/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* Hybrid linear-contour model reconstruction */
#include "_cvaux.h"
#define CV_IMPL CV_EXTERN_C
const float LCM_CONST_ZERO = 1e-6f;
/****************************************************************************************\
* Auxiliary struct definitions *
\****************************************************************************************/
typedef struct CvLCM
{
CvGraph* Graph;
CvVoronoiDiagram2D* VoronoiDiagram;
CvMemStorage* ContourStorage;
CvMemStorage* EdgeStorage;
float maxWidth;
} CvLCM;
typedef struct CvLCMComplexNodeData
{
CvVoronoiNode2D edge_node;
CvPoint2D32f site_first_pt;
CvPoint2D32f site_last_pt;
CvVoronoiSite2D* site_first;
CvVoronoiSite2D* site_last;
CvVoronoiEdge2D* edge;
} CvLCMComplexNodeData;
typedef struct CvLCMData
{
CvVoronoiNode2D* pnode;
CvVoronoiSite2D* psite;
CvVoronoiEdge2D* pedge;
} CvLCMData;
/****************************************************************************************\
* Function definitions *
\****************************************************************************************/
#define _CV_READ_SEQ_ELEM( elem, reader, type ) \
{ \
assert( (reader).seq->elem_size == sizeof(*elem)); \
elem = (type)(reader).ptr; \
CV_NEXT_SEQ_ELEM( sizeof(*elem), reader ) \
}
#define _CV_IS_SITE_REFLEX( SITE ) ((SITE) ->node[0] == (SITE) ->node[1])
#define _CV_IS_EDGE_REFLEX( EDGE ) (( (EDGE)->site[0]->node[0] == (EDGE)->site[0]->node[0] ) || \
( (EDGE)->site[1]->node[0] == (EDGE)->site[1]->node[0] ) )
#define _CV_INITIALIZE_CVLCMDATA(STRUCT,SITE,EDGE,NODE)\
{ (STRUCT)->psite = SITE ; (STRUCT)->pedge = EDGE; (STRUCT)->pnode = NODE;}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvConstructLCM
// Purpose: Function constructs hybrid model
// Context:
// Parameters:
// LCM : in&out.
// Returns: 1, if hybrid model was succesfully constructed
// 0, if some error occures
//F*/
CV_IMPL
int _cvConstructLCM(CvLCM* LCM);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvConstructLCMComplexNode
// Purpose: Function constructs Complex Node (node, which consists of
// two points and more) of hybrid model
// Context:
// Parameters:
// pLCM : in&out.
// pLCMEdge: in, input edge of hybrid model
// pLCMInputData: in, input parameters
// Returns: pointer to constructed node
//F*/
CV_IMPL
CvLCMNode* _cvConstructLCMComplexNode(CvLCM* pLCM,
CvLCMEdge* pLCMEdge,
CvLCMData* pLCMInputData);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvConstructLCMSimpleNode
// Purpose: Function constructs Simple Node (node, which consists of
// one point) of hybrid model
// Context:
// Parameters:
// pLCM : in&out.
// pLCMEdge: in, input edge of hybrid model
// pLCMInputData: in, input parameters
// Returns: pointer to constructed node
//F*/
CV_IMPL
CvLCMNode* _cvConstructLCMSimpleNode(CvLCM* pLCM,
CvLCMEdge* pLCMEdge,
CvLCMData* pLCMInputData);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvConstructLCMSimpleNode
// Purpose: Function constructs Edge of hybrid model
// Context:
// Parameters:
// pLCM : in&out.
// pLCMInputData: in, input parameters
// Returns: pointer to constructed edge
//F*/
CV_IMPL
CvLCMEdge* _cvConstructLCMEdge(CvLCM* pLCM,
CvLCMData* pLCMInputData);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvTreatExeptionalCase
// Purpose: Function treats triangles and regular polygons
// Context:
// Parameters:
// pLCM : in, information about graph
// pLCMInputData: in, input parameters
// Returns: pointer to graph node
//F*/
CV_IMPL
CvLCMNode* _cvTreatExeptionalCase(CvLCM* pLCM,
CvLCMData* pLCMInputData);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvNodeMultyplicity
// Purpose: Function seeks all non-boundary edges incident to
// given node and correspondent incident sites
// Context:
// Parameters:
// pEdge : in, original edge
// pNode : in, given node
// LinkedEdges : out, matrix of incident edges
// LinkedSites : out, matrix of incident sites
// pSite: in, original site (pNode must be the begin point of pEdge
// for this pSite, this property hold out far all edges)
// Returns: number of incident edges (must be less than 10)
//F*/
CV_IMPL
int _cvNodeMultyplicity(CvVoronoiSite2D* pSite,
CvVoronoiEdge2D* pEdge,
CvVoronoiNode2D* pNode,
CvVoronoiEdge2D** LinkedEdges,
CvVoronoiSite2D** LinkedSites);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvCreateLCMNode
// Purpose: Function create graph node
// Context:
// Parameters:
// pLCM : in, information about graph
// Returns: pointer to graph node
//F*/
CV_IMPL
CvLCMNode* _cvCreateLCMNode(CvLCM* pLCM);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvCreateLCMEdge
// Purpose: Function create graph edge
// Context:
// Parameters:
// pLCM : in, information about graph
// Returns: pointer to graph edge
//F*/
CV_IMPL
CvLCMEdge* _cvCreateLCMEdge(CvLCM* pLCM);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvCreateLCMNode
// Purpose: Function establishs the connection between node and ege
// Context:
// Parameters:
// LCMNode : in, graph node
// LCMEdge : in, graph edge
// LCMEdge_prev : in&out, previous edge, connected with given node
// index: in,
// i : =0, if node is initial for edge
// =1, if node is terminal for edge
// Returns:
//F*/
CV_IMPL
void _cvAttachLCMEdgeToLCMNode(CvLCMNode* LCMNode,
CvLCMEdge* LCMEdge,
CvLCMEdge* &LCMEdge_prev,
int index,
int i);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvProjectionPointToSegment
// Purpose: Function computes the ortogonal projection of PointO to
// to segment[PointA, PointB]
// Context:
// Parameters:
// PointO, PointA,PointB: in, given points
// PrPoint : out, projection
// dist : distance from PointO to PrPoint
// Returns:
//F*/
CV_IMPL
void _cvProjectionPointToSegment(CvPoint2D32f* PointO,
CvPoint2D32f* PointA,
CvPoint2D32f* PointB,
CvPoint2D32f* PrPoint,
float* dist);
/*F///////////////////////////////////////////////////////////////////////////////////////
// Author: Andrey Sobolev
// Name: _cvPrepareData
// Purpose: Function fills up the struct CvLCMComplexNodeData
// Context:
// Parameters:
// pLCMData : in
// pLCMCCNData : out
// Returns:
//F*/
CV_IMPL
void _cvPrepareData(CvLCMComplexNodeData* pLCMCCNData,
CvLCMData* pLCMData);
/****************************************************************************************\
* Function realization *
\****************************************************************************************/
CV_IMPL CvGraph* cvLinearContorModelFromVoronoiDiagram(CvVoronoiDiagram2D* VoronoiDiagram,
float maxWidth)
{
CvMemStorage* LCMstorage;
CvSet* SiteSet;
CvLCM LCM = {NULL, VoronoiDiagram,NULL,NULL,maxWidth};
CV_FUNCNAME( "cvLinearContorModelFromVoronoiDiagram" );
__BEGIN__;
if( !VoronoiDiagram )
CV_ERROR( CV_StsBadArg,"Voronoi Diagram is not defined" );
if( maxWidth < 0 )
CV_ERROR( CV_StsBadArg,"Treshold parameter must be non negative" );
for(SiteSet = VoronoiDiagram->sites;
SiteSet != NULL;
SiteSet = (CvSet*)SiteSet->h_next)
{
if(SiteSet->v_next)
CV_ERROR( CV_StsBadArg,"Can't operate with multiconnected domains" );
if(SiteSet->total > 70000)
CV_ERROR( CV_StsBadArg,"Can't operate with large domains" );
}
LCMstorage = cvCreateMemStorage(0);
LCM.EdgeStorage = cvCreateChildMemStorage(LCMstorage);
LCM.ContourStorage = cvCreateChildMemStorage(LCMstorage);
LCM.Graph = cvCreateGraph(CV_SEQ_KIND_GRAPH|CV_GRAPH_FLAG_ORIENTED,
sizeof(CvGraph),
sizeof(CvLCMNode),
sizeof(CvLCMEdge),
LCMstorage);
if(!_cvConstructLCM(&LCM))
cvReleaseLinearContorModelStorage(&LCM.Graph);
__END__;
return LCM.Graph;
}//end of cvLinearContorModelFromVoronoiDiagram
CV_IMPL int cvReleaseLinearContorModelStorage(CvGraph** Graph)
{
CvSeq* LCMNodeSeq, *LCMEdgeSeq;
CvLCMNode* pLCMNode;
CvLCMEdge* pLCMEdge;
/*CV_FUNCNAME( "cvReleaseLinearContorModelStorage" );*/
__BEGIN__;
if(!Graph || !(*Graph))
return 0;
LCMNodeSeq = (CvSeq*)(*Graph);
LCMEdgeSeq = (CvSeq*)(*Graph)->edges;
if(LCMNodeSeq->total > 0)
{
pLCMNode = (CvLCMNode*)cvGetSeqElem(LCMNodeSeq,0);
if(pLCMNode->contour->storage)
cvReleaseMemStorage(&pLCMNode->contour->storage);
}
if(LCMEdgeSeq->total > 0)
{
pLCMEdge = (CvLCMEdge*)cvGetSeqElem(LCMEdgeSeq,0);
if(pLCMEdge->chain->storage)
cvReleaseMemStorage(&pLCMEdge->chain->storage);
}
if((*Graph)->storage)
cvReleaseMemStorage(&(*Graph)->storage);
*Graph = NULL;
__END__;
return 1;
}//end of cvReleaseLinearContorModelStorage
int _cvConstructLCM(CvLCM* LCM)
{
CvVoronoiSite2D* pSite = 0;
CvVoronoiEdge2D* pEdge = 0, *pEdge1;
CvVoronoiNode2D* pNode, *pNode1;
CvVoronoiEdge2D* LinkedEdges[10];
CvVoronoiSite2D* LinkedSites[10];
CvSeqReader reader;
CvLCMData LCMdata;
int i;
for(CvSet* SiteSet = LCM->VoronoiDiagram->sites;
SiteSet != NULL;
SiteSet = (CvSet*)SiteSet->h_next)
{
cvStartReadSeq((CvSeq*)SiteSet, &reader);
for(i = 0; i < SiteSet->total; i++)
{
_CV_READ_SEQ_ELEM(pSite,reader,CvVoronoiSite2D*);
if(pSite->node[0] == pSite->node[1])
continue;
pEdge = CV_LAST_VORONOIEDGE2D(pSite);
pNode = CV_VORONOIEDGE2D_BEGINNODE(pEdge,pSite);
if(pNode->radius > LCM->maxWidth)
goto PREPARECOMPLEXNODE;
pEdge1 = CV_PREV_VORONOIEDGE2D(pEdge,pSite);
pNode1 = CV_VORONOIEDGE2D_BEGINNODE(pEdge1,pSite);
if(pNode1->radius > LCM->maxWidth)
goto PREPARECOMPLEXNODE;
if(pNode1->radius == 0)
continue;
if(_cvNodeMultyplicity(pSite, pEdge,pNode,LinkedEdges,LinkedSites) == 1)
goto PREPARESIMPLENODE;
}
// treate triangle or regular polygon
_CV_INITIALIZE_CVLCMDATA(&LCMdata,pSite,pEdge,CV_VORONOIEDGE2D_ENDNODE(pEdge,pSite));
if(!_cvTreatExeptionalCase(LCM,&LCMdata))
return 0;
continue;
PREPARECOMPLEXNODE:
_CV_INITIALIZE_CVLCMDATA(&LCMdata,pSite,pEdge,CV_VORONOIEDGE2D_ENDNODE(pEdge,pSite));
if(!_cvConstructLCMComplexNode(LCM,NULL,&LCMdata))
return 0;
continue;
PREPARESIMPLENODE:
_CV_INITIALIZE_CVLCMDATA(&LCMdata,pSite,pEdge,CV_VORONOIEDGE2D_ENDNODE(pEdge,pSite));
if(!_cvConstructLCMSimpleNode(LCM,NULL,&LCMdata))
return 0;
continue;
}
return 1;
}//end of _cvConstructLCM
CvLCMNode* _cvConstructLCMComplexNode(CvLCM* pLCM,
CvLCMEdge* pLCMEdge,
CvLCMData* pLCMInputData)
{
CvLCMNode* pLCMNode;
CvLCMEdge* pLCMEdge_prev = NULL;
CvSeqWriter writer;
CvVoronoiSite2D* pSite, *pSite_first, *pSite_last;
CvVoronoiEdge2D* pEdge, *pEdge_stop;
CvVoronoiNode2D* pNode0, *pNode1;
CvLCMData LCMOutputData;
CvLCMComplexNodeData LCMCCNData;
int index = 0;
_cvPrepareData(&LCMCCNData,pLCMInputData);
pLCMNode = _cvCreateLCMNode(pLCM);
_cvAttachLCMEdgeToLCMNode(pLCMNode,pLCMEdge,pLCMEdge_prev,1,1);
cvStartAppendToSeq((CvSeq*)pLCMNode->contour,&writer);
CV_WRITE_SEQ_ELEM(LCMCCNData.site_last_pt, writer);
index++;
if(pLCMEdge)
{
CV_WRITE_SEQ_ELEM(LCMCCNData.edge_node.pt, writer );
CV_WRITE_SEQ_ELEM(LCMCCNData.site_first_pt, writer );
index+=2;
}
pSite_first = LCMCCNData.site_first;
pSite_last = LCMCCNData.site_last;
pEdge = LCMCCNData.edge;
for(pSite = pSite_first;
pSite != pSite_last;
pSite = CV_NEXT_VORONOISITE2D(pSite),
pEdge = CV_PREV_VORONOIEDGE2D(CV_LAST_VORONOIEDGE2D(pSite),pSite))
{
pEdge_stop = CV_FIRST_VORONOIEDGE2D(pSite);
for(;pEdge && pEdge != pEdge_stop;
pEdge = CV_PREV_VORONOIEDGE2D(pEdge,pSite))
{
pNode0 = CV_VORONOIEDGE2D_BEGINNODE(pEdge,pSite);
pNode1 = CV_VORONOIEDGE2D_ENDNODE(pEdge,pSite);
if(pNode0->radius <= pLCM->maxWidth && pNode1->radius <= pLCM->maxWidth)
{
_CV_INITIALIZE_CVLCMDATA(&LCMOutputData,pSite,pEdge,pNode1);
_cvPrepareData(&LCMCCNData,&LCMOutputData);
CV_WRITE_SEQ_ELEM(LCMCCNData.site_first_pt, writer);
CV_WRITE_SEQ_ELEM(LCMCCNData.edge_node.pt, writer );
index+=2;
pLCMEdge = _cvConstructLCMEdge(pLCM,&LCMOutputData);
_cvAttachLCMEdgeToLCMNode(pLCMNode,pLCMEdge,pLCMEdge_prev,index - 1,0);
CV_WRITE_SEQ_ELEM(LCMCCNData.site_last_pt, writer);
index++;
pSite = CV_TWIN_VORONOISITE2D(pSite,pEdge);
pEdge_stop = CV_FIRST_VORONOIEDGE2D(pSite);
if(pSite == pSite_last)
break;
}
}
if(pSite == pSite_last)
break;
CV_WRITE_SEQ_ELEM(pSite->node[1]->pt, writer);
index++;
}
if(pLCMEdge_prev)
pLCMEdge_prev->next[(pLCMEdge_prev == (CvLCMEdge*)pLCMNode->first)] = pLCMNode->first;
cvEndWriteSeq(&writer);
return pLCMNode;
}//end of _cvConstructLCMComplexNode
CvLCMNode* _cvConstructLCMSimpleNode(CvLCM* pLCM,
CvLCMEdge* pLCMEdge,
CvLCMData* pLCMInputData)
{
CvVoronoiEdge2D* pEdge = pLCMInputData->pedge;
CvVoronoiSite2D* pSite = pLCMInputData->psite;
CvVoronoiNode2D* pNode = CV_VORONOIEDGE2D_BEGINNODE(pEdge,pSite);
CvVoronoiEdge2D* LinkedEdges[10];
CvVoronoiSite2D* LinkedSites[10];
int multyplicity = _cvNodeMultyplicity(pSite,pEdge,pNode,LinkedEdges,LinkedSites);
if(multyplicity == 2)
{
pLCMInputData->pedge = LinkedEdges[1];
pLCMInputData->psite = CV_TWIN_VORONOISITE2D(LinkedSites[1],LinkedEdges[1]);
return NULL;
}
CvLCMEdge* pLCMEdge_prev = NULL;
CvLCMNode* pLCMNode;
CvLCMData LCMOutputData;
pLCMNode = _cvCreateLCMNode(pLCM);
cvSeqPush((CvSeq*)pLCMNode->contour,&pNode->pt);
_cvAttachLCMEdgeToLCMNode(pLCMNode,pLCMEdge,pLCMEdge_prev,0,1);
for(int i = (int)(pLCMEdge != NULL);i < multyplicity; i++)
{
pEdge = LinkedEdges[i];
pSite = LinkedSites[i];
_CV_INITIALIZE_CVLCMDATA(&LCMOutputData,CV_TWIN_VORONOISITE2D(pSite,pEdge),pEdge,pNode);
pLCMEdge = _cvConstructLCMEdge(pLCM,&LCMOutputData);
_cvAttachLCMEdgeToLCMNode(pLCMNode,pLCMEdge,pLCMEdge_prev,0,0);
}
pLCMEdge_prev->next[(pLCMEdge_prev == (CvLCMEdge*)pLCMNode->first)] = pLCMNode->first;
return pLCMNode;
}//end of _cvConstructLCMSimpleNode
CvLCMEdge* _cvConstructLCMEdge(CvLCM* pLCM,
CvLCMData* pLCMInputData)
{
CvVoronoiEdge2D* pEdge = pLCMInputData->pedge;
CvVoronoiSite2D* pSite = pLCMInputData->psite;
float width = 0;
CvLCMData LCMData;
CvVoronoiNode2D* pNode0,*pNode1;
CvLCMEdge* pLCMEdge = _cvCreateLCMEdge(pLCM);
CvSeqWriter writer;
cvStartAppendToSeq(pLCMEdge->chain,&writer );
pNode0 = pNode1 = pLCMInputData->pnode;
CV_WRITE_SEQ_ELEM(pNode0->pt, writer);
width += pNode0->radius;
for(int counter = 0;
counter < pLCM->VoronoiDiagram->edges->total;
counter++)
{
pNode1 = CV_VORONOIEDGE2D_BEGINNODE(pEdge,pSite);
if(pNode1->radius >= pLCM->maxWidth)
goto CREATECOMPLEXNODE;
CV_WRITE_SEQ_ELEM(pNode1->pt,writer);
width += pNode1->radius;
_CV_INITIALIZE_CVLCMDATA(&LCMData,pSite,pEdge,pNode1);
if(_cvConstructLCMSimpleNode(pLCM,pLCMEdge,&LCMData))
goto LCMEDGEEXIT;
pEdge = LCMData.pedge; pSite = LCMData.psite;
pNode0 = pNode1;
}
return NULL;
CREATECOMPLEXNODE:
_CV_INITIALIZE_CVLCMDATA(&LCMData,pSite,pEdge,pNode0);
CV_WRITE_SEQ_ELEM(LCMData.pnode->pt,writer);
width += LCMData.pnode->radius;
_cvConstructLCMComplexNode(pLCM,pLCMEdge,&LCMData);
LCMEDGEEXIT:
cvEndWriteSeq(&writer);
pLCMEdge->width = width/pLCMEdge->chain->total;
return pLCMEdge;
}//end of _cvConstructLCMEdge
CvLCMNode* _cvTreatExeptionalCase(CvLCM* pLCM,
CvLCMData* pLCMInputData)
{
CvVoronoiEdge2D* pEdge = pLCMInputData->pedge;
CvVoronoiSite2D* pSite = pLCMInputData->psite;
CvVoronoiNode2D* pNode = CV_VORONOIEDGE2D_BEGINNODE(pEdge,pSite);
CvLCMNode* pLCMNode = _cvCreateLCMNode(pLCM);
cvSeqPush((CvSeq*)pLCMNode->contour,&pNode->pt);
return pLCMNode;
}//end of _cvConstructLCMEdge
CV_INLINE
CvLCMNode* _cvCreateLCMNode(CvLCM* pLCM)
{
CvLCMNode* pLCMNode;
cvSetAdd((CvSet*)pLCM->Graph, NULL, (CvSetElem**)&pLCMNode );
pLCMNode->contour = (CvContour*)cvCreateSeq(0, sizeof(CvContour),
sizeof(CvPoint2D32f),pLCM->ContourStorage);
pLCMNode->first = NULL;
return pLCMNode;
}//end of _cvCreateLCMNode
CV_INLINE
CvLCMEdge* _cvCreateLCMEdge(CvLCM* pLCM)
{
CvLCMEdge* pLCMEdge;
cvSetAdd( (CvSet*)(pLCM->Graph->edges), 0, (CvSetElem**)&pLCMEdge );
pLCMEdge->chain = cvCreateSeq(0, sizeof(CvSeq),sizeof(CvPoint2D32f),pLCM->EdgeStorage);
pLCMEdge->next[0] = pLCMEdge->next[1] = NULL;
pLCMEdge->vtx[0] = pLCMEdge->vtx[1] = NULL;
pLCMEdge->index1 = pLCMEdge->index2 = -1;
return pLCMEdge;
}//end of _cvCreateLCMEdge
CV_INLINE
void _cvAttachLCMEdgeToLCMNode(CvLCMNode* LCMNode,
CvLCMEdge* LCMEdge,
CvLCMEdge* &LCMEdge_prev,
int index,
int i)
{
if(!LCMEdge)
return;
if(i==0)
LCMEdge->index1 = index;
else
LCMEdge->index2 = index;
LCMEdge->vtx[i] = (CvGraphVtx*)LCMNode;
if(!LCMEdge_prev)
LCMNode->first = (CvGraphEdge*)LCMEdge;
else
// LCMEdge_prev->next[(LCMEdge_prev == (CvLCMEdge*)LCMNode->first)] = (CvGraphEdge*)LCMEdge;
LCMEdge_prev->next[(LCMEdge_prev->vtx[0] != (CvGraphVtx*)LCMNode)] = (CvGraphEdge*)LCMEdge;
LCMEdge->next[i] = LCMNode->first;
LCMEdge_prev = LCMEdge;
}//end of _cvAttachLCMEdgeToLCMNode
int _cvNodeMultyplicity(CvVoronoiSite2D* pSite,
CvVoronoiEdge2D* pEdge,
CvVoronoiNode2D* pNode,
CvVoronoiEdge2D** LinkedEdges,
CvVoronoiSite2D** LinkedSites)
{
if(!pNode->radius)
return -1;
assert(pNode == CV_VORONOIEDGE2D_BEGINNODE(pEdge,pSite));
int multyplicity = 0;
CvVoronoiEdge2D* pEdge_cur = pEdge;
do
{
if(pEdge_cur->node[0]->radius && pEdge_cur->node[1]->radius)
{
LinkedEdges[multyplicity] = pEdge_cur;
LinkedSites[multyplicity] = pSite;
multyplicity++;
}
pEdge_cur = CV_PREV_VORONOIEDGE2D(pEdge_cur,pSite);
pSite = CV_TWIN_VORONOISITE2D(pSite,pEdge_cur);
}while(pEdge_cur != pEdge);
return multyplicity;
}//end of _cvNodeMultyplicity
CV_INLINE
void _cvPrepareData(CvLCMComplexNodeData* pLCMCCNData,
CvLCMData* pLCMData)
{
pLCMCCNData->site_first = pLCMData->psite;
pLCMCCNData->site_last = CV_TWIN_VORONOISITE2D(pLCMData->psite,pLCMData->pedge);
if(pLCMData->pedge == CV_LAST_VORONOIEDGE2D(pLCMData->psite))
{
pLCMCCNData->edge = CV_PREV_VORONOIEDGE2D(pLCMData->pedge,pLCMData->psite);
pLCMCCNData->edge_node = *pLCMData->pnode;
pLCMCCNData->site_first_pt = pLCMData->psite->node[0]->pt;
pLCMCCNData->site_last_pt = pLCMData->psite->node[0]->pt;
}
else
{
pLCMCCNData->edge = pLCMData->pedge;
pLCMCCNData->edge_node = *pLCMData->pnode;
_cvProjectionPointToSegment(&pLCMCCNData->edge_node.pt,
&pLCMCCNData->site_first->node[0]->pt,
&pLCMCCNData->site_first->node[1]->pt,
&pLCMCCNData->site_first_pt,
NULL);
_cvProjectionPointToSegment(&pLCMCCNData->edge_node.pt,
&pLCMCCNData->site_last->node[0]->pt,
&pLCMCCNData->site_last->node[1]->pt,
&pLCMCCNData->site_last_pt,
NULL);
}
}//end of _cvPrepareData
void _cvProjectionPointToSegment(CvPoint2D32f* PointO,
CvPoint2D32f* PointA,
CvPoint2D32f* PointB,
CvPoint2D32f* PrPoint,
float* dist)
{
float scal_AO_AB, scal_AB_AB;
CvPoint2D32f VectorAB = {PointB->x - PointA->x, PointB->y - PointA->y};
scal_AB_AB = VectorAB.x*VectorAB.x + VectorAB.y*VectorAB.y;
if(scal_AB_AB < LCM_CONST_ZERO)
{
*PrPoint = *PointA;
if(dist)
*dist = (float)sqrt( (double)(PointO->x -PointA->x)*(PointO->x -PointA->x) + (PointO->y - PointA->y)*(PointO->y - PointA->y));
return;
}
CvPoint2D32f VectorAO = {PointO->x - PointA->x, PointO->y - PointA->y};
scal_AO_AB = VectorAO.x*VectorAB.x + VectorAO.y*VectorAB.y;
if(dist)
{
float vector_AO_AB = (float)fabs(VectorAO.x*VectorAB.y - VectorAO.y*VectorAB.x);
*dist = (float)(vector_AO_AB/sqrt((double)scal_AB_AB));
}
float alfa = scal_AO_AB/scal_AB_AB;
PrPoint->x = PointO->x - VectorAO.x + alfa*VectorAB.x;
PrPoint->y = PointO->y - VectorAO.y + alfa*VectorAB.y;
return;
}//end of _cvProjectionPointToSegment