/*
* Mesa 3-D graphics library
* Version: 7.3
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file prog_execute.c
* Software interpreter for vertex/fragment programs.
* \author Brian Paul
*/
/*
* NOTE: we do everything in single-precision floating point; we don't
* currently observe the single/half/fixed-precision qualifiers.
*
*/
#include "main/glheader.h"
#include "main/colormac.h"
#include "main/macros.h"
#include "prog_execute.h"
#include "prog_instruction.h"
#include "prog_parameter.h"
#include "prog_print.h"
#include "prog_noise.h"
/* debug predicate */
#define DEBUG_PROG 0
/**
* Set x to positive or negative infinity.
*/
#if defined(USE_IEEE) || defined(_WIN32)
#define SET_POS_INFINITY(x) \
do { \
fi_type fi; \
fi.i = 0x7F800000; \
x = fi.f; \
} while (0)
#define SET_NEG_INFINITY(x) \
do { \
fi_type fi; \
fi.i = 0xFF800000; \
x = fi.f; \
} while (0)
#elif defined(VMS)
#define SET_POS_INFINITY(x) x = __MAXFLOAT
#define SET_NEG_INFINITY(x) x = -__MAXFLOAT
#else
#define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
#define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
#endif
#define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
/**
* Return TRUE for +0 and other positive values, FALSE otherwise.
* Used for RCC opcode.
*/
static inline GLboolean
positive(float x)
{
fi_type fi;
fi.f = x;
if (fi.i & 0x80000000)
return GL_FALSE;
return GL_TRUE;
}
/**
* Return a pointer to the 4-element float vector specified by the given
* source register.
*/
static inline const GLfloat *
get_src_register_pointer(const struct prog_src_register *source,
const struct gl_program_machine *machine)
{
const struct gl_program *prog = machine->CurProgram;
GLint reg = source->Index;
if (source->RelAddr) {
/* add address register value to src index/offset */
reg += machine->AddressReg[0][0];
if (reg < 0) {
return ZeroVec;
}
}
switch (source->File) {
case PROGRAM_TEMPORARY:
if (reg >= MAX_PROGRAM_TEMPS)
return ZeroVec;
return machine->Temporaries[reg];
case PROGRAM_INPUT:
if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
if (reg >= VERT_ATTRIB_MAX)
return ZeroVec;
return machine->VertAttribs[reg];
}
else {
if (reg >= FRAG_ATTRIB_MAX)
return ZeroVec;
return machine->Attribs[reg][machine->CurElement];
}
case PROGRAM_OUTPUT:
if (reg >= MAX_PROGRAM_OUTPUTS)
return ZeroVec;
return machine->Outputs[reg];
case PROGRAM_LOCAL_PARAM:
if (reg >= MAX_PROGRAM_LOCAL_PARAMS)
return ZeroVec;
return machine->CurProgram->LocalParams[reg];
case PROGRAM_ENV_PARAM:
if (reg >= MAX_PROGRAM_ENV_PARAMS)
return ZeroVec;
return machine->EnvParams[reg];
case PROGRAM_STATE_VAR:
/* Fallthrough */
case PROGRAM_CONSTANT:
/* Fallthrough */
case PROGRAM_UNIFORM:
/* Fallthrough */
case PROGRAM_NAMED_PARAM:
if (reg >= (GLint) prog->Parameters->NumParameters)
return ZeroVec;
return (GLfloat *) prog->Parameters->ParameterValues[reg];
case PROGRAM_SYSTEM_VALUE:
assert(reg < Elements(machine->SystemValues));
return machine->SystemValues[reg];
default:
_mesa_problem(NULL,
"Invalid src register file %d in get_src_register_pointer()",
source->File);
return NULL;
}
}
/**
* Return a pointer to the 4-element float vector specified by the given
* destination register.
*/
static inline GLfloat *
get_dst_register_pointer(const struct prog_dst_register *dest,
struct gl_program_machine *machine)
{
static GLfloat dummyReg[4];
GLint reg = dest->Index;
if (dest->RelAddr) {
/* add address register value to src index/offset */
reg += machine->AddressReg[0][0];
if (reg < 0) {
return dummyReg;
}
}
switch (dest->File) {
case PROGRAM_TEMPORARY:
if (reg >= MAX_PROGRAM_TEMPS)
return dummyReg;
return machine->Temporaries[reg];
case PROGRAM_OUTPUT:
if (reg >= MAX_PROGRAM_OUTPUTS)
return dummyReg;
return machine->Outputs[reg];
case PROGRAM_WRITE_ONLY:
return dummyReg;
default:
_mesa_problem(NULL,
"Invalid dest register file %d in get_dst_register_pointer()",
dest->File);
return NULL;
}
}
/**
* Fetch a 4-element float vector from the given source register.
* Apply swizzling and negating as needed.
*/
static void
fetch_vector4(const struct prog_src_register *source,
const struct gl_program_machine *machine, GLfloat result[4])
{
const GLfloat *src = get_src_register_pointer(source, machine);
ASSERT(src);
if (source->Swizzle == SWIZZLE_NOOP) {
/* no swizzling */
COPY_4V(result, src);
}
else {
ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
result[1] = src[GET_SWZ(source->Swizzle, 1)];
result[2] = src[GET_SWZ(source->Swizzle, 2)];
result[3] = src[GET_SWZ(source->Swizzle, 3)];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->Negate) {
ASSERT(source->Negate == NEGATE_XYZW);
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
#ifdef NAN_CHECK
assert(!IS_INF_OR_NAN(result[0]));
assert(!IS_INF_OR_NAN(result[0]));
assert(!IS_INF_OR_NAN(result[0]));
assert(!IS_INF_OR_NAN(result[0]));
#endif
}
/**
* Fetch a 4-element uint vector from the given source register.
* Apply swizzling but not negation/abs.
*/
static void
fetch_vector4ui(const struct prog_src_register *source,
const struct gl_program_machine *machine, GLuint result[4])
{
const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
ASSERT(src);
if (source->Swizzle == SWIZZLE_NOOP) {
/* no swizzling */
COPY_4V(result, src);
}
else {
ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
result[1] = src[GET_SWZ(source->Swizzle, 1)];
result[2] = src[GET_SWZ(source->Swizzle, 2)];
result[3] = src[GET_SWZ(source->Swizzle, 3)];
}
/* Note: no Negate or Abs here */
}
/**
* Fetch the derivative with respect to X or Y for the given register.
* XXX this currently only works for fragment program input attribs.
*/
static void
fetch_vector4_deriv(struct gl_context * ctx,
const struct prog_src_register *source,
const struct gl_program_machine *machine,
char xOrY, GLfloat result[4])
{
if (source->File == PROGRAM_INPUT &&
source->Index < (GLint) machine->NumDeriv) {
const GLint col = machine->CurElement;
const GLfloat w = machine->Attribs[FRAG_ATTRIB_WPOS][col][3];
const GLfloat invQ = 1.0f / w;
GLfloat deriv[4];
if (xOrY == 'X') {
deriv[0] = machine->DerivX[source->Index][0] * invQ;
deriv[1] = machine->DerivX[source->Index][1] * invQ;
deriv[2] = machine->DerivX[source->Index][2] * invQ;
deriv[3] = machine->DerivX[source->Index][3] * invQ;
}
else {
deriv[0] = machine->DerivY[source->Index][0] * invQ;
deriv[1] = machine->DerivY[source->Index][1] * invQ;
deriv[2] = machine->DerivY[source->Index][2] * invQ;
deriv[3] = machine->DerivY[source->Index][3] * invQ;
}
result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->Negate) {
ASSERT(source->Negate == NEGATE_XYZW);
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
}
else {
ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
}
}
/**
* As above, but only return result[0] element.
*/
static void
fetch_vector1(const struct prog_src_register *source,
const struct gl_program_machine *machine, GLfloat result[4])
{
const GLfloat *src = get_src_register_pointer(source, machine);
ASSERT(src);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
if (source->Abs) {
result[0] = FABSF(result[0]);
}
if (source->Negate) {
result[0] = -result[0];
}
}
static GLuint
fetch_vector1ui(const struct prog_src_register *source,
const struct gl_program_machine *machine)
{
const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
return src[GET_SWZ(source->Swizzle, 0)];
}
/**
* Fetch texel from texture. Use partial derivatives when possible.
*/
static inline void
fetch_texel(struct gl_context *ctx,
const struct gl_program_machine *machine,
const struct prog_instruction *inst,
const GLfloat texcoord[4], GLfloat lodBias,
GLfloat color[4])
{
const GLuint unit = machine->Samplers[inst->TexSrcUnit];
/* Note: we only have the right derivatives for fragment input attribs.
*/
if (machine->NumDeriv > 0 &&
inst->SrcReg[0].File == PROGRAM_INPUT &&
inst->SrcReg[0].Index == FRAG_ATTRIB_TEX0 + inst->TexSrcUnit) {
/* simple texture fetch for which we should have derivatives */
GLuint attr = inst->SrcReg[0].Index;
machine->FetchTexelDeriv(ctx, texcoord,
machine->DerivX[attr],
machine->DerivY[attr],
lodBias, unit, color);
}
else {
machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
}
}
/**
* Test value against zero and return GT, LT, EQ or UN if NaN.
*/
static inline GLuint
generate_cc(float value)
{
if (value != value)
return COND_UN; /* NaN */
if (value > 0.0F)
return COND_GT;
if (value < 0.0F)
return COND_LT;
return COND_EQ;
}
/**
* Test if the ccMaskRule is satisfied by the given condition code.
* Used to mask destination writes according to the current condition code.
*/
static inline GLboolean
test_cc(GLuint condCode, GLuint ccMaskRule)
{
switch (ccMaskRule) {
case COND_EQ: return (condCode == COND_EQ);
case COND_NE: return (condCode != COND_EQ);
case COND_LT: return (condCode == COND_LT);
case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
case COND_GT: return (condCode == COND_GT);
case COND_TR: return GL_TRUE;
case COND_FL: return GL_FALSE;
default: return GL_TRUE;
}
}
/**
* Evaluate the 4 condition codes against a predicate and return GL_TRUE
* or GL_FALSE to indicate result.
*/
static inline GLboolean
eval_condition(const struct gl_program_machine *machine,
const struct prog_instruction *inst)
{
const GLuint swizzle = inst->DstReg.CondSwizzle;
const GLuint condMask = inst->DstReg.CondMask;
if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/**
* Store 4 floats into a register. Observe the instructions saturate and
* set-condition-code flags.
*/
static void
store_vector4(const struct prog_instruction *inst,
struct gl_program_machine *machine, const GLfloat value[4])
{
const struct prog_dst_register *dstReg = &(inst->DstReg);
const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
GLuint writeMask = dstReg->WriteMask;
GLfloat clampedValue[4];
GLfloat *dst = get_dst_register_pointer(dstReg, machine);
#if 0
if (value[0] > 1.0e10 ||
IS_INF_OR_NAN(value[0]) ||
IS_INF_OR_NAN(value[1]) ||
IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
#endif
if (clamp) {
clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
value = clampedValue;
}
if (dstReg->CondMask != COND_TR) {
/* condition codes may turn off some writes */
if (writeMask & WRITEMASK_X) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_X;
}
if (writeMask & WRITEMASK_Y) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_Y;
}
if (writeMask & WRITEMASK_Z) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_Z;
}
if (writeMask & WRITEMASK_W) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_W;
}
}
#ifdef NAN_CHECK
assert(!IS_INF_OR_NAN(value[0]));
assert(!IS_INF_OR_NAN(value[0]));
assert(!IS_INF_OR_NAN(value[0]));
assert(!IS_INF_OR_NAN(value[0]));
#endif
if (writeMask & WRITEMASK_X)
dst[0] = value[0];
if (writeMask & WRITEMASK_Y)
dst[1] = value[1];
if (writeMask & WRITEMASK_Z)
dst[2] = value[2];
if (writeMask & WRITEMASK_W)
dst[3] = value[3];
if (inst->CondUpdate) {
if (writeMask & WRITEMASK_X)
machine->CondCodes[0] = generate_cc(value[0]);
if (writeMask & WRITEMASK_Y)
machine->CondCodes[1] = generate_cc(value[1]);
if (writeMask & WRITEMASK_Z)
machine->CondCodes[2] = generate_cc(value[2]);
if (writeMask & WRITEMASK_W)
machine->CondCodes[3] = generate_cc(value[3]);
#if DEBUG_PROG
printf("CondCodes=(%s,%s,%s,%s) for:\n",
_mesa_condcode_string(machine->CondCodes[0]),
_mesa_condcode_string(machine->CondCodes[1]),
_mesa_condcode_string(machine->CondCodes[2]),
_mesa_condcode_string(machine->CondCodes[3]));
#endif
}
}
/**
* Store 4 uints into a register. Observe the set-condition-code flags.
*/
static void
store_vector4ui(const struct prog_instruction *inst,
struct gl_program_machine *machine, const GLuint value[4])
{
const struct prog_dst_register *dstReg = &(inst->DstReg);
GLuint writeMask = dstReg->WriteMask;
GLuint *dst = (GLuint *) get_dst_register_pointer(dstReg, machine);
if (dstReg->CondMask != COND_TR) {
/* condition codes may turn off some writes */
if (writeMask & WRITEMASK_X) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_X;
}
if (writeMask & WRITEMASK_Y) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_Y;
}
if (writeMask & WRITEMASK_Z) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_Z;
}
if (writeMask & WRITEMASK_W) {
if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
dstReg->CondMask))
writeMask &= ~WRITEMASK_W;
}
}
if (writeMask & WRITEMASK_X)
dst[0] = value[0];
if (writeMask & WRITEMASK_Y)
dst[1] = value[1];
if (writeMask & WRITEMASK_Z)
dst[2] = value[2];
if (writeMask & WRITEMASK_W)
dst[3] = value[3];
if (inst->CondUpdate) {
if (writeMask & WRITEMASK_X)
machine->CondCodes[0] = generate_cc((float)value[0]);
if (writeMask & WRITEMASK_Y)
machine->CondCodes[1] = generate_cc((float)value[1]);
if (writeMask & WRITEMASK_Z)
machine->CondCodes[2] = generate_cc((float)value[2]);
if (writeMask & WRITEMASK_W)
machine->CondCodes[3] = generate_cc((float)value[3]);
#if DEBUG_PROG
printf("CondCodes=(%s,%s,%s,%s) for:\n",
_mesa_condcode_string(machine->CondCodes[0]),
_mesa_condcode_string(machine->CondCodes[1]),
_mesa_condcode_string(machine->CondCodes[2]),
_mesa_condcode_string(machine->CondCodes[3]));
#endif
}
}
/**
* Execute the given vertex/fragment program.
*
* \param ctx rendering context
* \param program the program to execute
* \param machine machine state (must be initialized)
* \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
*/
GLboolean
_mesa_execute_program(struct gl_context * ctx,
const struct gl_program *program,
struct gl_program_machine *machine)
{
const GLuint numInst = program->NumInstructions;
const GLuint maxExec = 65536;
GLuint pc, numExec = 0;
machine->CurProgram = program;
if (DEBUG_PROG) {
printf("execute program %u --------------------\n", program->Id);
}
if (program->Target == GL_VERTEX_PROGRAM_ARB) {
machine->EnvParams = ctx->VertexProgram.Parameters;
}
else {
machine->EnvParams = ctx->FragmentProgram.Parameters;
}
for (pc = 0; pc < numInst; pc++) {
const struct prog_instruction *inst = program->Instructions + pc;
if (DEBUG_PROG) {
_mesa_print_instruction(inst);
}
switch (inst->Opcode) {
case OPCODE_ABS:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = FABSF(a[0]);
result[1] = FABSF(a[1]);
result[2] = FABSF(a[2]);
result[3] = FABSF(a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_ADD:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[0] + b[0];
result[1] = a[1] + b[1];
result[2] = a[2] + b[2];
result[3] = a[3] + b[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_AND: /* bitwise AND */
{
GLuint a[4], b[4], result[4];
fetch_vector4ui(&inst->SrcReg[0], machine, a);
fetch_vector4ui(&inst->SrcReg[1], machine, b);
result[0] = a[0] & b[0];
result[1] = a[1] & b[1];
result[2] = a[2] & b[2];
result[3] = a[3] & b[3];
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_ARL:
{
GLfloat t[4];
fetch_vector4(&inst->SrcReg[0], machine, t);
machine->AddressReg[0][0] = IFLOOR(t[0]);
if (DEBUG_PROG) {
printf("ARL %d\n", machine->AddressReg[0][0]);
}
}
break;
case OPCODE_BGNLOOP:
/* no-op */
ASSERT(program->Instructions[inst->BranchTarget].Opcode
== OPCODE_ENDLOOP);
break;
case OPCODE_ENDLOOP:
/* subtract 1 here since pc is incremented by for(pc) loop */
ASSERT(program->Instructions[inst->BranchTarget].Opcode
== OPCODE_BGNLOOP);
pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
break;
case OPCODE_BGNSUB: /* begin subroutine */
break;
case OPCODE_ENDSUB: /* end subroutine */
break;
case OPCODE_BRA: /* branch (conditional) */
if (eval_condition(machine, inst)) {
/* take branch */
/* Subtract 1 here since we'll do pc++ below */
pc = inst->BranchTarget - 1;
}
break;
case OPCODE_BRK: /* break out of loop (conditional) */
ASSERT(program->Instructions[inst->BranchTarget].Opcode
== OPCODE_ENDLOOP);
if (eval_condition(machine, inst)) {
/* break out of loop */
/* pc++ at end of for-loop will put us after the ENDLOOP inst */
pc = inst->BranchTarget;
}
break;
case OPCODE_CONT: /* continue loop (conditional) */
ASSERT(program->Instructions[inst->BranchTarget].Opcode
== OPCODE_ENDLOOP);
if (eval_condition(machine, inst)) {
/* continue at ENDLOOP */
/* Subtract 1 here since we'll do pc++ at end of for-loop */
pc = inst->BranchTarget - 1;
}
break;
case OPCODE_CAL: /* Call subroutine (conditional) */
if (eval_condition(machine, inst)) {
/* call the subroutine */
if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
}
machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
/* Subtract 1 here since we'll do pc++ at end of for-loop */
pc = inst->BranchTarget - 1;
}
break;
case OPCODE_CMP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] < 0.0F ? b[0] : c[0];
result[1] = a[1] < 0.0F ? b[1] : c[1];
result[2] = a[2] < 0.0F ? b[2] : c[2];
result[3] = a[3] < 0.0F ? b[3] : c[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("CMP (%g %g %g %g) = (%g %g %g %g) < 0 ? (%g %g %g %g) : (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3],
c[0], c[1], c[2], c[3]);
}
}
break;
case OPCODE_COS:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = result[1] = result[2] = result[3]
= (GLfloat) cos(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_DDX: /* Partial derivative with respect to X */
{
GLfloat result[4];
fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
'X', result);
store_vector4(inst, machine, result);
}
break;
case OPCODE_DDY: /* Partial derivative with respect to Y */
{
GLfloat result[4];
fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
'Y', result);
store_vector4(inst, machine, result);
}
break;
case OPCODE_DP2:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] = DOT2(a, b);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("DP2 %g = (%g %g) . (%g %g)\n",
result[0], a[0], a[1], b[0], b[1]);
}
}
break;
case OPCODE_DP2A:
{
GLfloat a[4], b[4], c, result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector1(&inst->SrcReg[1], machine, &c);
result[0] = result[1] = result[2] = result[3] = DOT2(a, b) + c;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("DP2A %g = (%g %g) . (%g %g) + %g\n",
result[0], a[0], a[1], b[0], b[1], c);
}
}
break;
case OPCODE_DP3:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
}
}
break;
case OPCODE_DP4:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
result[0], a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_DPH:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3] = DOT3(a, b) + b[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_DST: /* Distance vector */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = 1.0F;
result[1] = a[1] * b[1];
result[2] = a[2];
result[3] = b[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_EXP:
{
GLfloat t[4], q[4], floor_t0;
fetch_vector1(&inst->SrcReg[0], machine, t);
floor_t0 = FLOORF(t[0]);
if (floor_t0 > FLT_MAX_EXP) {
SET_POS_INFINITY(q[0]);
SET_POS_INFINITY(q[2]);
}
else if (floor_t0 < FLT_MIN_EXP) {
q[0] = 0.0F;
q[2] = 0.0F;
}
else {
q[0] = LDEXPF(1.0, (int) floor_t0);
/* Note: GL_NV_vertex_program expects
* result.z = result.x * APPX(result.y)
* We do what the ARB extension says.
*/
q[2] = (GLfloat) pow(2.0, t[0]);
}
q[1] = t[0] - floor_t0;
q[3] = 1.0F;
store_vector4( inst, machine, q );
}
break;
case OPCODE_EX2: /* Exponential base 2 */
{
GLfloat a[4], result[4], val;
fetch_vector1(&inst->SrcReg[0], machine, a);
val = (GLfloat) pow(2.0, a[0]);
/*
if (IS_INF_OR_NAN(val))
val = 1.0e10;
*/
result[0] = result[1] = result[2] = result[3] = val;
store_vector4(inst, machine, result);
}
break;
case OPCODE_FLR:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = FLOORF(a[0]);
result[1] = FLOORF(a[1]);
result[2] = FLOORF(a[2]);
result[3] = FLOORF(a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_FRC:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = a[0] - FLOORF(a[0]);
result[1] = a[1] - FLOORF(a[1]);
result[2] = a[2] - FLOORF(a[2]);
result[3] = a[3] - FLOORF(a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_IF:
{
GLboolean cond;
ASSERT(program->Instructions[inst->BranchTarget].Opcode
== OPCODE_ELSE ||
program->Instructions[inst->BranchTarget].Opcode
== OPCODE_ENDIF);
/* eval condition */
if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
GLfloat a[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
cond = (a[0] != 0.0);
}
else {
cond = eval_condition(machine, inst);
}
if (DEBUG_PROG) {
printf("IF: %d\n", cond);
}
/* do if/else */
if (cond) {
/* do if-clause (just continue execution) */
}
else {
/* go to the instruction after ELSE or ENDIF */
assert(inst->BranchTarget >= 0);
pc = inst->BranchTarget;
}
}
break;
case OPCODE_ELSE:
/* goto ENDIF */
ASSERT(program->Instructions[inst->BranchTarget].Opcode
== OPCODE_ENDIF);
assert(inst->BranchTarget >= 0);
pc = inst->BranchTarget;
break;
case OPCODE_ENDIF:
/* nothing */
break;
case OPCODE_KIL_NV: /* NV_f_p only (conditional) */
if (eval_condition(machine, inst)) {
return GL_FALSE;
}
break;
case OPCODE_KIL: /* ARB_f_p only */
{
GLfloat a[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
if (DEBUG_PROG) {
printf("KIL if (%g %g %g %g) <= 0.0\n",
a[0], a[1], a[2], a[3]);
}
if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
return GL_FALSE;
}
}
break;
case OPCODE_LG2: /* log base 2 */
{
GLfloat a[4], result[4], val;
fetch_vector1(&inst->SrcReg[0], machine, a);
/* The fast LOG2 macro doesn't meet the precision requirements.
*/
if (a[0] == 0.0F) {
val = -FLT_MAX;
}
else {
val = (float)(log(a[0]) * 1.442695F);
}
result[0] = result[1] = result[2] = result[3] = val;
store_vector4(inst, machine, result);
}
break;
case OPCODE_LIT:
{
const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = MAX2(a[0], 0.0F);
a[1] = MAX2(a[1], 0.0F);
/* XXX ARB version clamps a[3], NV version doesn't */
a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
result[0] = 1.0F;
result[1] = a[0];
/* XXX we could probably just use pow() here */
if (a[0] > 0.0F) {
if (a[1] == 0.0 && a[3] == 0.0)
result[2] = 1.0F;
else
result[2] = (GLfloat) pow(a[1], a[3]);
}
else {
result[2] = 0.0F;
}
result[3] = 1.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3]);
}
}
break;
case OPCODE_LOG:
{
GLfloat t[4], q[4], abs_t0;
fetch_vector1(&inst->SrcReg[0], machine, t);
abs_t0 = FABSF(t[0]);
if (abs_t0 != 0.0F) {
/* Since we really can't handle infinite values on VMS
* like other OSes we'll use __MAXFLOAT to represent
* infinity. This may need some tweaking.
*/
#ifdef VMS
if (abs_t0 == __MAXFLOAT)
#else
if (IS_INF_OR_NAN(abs_t0))
#endif
{
SET_POS_INFINITY(q[0]);
q[1] = 1.0F;
SET_POS_INFINITY(q[2]);
}
else {
int exponent;
GLfloat mantissa = FREXPF(t[0], &exponent);
q[0] = (GLfloat) (exponent - 1);
q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
/* The fast LOG2 macro doesn't meet the precision
* requirements.
*/
q[2] = (float)(log(t[0]) * 1.442695F);
}
}
else {
SET_NEG_INFINITY(q[0]);
q[1] = 1.0F;
SET_NEG_INFINITY(q[2]);
}
q[3] = 1.0;
store_vector4(inst, machine, q);
}
break;
case OPCODE_LRP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("LRP (%g %g %g %g) = (%g %g %g %g), "
"(%g %g %g %g), (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
}
}
break;
case OPCODE_MAD:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] * b[0] + c[0];
result[1] = a[1] * b[1] + c[1];
result[2] = a[2] * b[2] + c[2];
result[3] = a[3] * b[3] + c[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
"(%g %g %g %g) + (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
}
}
break;
case OPCODE_MAX:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = MAX2(a[0], b[0]);
result[1] = MAX2(a[1], b[1]);
result[2] = MAX2(a[2], b[2]);
result[3] = MAX2(a[3], b[3]);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_MIN:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = MIN2(a[0], b[0]);
result[1] = MIN2(a[1], b[1]);
result[2] = MIN2(a[2], b[2]);
result[3] = MIN2(a[3], b[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_MOV:
{
GLfloat result[4];
fetch_vector4(&inst->SrcReg[0], machine, result);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MOV (%g %g %g %g)\n",
result[0], result[1], result[2], result[3]);
}
}
break;
case OPCODE_MUL:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[0] * b[0];
result[1] = a[1] * b[1];
result[2] = a[2] * b[2];
result[3] = a[3] * b[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_NOISE1:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] =
result[3] = _mesa_noise1(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOISE2:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] = result[3] = _mesa_noise2(a[0], a[1]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOISE3:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] =
result[3] = _mesa_noise3(a[0], a[1], a[2]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOISE4:
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] =
result[1] =
result[2] =
result[3] = _mesa_noise4(a[0], a[1], a[2], a[3]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_NOP:
break;
case OPCODE_NOT: /* bitwise NOT */
{
GLuint a[4], result[4];
fetch_vector4ui(&inst->SrcReg[0], machine, a);
result[0] = ~a[0];
result[1] = ~a[1];
result[2] = ~a[2];
result[3] = ~a[3];
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_NRM3: /* 3-component normalization */
{
GLfloat a[4], result[4];
GLfloat tmp;
fetch_vector4(&inst->SrcReg[0], machine, a);
tmp = a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
if (tmp != 0.0F)
tmp = INV_SQRTF(tmp);
result[0] = tmp * a[0];
result[1] = tmp * a[1];
result[2] = tmp * a[2];
result[3] = 0.0; /* undefined, but prevent valgrind warnings */
store_vector4(inst, machine, result);
}
break;
case OPCODE_NRM4: /* 4-component normalization */
{
GLfloat a[4], result[4];
GLfloat tmp;
fetch_vector4(&inst->SrcReg[0], machine, a);
tmp = a[0] * a[0] + a[1] * a[1] + a[2] * a[2] + a[3] * a[3];
if (tmp != 0.0F)
tmp = INV_SQRTF(tmp);
result[0] = tmp * a[0];
result[1] = tmp * a[1];
result[2] = tmp * a[2];
result[3] = tmp * a[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_OR: /* bitwise OR */
{
GLuint a[4], b[4], result[4];
fetch_vector4ui(&inst->SrcReg[0], machine, a);
fetch_vector4ui(&inst->SrcReg[1], machine, b);
result[0] = a[0] | b[0];
result[1] = a[1] | b[1];
result[2] = a[2] | b[2];
result[3] = a[3] | b[3];
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
{
GLfloat a[4];
GLuint result[4];
GLhalfNV hx, hy;
fetch_vector4(&inst->SrcReg[0], machine, a);
hx = _mesa_float_to_half(a[0]);
hy = _mesa_float_to_half(a[1]);
result[0] =
result[1] =
result[2] =
result[3] = hx | (hy << 16);
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
{
GLfloat a[4];
GLuint result[4], usx, usy;
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
usx = F_TO_I(a[0] * 65535.0F);
usy = F_TO_I(a[1] * 65535.0F);
result[0] =
result[1] =
result[2] =
result[3] = usx | (usy << 16);
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
{
GLfloat a[4];
GLuint result[4], ubx, uby, ubz, ubw;
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
ubx = F_TO_I(127.0F * a[0] + 128.0F);
uby = F_TO_I(127.0F * a[1] + 128.0F);
ubz = F_TO_I(127.0F * a[2] + 128.0F);
ubw = F_TO_I(127.0F * a[3] + 128.0F);
result[0] =
result[1] =
result[2] =
result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
{
GLfloat a[4];
GLuint result[4], ubx, uby, ubz, ubw;
fetch_vector4(&inst->SrcReg[0], machine, a);
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
a[2] = CLAMP(a[2], 0.0F, 1.0F);
a[3] = CLAMP(a[3], 0.0F, 1.0F);
ubx = F_TO_I(255.0F * a[0]);
uby = F_TO_I(255.0F * a[1]);
ubz = F_TO_I(255.0F * a[2]);
ubw = F_TO_I(255.0F * a[3]);
result[0] =
result[1] =
result[2] =
result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_POW:
{
GLfloat a[4], b[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
fetch_vector1(&inst->SrcReg[1], machine, b);
result[0] = result[1] = result[2] = result[3]
= (GLfloat) pow(a[0], b[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_RCC: /* clamped riciprocal */
{
const float largest = 1.884467e+19, smallest = 5.42101e-20;
GLfloat a[4], r, result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
if (DEBUG_PROG) {
if (a[0] == 0)
printf("RCC(0)\n");
else if (IS_INF_OR_NAN(a[0]))
printf("RCC(inf)\n");
}
if (a[0] == 1.0F) {
r = 1.0F;
}
else {
r = 1.0F / a[0];
}
if (positive(r)) {
if (r > largest) {
r = largest;
}
else if (r < smallest) {
r = smallest;
}
}
else {
if (r < -largest) {
r = -largest;
}
else if (r > -smallest) {
r = -smallest;
}
}
result[0] = result[1] = result[2] = result[3] = r;
store_vector4(inst, machine, result);
}
break;
case OPCODE_RCP:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
if (DEBUG_PROG) {
if (a[0] == 0)
printf("RCP(0)\n");
else if (IS_INF_OR_NAN(a[0]))
printf("RCP(inf)\n");
}
result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
store_vector4(inst, machine, result);
}
break;
case OPCODE_RET: /* return from subroutine (conditional) */
if (eval_condition(machine, inst)) {
if (machine->StackDepth == 0) {
return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
}
/* subtract one because of pc++ in the for loop */
pc = machine->CallStack[--machine->StackDepth] - 1;
}
break;
case OPCODE_RFL: /* reflection vector */
{
GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
fetch_vector4(&inst->SrcReg[0], machine, axis);
fetch_vector4(&inst->SrcReg[1], machine, dir);
tmpW = DOT3(axis, axis);
tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
result[0] = tmpX * axis[0] - dir[0];
result[1] = tmpX * axis[1] - dir[1];
result[2] = tmpX * axis[2] - dir[2];
/* result[3] is never written! XXX enforce in parser! */
store_vector4(inst, machine, result);
}
break;
case OPCODE_RSQ: /* 1 / sqrt() */
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
a[0] = FABSF(a[0]);
result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
}
}
break;
case OPCODE_SCS: /* sine and cos */
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = (GLfloat) cos(a[0]);
result[1] = (GLfloat) sin(a[0]);
result[2] = 0.0; /* undefined! */
result[3] = 0.0; /* undefined! */
store_vector4(inst, machine, result);
}
break;
case OPCODE_SEQ: /* set on equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SEQ (%g %g %g %g) = (%g %g %g %g) == (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SFL: /* set false, operands ignored */
{
static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
store_vector4(inst, machine, result);
}
break;
case OPCODE_SGE: /* set on greater or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SGT: /* set on greater */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SGT (%g %g %g %g) = (%g %g %g %g) > (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SIN:
{
GLfloat a[4], result[4];
fetch_vector1(&inst->SrcReg[0], machine, a);
result[0] = result[1] = result[2] = result[3]
= (GLfloat) sin(a[0]);
store_vector4(inst, machine, result);
}
break;
case OPCODE_SLE: /* set on less or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SLE (%g %g %g %g) = (%g %g %g %g) <= (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SLT: /* set on less */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SNE: /* set on not equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SNE (%g %g %g %g) = (%g %g %g %g) != (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SSG: /* set sign (-1, 0 or +1) */
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = (GLfloat) ((a[0] > 0.0F) - (a[0] < 0.0F));
result[1] = (GLfloat) ((a[1] > 0.0F) - (a[1] < 0.0F));
result[2] = (GLfloat) ((a[2] > 0.0F) - (a[2] < 0.0F));
result[3] = (GLfloat) ((a[3] > 0.0F) - (a[3] < 0.0F));
store_vector4(inst, machine, result);
}
break;
case OPCODE_STR: /* set true, operands ignored */
{
static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
store_vector4(inst, machine, result);
}
break;
case OPCODE_SUB:
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[0] - b[0];
result[1] = a[1] - b[1];
result[2] = a[2] - b[2];
result[3] = a[3] - b[3];
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
}
}
break;
case OPCODE_SWZ: /* extended swizzle */
{
const struct prog_src_register *source = &inst->SrcReg[0];
const GLfloat *src = get_src_register_pointer(source, machine);
GLfloat result[4];
GLuint i;
for (i = 0; i < 4; i++) {
const GLuint swz = GET_SWZ(source->Swizzle, i);
if (swz == SWIZZLE_ZERO)
result[i] = 0.0;
else if (swz == SWIZZLE_ONE)
result[i] = 1.0;
else {
ASSERT(swz >= 0);
ASSERT(swz <= 3);
result[i] = src[swz];
}
if (source->Negate & (1 << i))
result[i] = -result[i];
}
store_vector4(inst, machine, result);
}
break;
case OPCODE_TEX: /* Both ARB and NV frag prog */
/* Simple texel lookup */
{
GLfloat texcoord[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
/* For TEX, texcoord.Q should not be used and its value should not
* matter (at most, we pass coord.xyz to texture3D() in GLSL).
* Set Q=1 so that FetchTexelDeriv() doesn't get a garbage value
* which is effectively what happens when the texcoord swizzle
* is .xyzz
*/
texcoord[3] = 1.0f;
fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
if (DEBUG_PROG) {
printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
color[0], color[1], color[2], color[3],
inst->TexSrcUnit,
texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
}
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXB: /* GL_ARB_fragment_program only */
/* Texel lookup with LOD bias */
{
GLfloat texcoord[4], color[4], lodBias;
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
/* texcoord[3] is the bias to add to lambda */
lodBias = texcoord[3];
fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
if (DEBUG_PROG) {
printf("TXB (%g, %g, %g, %g) = texture[%d][%g %g %g %g]"
" bias %g\n",
color[0], color[1], color[2], color[3],
inst->TexSrcUnit,
texcoord[0],
texcoord[1],
texcoord[2],
texcoord[3],
lodBias);
}
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXD: /* GL_NV_fragment_program only */
/* Texture lookup w/ partial derivatives for LOD */
{
GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
fetch_vector4(&inst->SrcReg[1], machine, dtdx);
fetch_vector4(&inst->SrcReg[2], machine, dtdy);
machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
0.0, /* lodBias */
inst->TexSrcUnit, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXL:
/* Texel lookup with explicit LOD */
{
GLfloat texcoord[4], color[4], lod;
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
/* texcoord[3] is the LOD */
lod = texcoord[3];
machine->FetchTexelLod(ctx, texcoord, lod,
machine->Samplers[inst->TexSrcUnit], color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXP: /* GL_ARB_fragment_program only */
/* Texture lookup w/ projective divide */
{
GLfloat texcoord[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
/* Not so sure about this test - if texcoord[3] is
* zero, we'd probably be fine except for an ASSERT in
* IROUND_POS() which gets triggered by the inf values created.
*/
if (texcoord[3] != 0.0) {
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
}
fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
/* Texture lookup w/ projective divide, as above, but do not
* do the divide by w if sampling from a cube map.
*/
{
GLfloat texcoord[4], color[4];
fetch_vector4(&inst->SrcReg[0], machine, texcoord);
if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
texcoord[3] != 0.0) {
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
}
fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
store_vector4(inst, machine, color);
}
break;
case OPCODE_TRUNC: /* truncate toward zero */
{
GLfloat a[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
result[0] = (GLfloat) (GLint) a[0];
result[1] = (GLfloat) (GLint) a[1];
result[2] = (GLfloat) (GLint) a[2];
result[3] = (GLfloat) (GLint) a[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP2H: /* unpack two 16-bit floats */
{
const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
GLfloat result[4];
GLushort hx, hy;
hx = raw & 0xffff;
hy = raw >> 16;
result[0] = result[2] = _mesa_half_to_float(hx);
result[1] = result[3] = _mesa_half_to_float(hy);
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP2US: /* unpack two GLushorts */
{
const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
GLfloat result[4];
GLushort usx, usy;
usx = raw & 0xffff;
usy = raw >> 16;
result[0] = result[2] = usx * (1.0f / 65535.0f);
result[1] = result[3] = usy * (1.0f / 65535.0f);
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP4B: /* unpack four GLbytes */
{
const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
GLfloat result[4];
result[0] = (((raw >> 0) & 0xff) - 128) / 127.0F;
result[1] = (((raw >> 8) & 0xff) - 128) / 127.0F;
result[2] = (((raw >> 16) & 0xff) - 128) / 127.0F;
result[3] = (((raw >> 24) & 0xff) - 128) / 127.0F;
store_vector4(inst, machine, result);
}
break;
case OPCODE_UP4UB: /* unpack four GLubytes */
{
const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
GLfloat result[4];
result[0] = ((raw >> 0) & 0xff) / 255.0F;
result[1] = ((raw >> 8) & 0xff) / 255.0F;
result[2] = ((raw >> 16) & 0xff) / 255.0F;
result[3] = ((raw >> 24) & 0xff) / 255.0F;
store_vector4(inst, machine, result);
}
break;
case OPCODE_XOR: /* bitwise XOR */
{
GLuint a[4], b[4], result[4];
fetch_vector4ui(&inst->SrcReg[0], machine, a);
fetch_vector4ui(&inst->SrcReg[1], machine, b);
result[0] = a[0] ^ b[0];
result[1] = a[1] ^ b[1];
result[2] = a[2] ^ b[2];
result[3] = a[3] ^ b[3];
store_vector4ui(inst, machine, result);
}
break;
case OPCODE_XPD: /* cross product */
{
GLfloat a[4], b[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
result[3] = 1.0;
store_vector4(inst, machine, result);
if (DEBUG_PROG) {
printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], b[0], b[1], b[2]);
}
}
break;
case OPCODE_X2D: /* 2-D matrix transform */
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
fetch_vector4(&inst->SrcReg[1], machine, b);
fetch_vector4(&inst->SrcReg[2], machine, c);
result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
store_vector4(inst, machine, result);
}
break;
case OPCODE_PRINT:
{
if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
GLfloat a[4];
fetch_vector4(&inst->SrcReg[0], machine, a);
printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
a[0], a[1], a[2], a[3]);
}
else {
printf("%s\n", (const char *) inst->Data);
}
}
break;
case OPCODE_END:
return GL_TRUE;
default:
_mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
inst->Opcode);
return GL_TRUE; /* return value doesn't matter */
}
numExec++;
if (numExec > maxExec) {
static GLboolean reported = GL_FALSE;
if (!reported) {
_mesa_problem(ctx, "Infinite loop detected in fragment program");
reported = GL_TRUE;
}
return GL_TRUE;
}
} /* for pc */
return GL_TRUE;
}