p2 = cvmGet(fundReduceCoef2,0,0);
q2 = cvmGet(fundReduceCoef2,0,1);
r2 = cvmGet(fundReduceCoef2,0,2);
s2 = cvmGet(fundReduceCoef2,0,3);
t2 = cvmGet(fundReduceCoef2,0,4);
/* solve equation */
CvMat result;
CvMat coeffs;
double result_dat[2*3];
double coeffs_dat[4];
result = cvMat(2,3,CV_64F,result_dat);
coeffs = cvMat(1,4,CV_64F,coeffs_dat);
coeffs_dat[0] = ((r1-r2)*(-p1-q1-r1-s1-t1+p2+q2+r2+s2+t2)*(q1-q2)+(p1-p2)*(s1-s2)*(t1-t2));/* *a^3 */
coeffs_dat[1] = ((r2*(-p1-q1-r1-s1-t1+p2+q2+r2+s2+t2)+(r1-r2)*(-p2-q2-r2-s2-t2))*(q1-q2)+(r1-r2)*(-p1-q1-r1-s1-t1+p2+q2+r2+s2+t2)*q2+(p2*(s1-s2)+(p1-p2)*s2)*(t1-t2)+(p1-p2)*(s1-s2)*t2);/* *a^2 */
coeffs_dat[2] = (r2*(-p2-q2-r2-s2-t2)*(q1-q2)+(r2*(-p1-q1-r1-s1-t1+p2+q2+r2+s2+t2)+(r1-r2)*(-p2-q2-r2-s2-t2))*q2+p2*s2*(t1-t2)+(p2*(s1-s2)+(p1-p2)*s2)*t2);/* *a */
coeffs_dat[3] = r2*(-p2-q2-r2-s2-t2)*q2+p2*s2*t2;/* 1 */
int num;
num = cvSolveCubic(&coeffs,&result);
/* test number of solutions and test for real solutions */
int i;
for( i = 0; i < num; i++ )
{
if( fabs(cvmGet(&result,1,i)) < 1e-8 )
{
double alpha = cvmGet(&result,0,i);
int j;
for( j = 0; j < 5; j++ )
{
cvmSet(resFundReduceCoef,numRoots,j,
alpha * cvmGet(fundReduceCoef1,0,j) + (1-alpha) * cvmGet(fundReduceCoef2,0,j) );
}
numRoots++;
}
}
__END__;
return numRoots;
}
/*==========================================================================================*/
void GetProjMatrFromReducedFundamental(CvMat* fundReduceCoefs,CvMat* projMatrCoefs)
{
CV_FUNCNAME( "GetProjMatrFromReducedFundamental" );
__BEGIN__;
/* Test for errors */
if( fundReduceCoefs == 0 || projMatrCoefs == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(fundReduceCoefs) || !CV_IS_MAT(projMatrCoefs) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
if( fundReduceCoefs->rows != 1 || fundReduceCoefs->cols != 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of fundReduceCoefs must be 1x5" );
}
if( projMatrCoefs->rows != 1 || projMatrCoefs->cols != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of projMatrCoefs must be 1x4" );
}
/* Computes project matrix from given reduced matrix */
/* we have p,q,r,s,t and need get a,b,c,d */
/* Fill matrix to compute ratio a:b:c as A:B:C */
CvMat matrA;
double matrA_dat[3*3];
matrA = cvMat(3,3,CV_64F,matrA_dat);
double p,q,r,s,t;
p = cvmGet(fundReduceCoefs,0,0);
q = cvmGet(fundReduceCoefs,0,1);
r = cvmGet(fundReduceCoefs,0,2);
s = cvmGet(fundReduceCoefs,0,3);
t = cvmGet(fundReduceCoefs,0,4);
matrA_dat[0] = p;
matrA_dat[1] = r;
matrA_dat[2] = 0;
matrA_dat[3] = q;
matrA_dat[4] = 0;
matrA_dat[5] = t;
matrA_dat[6] = 0;
matrA_dat[7] = s;
matrA_dat[8] = -(p+q+r+s+t);
CvMat matrU;
CvMat matrW;
CvMat matrV;
double matrU_dat[3*3];
double matrW_dat[3*3];
double matrV_dat[3*3];
matrU = cvMat(3,3,CV_64F,matrU_dat);
matrW = cvMat(3,3,CV_64F,matrW_dat);
matrV = cvMat(3,3,CV_64F,matrV_dat);
/* From svd we need just last vector of V or last row V' */
/* We get transposed matrixes U and V */
cvSVD(&matrA,&matrW,0,&matrV,CV_SVD_V_T);
double A1,B1,C1;
A1 = matrV_dat[6];
B1 = matrV_dat[7];
C1 = matrV_dat[8];
/* Get second coeffs */
matrA_dat[0] = 0;
matrA_dat[1] = r;
matrA_dat[2] = t;
matrA_dat[3] = p;
matrA_dat[4] = 0;
matrA_dat[5] = -(p+q+r+s+t);
matrA_dat[6] = q;
matrA_dat[7] = s;
matrA_dat[8] = 0;
cvSVD(&matrA,&matrW,0,&matrV,CV_SVD_V_T);
double A2,B2,C2;
A2 = matrV_dat[6];
B2 = matrV_dat[7];
C2 = matrV_dat[8];
double a,b,c,d;
{
CvMat matrK;
double matrK_dat[36];
matrK = cvMat(6,6,CV_64F,matrK_dat);
cvZero(&matrK);
matrK_dat[0] = 1;
matrK_dat[7] = 1;
matrK_dat[14] = 1;
matrK_dat[18] = -1;
matrK_dat[25] = -1;
matrK_dat[32] = -1;
matrK_dat[21] = 1;
matrK_dat[27] = 1;
matrK_dat[33] = 1;
matrK_dat[0*6+4] = -A1;
matrK_dat[1*6+4] = -B1;
matrK_dat[2*6+4] = -C1;
matrK_dat[3*6+5] = -A2;
matrK_dat[4*6+5] = -B2;
matrK_dat[5*6+5] = -C2;
CvMat matrU;
CvMat matrW;
CvMat matrV;
double matrU_dat[36];
double matrW_dat[36];
double matrV_dat[36];
matrU = cvMat(6,6,CV_64F,matrU_dat);
matrW = cvMat(6,6,CV_64F,matrW_dat);
matrV = cvMat(6,6,CV_64F,matrV_dat);
/* From svd we need just last vector of V or last row V' */
/* We get transposed matrixes U and V */
cvSVD(&matrK,&matrW,0,&matrV,CV_SVD_V_T);
a = matrV_dat[6*5+0];
b = matrV_dat[6*5+1];
c = matrV_dat[6*5+2];
d = matrV_dat[6*5+3];
/* we don't need last two coefficients. Because it just a k1,k2 */
cvmSet(projMatrCoefs,0,0,a);
cvmSet(projMatrCoefs,0,1,b);
cvmSet(projMatrCoefs,0,2,c);
cvmSet(projMatrCoefs,0,3,d);
}
__END__;
return;
}
/*==========================================================================================*/
void icvComputeProjectMatrix(CvMat* objPoints,CvMat* projPoints,CvMat* projMatr)
{/* Using SVD method */
/* Reconstruct points using object points and projected points */
/* Number of points must be >=6 */
CvMat matrV;
CvMat* matrA = 0;
CvMat* matrW = 0;
CvMat* workProjPoints = 0;
CvMat* tmpProjPoints = 0;
CV_FUNCNAME( "icvComputeProjectMatrix" );
__BEGIN__;
/* Test for errors */
if( objPoints == 0 || projPoints == 0 || projMatr == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(objPoints) || !CV_IS_MAT(projPoints) || !CV_IS_MAT(projMatr) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
if( projMatr->rows != 3 || projMatr->cols != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of projMatr must be 3x4" );
}
int numPoints;
numPoints = projPoints->cols;
if( numPoints < 6 )
{
CV_ERROR( CV_StsOutOfRange, "Number of points must be at least 6" );
}
if( numPoints != objPoints->cols )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be same" );
}
if( objPoints->rows != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Object points must have 4 coordinates" );
}
if( projPoints->rows != 3 && projPoints->rows != 2 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Projected points must have 2 or 3 coordinates" );
}
/* Create and fill matrix A */
CV_CALL( matrA = cvCreateMat(numPoints*3, 12, CV_64F) );
CV_CALL( matrW = cvCreateMat(numPoints*3, 12, CV_64F) );
if( projPoints->rows == 2 )
{
CV_CALL( tmpProjPoints = cvCreateMat(3,numPoints,CV_64F) );
cvMake3DPoints(projPoints,tmpProjPoints);
workProjPoints = tmpProjPoints;
}
else
{
workProjPoints = projPoints;
}
double matrV_dat[144];
matrV = cvMat(12,12,CV_64F,matrV_dat);
int i;
char* dat;
dat = (char*)(matrA->data.db);
#if 1
FILE *file;
file = fopen("d:\\test\\recProjMatr.txt","w");
#endif
for( i = 0;i < numPoints; i++ )
{
double x,y,w;
double X,Y,Z,W;
double* matrDat = (double*)dat;
x = cvmGet(workProjPoints,0,i);
y = cvmGet(workProjPoints,1,i);
w = cvmGet(workProjPoints,2,i);
X = cvmGet(objPoints,0,i);
Y = cvmGet(objPoints,1,i);
Z = cvmGet(objPoints,2,i);
W = cvmGet(objPoints,3,i);
#if 1
fprintf(file,"%d (%lf %lf %lf %lf) - (%lf %lf %lf)\n",i,X,Y,Z,W,x,y,w );
#endif
/*---*/
matrDat[ 0] = 0;
matrDat[ 1] = 0;
matrDat[ 2] = 0;
matrDat[ 3] = 0;
matrDat[ 4] = -w*X;
matrDat[ 5] = -w*Y;
matrDat[ 6] = -w*Z;
matrDat[ 7] = -w*W;
matrDat[ 8] = y*X;
matrDat[ 9] = y*Y;
matrDat[10] = y*Z;
matrDat[11] = y*W;
/*---*/
matrDat[12] = w*X;
matrDat[13] = w*Y;
matrDat[14] = w*Z;
matrDat[15] = w*W;
matrDat[16] = 0;
matrDat[17] = 0;
matrDat[18] = 0;
matrDat[19] = 0;
matrDat[20] = -x*X;
matrDat[21] = -x*Y;
matrDat[22] = -x*Z;
matrDat[23] = -x*W;
/*---*/
matrDat[24] = -y*X;
matrDat[25] = -y*Y;
matrDat[26] = -y*Z;
matrDat[27] = -y*W;
matrDat[28] = x*X;
matrDat[29] = x*Y;
matrDat[30] = x*Z;
matrDat[31] = x*W;
matrDat[32] = 0;
matrDat[33] = 0;
matrDat[34] = 0;
matrDat[35] = 0;
/*---*/
dat += (matrA->step)*3;
}
#if 1
fclose(file);
#endif
/* Solve this system */
/* From svd we need just last vector of V or last row V' */
/* We get transposed matrix V */
cvSVD(matrA,matrW,0,&matrV,CV_SVD_V_T);
/* projected matrix was computed */
for( i = 0; i < 12; i++ )
{
cvmSet(projMatr,i/4,i%4,cvmGet(&matrV,11,i));
}
cvReleaseMat(&matrA);
cvReleaseMat(&matrW);
cvReleaseMat(&tmpProjPoints);
__END__;
}
/*==========================================================================================*/
/* May be useless function */
void icvComputeTransform4D(CvMat* points1,CvMat* points2,CvMat* transMatr)
{
CvMat* matrA = 0;
CvMat* matrW = 0;
double matrV_dat[256];
CvMat matrV = cvMat(16,16,CV_64F,matrV_dat);
CV_FUNCNAME( "icvComputeTransform4D" );
__BEGIN__;
if( points1 == 0 || points2 == 0 || transMatr == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(points1) || !CV_IS_MAT(points2) || !CV_IS_MAT(transMatr) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
/* Computes transformation matrix (4x4) for points1 -> points2 */
/* p2=H*p1 */
/* Test for errors */
int numPoints;
numPoints = points1->cols;
/* we must have at least 5 points */
if( numPoints < 5 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be at least 5" );
}
if( numPoints != points2->cols )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be the same" );
}
if( transMatr->rows != 4 || transMatr->cols != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of transMatr must be 4x4" );
}
if( points1->rows != 4 || points2->rows != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of coordinates of points must be 4" );
}
/* Create matrix */
CV_CALL( matrA = cvCreateMat(6*numPoints,16,CV_64F) );
CV_CALL( matrW = cvCreateMat(6*numPoints,16,CV_64F) );
cvZero(matrA);
/* Fill matrices */
int i;
for( i = 0; i < numPoints; i++ )/* For each point */
{
double X1,Y1,Z1,W1;
double P[4];
P[0] = cvmGet(points1,0,i);
P[1] = cvmGet(points1,1,i);
P[2] = cvmGet(points1,2,i);
P[3] = cvmGet(points1,3,i);
X1 = cvmGet(points2,0,i);
Y1 = cvmGet(points2,1,i);
Z1 = cvmGet(points2,2,i);
W1 = cvmGet(points2,3,i);
/* Fill matrA */
for( int j = 0; j < 4; j++ )/* For each coordinate */
{
double x,y,z,w;
x = X1*P[j];
y = Y1*P[j];
z = Z1*P[j];
w = W1*P[j];
cvmSet(matrA,6*i+0,4*0+j,y);
cvmSet(matrA,6*i+0,4*1+j,-x);
cvmSet(matrA,6*i+1,4*0+j,z);
cvmSet(matrA,6*i+1,4*2+j,-x);
cvmSet(matrA,6*i+2,4*0+j,w);
cvmSet(matrA,6*i+2,4*3+j,-x);
cvmSet(matrA,6*i+3,4*1+j,-z);
cvmSet(matrA,6*i+3,4*2+j,y);
cvmSet(matrA,6*i+4,4*1+j,-w);
cvmSet(matrA,6*i+4,4*3+j,y);
cvmSet(matrA,6*i+5,4*2+j,-w);
cvmSet(matrA,6*i+5,4*3+j,z);
}
}
/* From svd we need just two last vectors of V or two last row V' */
/* We get transposed matrixes U and V */
cvSVD(matrA,matrW,0,&matrV,CV_SVD_V_T);
/* Copy result to result matrix */
for( i = 0; i < 16; i++ )
{
cvmSet(transMatr,i/4,i%4,cvmGet(&matrV,15,i));
}
cvReleaseMat(&matrA);
cvReleaseMat(&matrW);
__END__;
return;
}
/*==========================================================================================*/
void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
CvMat* projPoints1,CvMat* projPoints2,CvMat* projPoints3,
CvMat* points4D)
{
CV_FUNCNAME( "icvReconstructPointsFor3View" );
__BEGIN__;
if( projMatr1 == 0 || projMatr2 == 0 || projMatr3 == 0 ||
projPoints1 == 0 || projPoints2 == 0 || projPoints3 == 0 ||
points4D == 0)
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) || !CV_IS_MAT(projMatr3) ||
!CV_IS_MAT(projPoints1) || !CV_IS_MAT(projPoints2) || !CV_IS_MAT(projPoints3) ||
!CV_IS_MAT(points4D) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
int numPoints;
numPoints = projPoints1->cols;
if( numPoints < 1 )
{
CV_ERROR( CV_StsOutOfRange, "Number of points must be more than zero" );
}
if( projPoints2->cols != numPoints || projPoints3->cols != numPoints || points4D->cols != numPoints )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be the same" );
}
if( projPoints1->rows != 2 || projPoints2->rows != 2 || projPoints3->rows != 2)
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of proj points coordinates must be == 2" );
}
if( points4D->rows != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of world points coordinates must be == 4" );
}
if( projMatr1->cols != 4 || projMatr1->rows != 3 ||
projMatr2->cols != 4 || projMatr2->rows != 3 ||
projMatr3->cols != 4 || projMatr3->rows != 3)
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of projection matrices must be 3x4" );
}
CvMat matrA;
double matrA_dat[36];
matrA = cvMat(9,4,CV_64F,matrA_dat);
//CvMat matrU;
CvMat matrW;
CvMat matrV;
//double matrU_dat[9*9];
double matrW_dat[9*4];
double matrV_dat[4*4];
//matrU = cvMat(9,9,CV_64F,matrU_dat);
matrW = cvMat(9,4,CV_64F,matrW_dat);
matrV = cvMat(4,4,CV_64F,matrV_dat);
CvMat* projPoints[3];
CvMat* projMatrs[3];
projPoints[0] = projPoints1;
projPoints[1] = projPoints2;
projPoints[2] = projPoints3;
projMatrs[0] = projMatr1;
projMatrs[1] = projMatr2;
projMatrs[2] = projMatr3;
/* Solve system for each point */
int i,j;
for( i = 0; i < numPoints; i++ )/* For each point */
{
/* Fill matrix for current point */
for( j = 0; j < 3; j++ )/* For each view */
{
double x,y;
x = cvmGet(projPoints[j],0,i);
y = cvmGet(projPoints[j],1,i);
for( int k = 0; k < 4; k++ )
{
cvmSet(&matrA, j*3+0, k, x * cvmGet(projMatrs[j],2,k) - cvmGet(projMatrs[j],0,k) );
cvmSet(&matrA, j*3+1, k, y * cvmGet(projMatrs[j],2,k) - cvmGet(projMatrs[j],1,k) );
cvmSet(&matrA, j*3+2, k, x * cvmGet(projMatrs[j],1,k) - y * cvmGet(projMatrs[j],0,k) );
}
}
/* Solve system for current point */
{
cvSVD(&matrA,&matrW,0,&matrV,CV_SVD_V_T);
/* Copy computed point */
cvmSet(points4D,0,i,cvmGet(&matrV,3,0));/* X */
cvmSet(points4D,1,i,cvmGet(&matrV,3,1));/* Y */
cvmSet(points4D,2,i,cvmGet(&matrV,3,2));/* Z */
cvmSet(points4D,3,i,cvmGet(&matrV,3,3));/* W */
}
}
/* Points was reconstructed. Try to reproject points */
/* We can compute reprojection error if need */
{
int i;
CvMat point3D;
double point3D_dat[4];
point3D = cvMat(4,1,CV_64F,point3D_dat);
CvMat point2D;
double point2D_dat[3];
point2D = cvMat(3,1,CV_64F,point2D_dat);
for( i = 0; i < numPoints; i++ )
{
double W = cvmGet(points4D,3,i);
point3D_dat[0] = cvmGet(points4D,0,i)/W;
point3D_dat[1] = cvmGet(points4D,1,i)/W;
point3D_dat[2] = cvmGet(points4D,2,i)/W;
point3D_dat[3] = 1;
/* !!! Project this point for each camera */
for( int currCamera = 0; currCamera < 3; currCamera++ )
{
cvmMul(projMatrs[currCamera], &point3D, &point2D);
float x,y;
float xr,yr,wr;
x = (float)cvmGet(projPoints[currCamera],0,i);
y = (float)cvmGet(projPoints[currCamera],1,i);
wr = (float)point2D_dat[2];
xr = (float)(point2D_dat[0]/wr);
yr = (float)(point2D_dat[1]/wr);
float deltaX,deltaY;
deltaX = (float)fabs(x-xr);
deltaY = (float)fabs(y-yr);
}
}
}
__END__;
return;
}
#if 0
void ReconstructPointsFor3View_bySolve( CvMat* projMatr1,CvMat* projMatr2,CvMat* projMatr3,
CvMat* projPoints1,CvMat* projPoints2,CvMat* projPoints3,
CvMat* points3D)
{
CV_FUNCNAME( "ReconstructPointsFor3View" );
__BEGIN__;
int numPoints;
numPoints = projPoints1->cols;
if( projPoints2->cols != numPoints || projPoints3->cols != numPoints || points3D->cols != numPoints )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of points must be the same" );
}
if( projPoints1->rows != 2 || projPoints2->rows != 2 || projPoints3->rows != 2)
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of proj points coordinates must be == 2" );
}
if( points3D->rows != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of world points coordinates must be == 4" );
}
if( projMatr1->cols != 4 || projMatr1->rows != 3 ||
projMatr2->cols != 4 || projMatr2->rows != 3 ||
projMatr3->cols != 4 || projMatr3->rows != 3)
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of proj matrix must be 3x4" );
}
CvMat matrA;
double matrA_dat[3*3*3];
matrA = cvMat(3*3,3,CV_64F,matrA_dat);
CvMat vectB;
double vectB_dat[9];
vectB = cvMat(9,1,CV_64F,vectB_dat);
CvMat result;
double result_dat[3];
result = cvMat(3,1,CV_64F,result_dat);
CvMat* projPoints[3];
CvMat* projMatrs[3];
projPoints[0] = projPoints1;
projPoints[1] = projPoints2;
projPoints[2] = projPoints3;
projMatrs[0] = projMatr1;
projMatrs[1] = projMatr2;
projMatrs[2] = projMatr3;
/* Solve system for each point */
int i,j;
for( i = 0; i < numPoints; i++ )/* For each point */
{
/* Fill matrix for current point */
for( j = 0; j < 3; j++ )/* For each view */
{
double x,y;
x = cvmGet(projPoints[j],0,i);
y = cvmGet(projPoints[j],1,i);
cvmSet(&vectB,j*3+0,0,x-cvmGet(projMatrs[j],0,3));
cvmSet(&vectB,j*3+1,0,y-cvmGet(projMatrs[j],1,3));
cvmSet(&vectB,j*3+2,0,1-cvmGet(projMatrs[j],2,3));
for( int t = 0; t < 3; t++ )
{
for( int k = 0; k < 3; k++ )
{
cvmSet(&matrA, j*3+t, k, cvmGet(projMatrs[j],t,k) );
}
}
}
/* Solve system for current point */
cvSolve(&matrA,&vectB,&result,CV_SVD);
cvmSet(points3D,0,i,result_dat[0]);/* X */
cvmSet(points3D,1,i,result_dat[1]);/* Y */
cvmSet(points3D,2,i,result_dat[2]);/* Z */
cvmSet(points3D,3,i,1);/* W */
}
/* Points was reconstructed. Try to reproject points */
{
int i;
CvMat point3D;
double point3D_dat[4];
point3D = cvMat(4,1,CV_64F,point3D_dat);
CvMat point2D;
double point2D_dat[3];
point2D = cvMat(3,1,CV_64F,point2D_dat);
for( i = 0; i < numPoints; i++ )
{
double W = cvmGet(points3D,3,i);
point3D_dat[0] = cvmGet(points3D,0,i)/W;
point3D_dat[1] = cvmGet(points3D,1,i)/W;
point3D_dat[2] = cvmGet(points3D,2,i)/W;
point3D_dat[3] = 1;
/* Project this point for each camera */
for( int currCamera = 0; currCamera < 3; currCamera++ )
{
cvmMul(projMatrs[currCamera], &point3D, &point2D);
float x,y;
float xr,yr,wr;
x = (float)cvmGet(projPoints[currCamera],0,i);
y = (float)cvmGet(projPoints[currCamera],1,i);
wr = (float)point2D_dat[2];
xr = (float)(point2D_dat[0]/wr);
yr = (float)(point2D_dat[1]/wr);
}
}
}
__END__;
return;
}
#endif
/*==========================================================================================*/
void icvComputeCameraExrinnsicByPosition(CvMat* camPos, CvMat* rotMatr, CvMat* transVect)
{
/* We know position of camera. we must to compute rotate matrix and translate vector */
CV_FUNCNAME( "icvComputeCameraExrinnsicByPosition" );
__BEGIN__;
/* Test input paramaters */
if( camPos == 0 || rotMatr == 0 || transVect == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(camPos) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(transVect) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
if( camPos->cols != 1 || camPos->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of coordinates of camera position must be 3x1 vector" );
}
if( rotMatr->cols != 3 || rotMatr->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Rotate matrix must be 3x3" );
}
if( transVect->cols != 1 || transVect->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Translate vector must be 3x1" );
}
double x,y,z;
x = cvmGet(camPos,0,0);
y = cvmGet(camPos,1,0);
z = cvmGet(camPos,2,0);
/* Set translate vector. It same as camea position */
cvmSet(transVect,0,0,x);
cvmSet(transVect,1,0,y);
cvmSet(transVect,2,0,z);
/* Compute rotate matrix. Compute each unit transformed vector */
/* normalize flat direction x,y */
double vectorX[3];
double vectorY[3];
double vectorZ[3];
vectorX[0] = -z;
vectorX[1] = 0;
vectorX[2] = x;
vectorY[0] = x*y;
vectorY[1] = x*x+z*z;
vectorY[2] = z*y;
vectorZ[0] = -x;
vectorZ[1] = -y;
vectorZ[2] = -z;
/* normaize vectors */
double norm;
int i;
/* Norm X */
norm = 0;
for( i = 0; i < 3; i++ )
norm += vectorX[i]*vectorX[i];
norm = sqrt(norm);
for( i = 0; i < 3; i++ )
vectorX[i] /= norm;
/* Norm Y */
norm = 0;
for( i = 0; i < 3; i++ )
norm += vectorY[i]*vectorY[i];
norm = sqrt(norm);
for( i = 0; i < 3; i++ )
vectorY[i] /= norm;
/* Norm Z */
norm = 0;
for( i = 0; i < 3; i++ )
norm += vectorZ[i]*vectorZ[i];
norm = sqrt(norm);
for( i = 0; i < 3; i++ )
vectorZ[i] /= norm;
/* Set output results */
for( i = 0; i < 3; i++ )
{
cvmSet(rotMatr,i,0,vectorX[i]);
cvmSet(rotMatr,i,1,vectorY[i]);
cvmSet(rotMatr,i,2,vectorZ[i]);
}
{/* Try to inverse rotate matrix */
CvMat tmpInvRot;
double tmpInvRot_dat[9];
tmpInvRot = cvMat(3,3,CV_64F,tmpInvRot_dat);
cvInvert(rotMatr,&tmpInvRot,CV_SVD);
cvConvert(&tmpInvRot,rotMatr);
}
__END__;
return;
}
/*==========================================================================================*/
void FindTransformForProjectMatrices(CvMat* projMatr1,CvMat* projMatr2,CvMat* rotMatr,CvMat* transVect)
{
/* Computes homography for project matrix be "canonical" form */
CV_FUNCNAME( "computeProjMatrHomography" );
__BEGIN__;
/* Test input paramaters */
if( projMatr1 == 0 || projMatr2 == 0 || rotMatr == 0 || transVect == 0 )
{
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
}
if( !CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(transVect) )
{
CV_ERROR( CV_StsUnsupportedFormat, "Input parameters must be a matrices" );
}
if( projMatr1->cols != 4 || projMatr1->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of project matrix 1 must be 3x4" );
}
if( projMatr2->cols != 4 || projMatr2->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of project matrix 2 must be 3x4" );
}
if( rotMatr->cols != 3 || rotMatr->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of rotation matrix must be 3x3" );
}
if( transVect->cols != 1 || transVect->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of translation vector must be 3x1" );
}
CvMat matrA;
double matrA_dat[12*12];
matrA = cvMat(12,12,CV_64F,matrA_dat);
CvMat vectB;
double vectB_dat[12];
vectB = cvMat(12,1,CV_64F,vectB_dat);
cvZero(&matrA);
cvZero(&vectB);
int i,j;
for( i = 0; i < 12; i++ )
{
for( j = 0; j < 12; j++ )
{
cvmSet(&matrA,i,j,cvmGet(projMatr1,i/4,j%4));
}
/* Fill vector B */
double val = cvmGet(projMatr2,i/4,i%4);
if( (i+1)%4 == 0 )
{
val -= cvmGet(projMatr1,i/4,3);
}
cvmSet(&vectB,i,0,val);
}
/* Solve system */
CvMat resVect;
double resVect_dat[12];
resVect = cvMat(12,1,CV_64F,resVect_dat);
int sing;
sing = cvSolve(&matrA,&vectB,&resVect);
/* Fill rotation matrix */
for( i = 0; i < 12; i++ )
{
double val = cvmGet(&resVect,i,0);
if( i < 9 )
cvmSet(rotMatr,i%3,i/3,val);
else
cvmSet(transVect,i-9,0,val);
}
__END__;
return;
}
/*==========================================================================================*/
#if 0
void icvComputeQknowPrincipalPoint(int numImages, CvMat **projMatrs,CvMat *matrQ, double cx,double cy)
{
/* Computes matrix Q */
/* focal x and y eqauls () */
/* we know principal point for camera */
/* focal may differ from image to image */
/* image skew is 0 */
if( numImages < 10 )
{
return;
//Error. Number of images too few
}
/* Create */
return;
}
#endif
/*==========================================================================================*/
/*==========================================================================================*/
/*==========================================================================================*/
/*==========================================================================================*/
/*==========================================================================================*/
/* Part with metric reconstruction */
#if 1
void icvComputeQ(int numMatr, CvMat** projMatr, CvMat** cameraMatr, CvMat* matrQ)
{
/* K*K' = P*Q*P' */
/* try to solve Q by linear method */
CvMat* matrA = 0;
CvMat* vectB = 0;
CV_FUNCNAME( "ComputeQ" );
__BEGIN__;
/* Define number of projection matrices */
if( numMatr < 2 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Number of projection matrices must be at least 2" );
}
/* test matrices sizes */
if( matrQ->cols != 4 || matrQ->rows != 4 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of matrix Q must be 3x3" );
}
int currMatr;
for( currMatr = 0; currMatr < numMatr; currMatr++ )
{
if( cameraMatr[currMatr]->cols != 3 || cameraMatr[currMatr]->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of each camera matrix must be 3x3" );
}
if( projMatr[currMatr]->cols != 4 || projMatr[currMatr]->rows != 3 )
{
CV_ERROR( CV_StsUnmatchedSizes, "Size of each camera matrix must be 3x3" );
}
}
CvMat matrw;
double matrw_dat[9];
matrw = cvMat(3,3,CV_64F,matrw_dat);
CvMat matrKt;
double matrKt_dat[9];
matrKt = cvMat(3,3,CV_64F,matrKt_dat);
/* Create matrix A and vector B */
CV_CALL( matrA = cvCreateMat(9*numMatr,10,CV_64F) );
CV_CALL( vectB = cvCreateMat(9*numMatr,1,CV_64F) );
double dataQ[16];
for( currMatr = 0; currMatr < numMatr; currMatr++ )
{
int ord10[10] = {0,1,2,3,5,6,7,10,11,15};
/* Fill atrix A by data from matrices */
/* Compute matrix w for current camera matrix */
cvTranspose(cameraMatr[currMatr],&matrKt);
cvmMul(cameraMatr[currMatr],&matrKt,&matrw);
/* Fill matrix A and vector B */
int currWi,currWj;
int currMatr;
for( currMatr = 0; currMatr < numMatr; currMatr++ )
{
for( currWi = 0; currWi < 3; currWi++ )
{
for( currWj = 0; currWj < 3; currWj++ )
{
int i,j;
for( i = 0; i < 4; i++ )
{
for( j = 0; j < 4; j++ )
{
/* get elements from current projection matrix */
dataQ[i*4+j] = cvmGet(projMatr[currMatr],currWi,j) *
cvmGet(projMatr[currMatr],currWj,i);
}
}
/* we know 16 elements in dataQ move them to matrQ 10 */
dataQ[1] += dataQ[4];
dataQ[2] += dataQ[8];
dataQ[3] += dataQ[12];
dataQ[6] += dataQ[9];
dataQ[7] += dataQ[13];
dataQ[11] += dataQ[14];
/* Now first 10 elements has coeffs */
/* copy to matrix A */
for( i = 0; i < 10; i++ )
{
cvmSet(matrA,currMatr*9 + currWi*3+currWj,i,dataQ[ord10[i]]);
}
}
}
/* Fill vector B */
for( int i = 0; i < 9; i++ )
{
cvmSet(vectB,currMatr*9+i,0,matrw_dat[i]);
}
}
}
/* Matrix A and vector B filled and we can solve system */
/* Solve system */
CvMat resQ;
double resQ_dat[10];
resQ = cvMat(10,1,CV_64F,resQ_dat);
cvSolve(matrA,vectB,&resQ,CV_SVD);
/* System was solved. We know matrix Q. But we must have condition det Q=0 */
/* Just copy result matrix Q */
{
int curr = 0;
int ord16[16] = {0,1,2,3,1,4,5,6,2,5,7,8,3,6,8,9};
for( int i = 0; i < 4; i++ )
{
for( int j = 0; j < 4; j++ )
{
cvmSet(matrQ,i,j,resQ_dat[ord16[curr++]]);
}
}
}
__END__;
/* Free allocated memory */
cvReleaseMat(&matrA);
cvReleaseMat(&vectB);
return;
}
#endif
/*-----------------------------------------------------------------------------------------------------*/
void icvDecomposeQ(CvMat* /*matrQ*/,CvMat* /*matrH*/)
{
#if 0
/* Use SVD to decompose matrix Q=H*I*H' */
/* test input data */
CvMat matrW;
CvMat matrU;
// CvMat matrV;
double matrW_dat[16];
double matrU_dat[16];
// double matrV_dat[16];
matrW = cvMat(4,4,CV_64F,matrW_dat);
matrU = cvMat(4,4,CV_64F,matrU_dat);
// matrV = cvMat(4,4,CV_64F,matrV_dat);
cvSVD(matrQ,&matrW,&matrU,0);
double eig[3];
eig[0] = fsqrt(cvmGet(&matrW,0,0));
eig[1] = fsqrt(cvmGet(&matrW,1,1));
eig[2] = fsqrt(cvmGet(&matrW,2,2));
CvMat matrIS;
double matrIS_dat[16];
matrIS =
/* det for matrix Q with q1-q10 */
/*
+ q1*q5*q8*q10
- q1*q5*q9*q9
- q1*q6*q6*q10
+ 2*q1*q6*q7*q9
- q1*q7*q7*q8
- q2*q2*q8*q10
+ q2*q2*q9*q9
+ 2*q2*q6*q3*q10
- 2*q2*q6*q4*q9
- 2*q2*q7*q3*q9
+ 2*q2*q7*q4*q8
- q5*q3*q3*q10
+ 2*q3*q5*q4*q9
+ q3*q3*q7*q7
- 2*q3*q7*q4*q6
- q5*q4*q4*q8
+ q4*q4*q6*q6
*/
// (1-a)^4 = 1 - 4 * a + 6 * a * a - 4 * a * a * a + a * a * a * a;
#endif
}