/*
* (C) Copyright IBM Corporation 2004, 2005
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* IBM,
* AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _INDIRECT_VA_PRIVATE_
#define _INDIRECT_VA_PRIVATE_
/**
* \file indirect_va_private.h
*
* \author Ian Romanick <idr@us.ibm.com>
*/
#include <inttypes.h>
#include "glxclient.h"
#include "indirect.h"
#include <GL/glxproto.h>
/**
* State descriptor for a single array of vertex data.
*/
struct array_state
{
/**
* Pointer to the application supplied data.
*/
const void *data;
/**
* Enum representing the type of the application supplied data.
*/
GLenum data_type;
/**
* Stride value supplied by the application. This value is not used
* internally. It is only kept so that it can be queried by the
* application using glGet*v.
*/
GLsizei user_stride;
/**
* Calculated size, in bytes, of a single element in the array. This
* is calculated based on \c count and the size of the data type
* represented by \c data_type.
*/
GLsizei element_size;
/**
* Actual byte-stride from one element to the next. This value will
* be equal to either \c user_stride or \c element_stride.
*/
GLsizei true_stride;
/**
* Number of data values in each element.
*/
GLint count;
/**
* "Normalized" data is on the range [0,1] (unsigned) or [-1,1] (signed).
* This is used for mapping integral types to floating point types.
*/
GLboolean normalized;
/**
* Pre-calculated GLX protocol command header.
*/
uint32_t header[2];
/**
* Size of the header data. For simple data, like glColorPointerfv,
* this is 4. For complex data that requires either a count (e.g.,
* glWeightfvARB), an index (e.g., glVertexAttrib1fvARB), or a
* selector enum (e.g., glMultiTexCoord2fv) this is 8.
*/
unsigned header_size;
/**
* Set to \c GL_TRUE if this array is enabled. Otherwise, it is set
* to \c GL_FALSE.
*/
GLboolean enabled;
/**
* For multi-arrayed data (e.g., texture coordinates, generic vertex
* program attributes, etc.), this specifies which array this is.
*/
unsigned index;
/**
* Per-array-type key. For most arrays, this will be the GL enum for
* that array (e.g., GL_VERTEX_ARRAY for vertex data, GL_NORMAL_ARRAY
* for normal data, GL_TEXTURE_COORD_ARRAY for texture coordinate data,
* etc.).
*/
GLenum key;
/**
* If this array can be used with the "classic" \c glDrawArrays protocol,
* this is set to \c GL_TRUE. Otherwise, it is set to \c GL_FALSE.
*/
GLboolean old_DrawArrays_possible;
};
/**
* Array state that is pushed / poped by \c glPushClientAttrib and
* \c glPopClientAttrib.
*/
struct array_stack_state
{
/**
* Pointer to the application supplied data.
*/
const void *data;
/**
* Enum representing the type of the application supplied data.
*/
GLenum data_type;
/**
* Stride value supplied by the application. This value is not used
* internally. It is only kept so that it can be queried by the
* application using glGet*v.
*/
GLsizei user_stride;
/**
* Number of data values in each element.
*/
GLint count;
/**
* Per-array-type key. For most arrays, this will be the GL enum for
* that array (e.g., GL_VERTEX_ARRAY for vertex data, GL_NORMAL_ARRAY
* for normal data, GL_TEXTURE_COORD_ARRAY for texture coordinate data,
* etc.).
*/
GLenum key;
/**
* For multi-arrayed data (e.g., texture coordinates, generic vertex
* program attributes, etc.), this specifies which array this is.
*/
unsigned index;
/**
* Set to \c GL_TRUE if this array is enabled. Otherwise, it is set
* to \c GL_FALSE.
*/
GLboolean enabled;
};
/**
* Collection of all the vertex array state.
*/
struct array_state_vector
{
/**
* Number of arrays tracked by \c ::arrays.
*/
size_t num_arrays;
/**
* Array of vertex array state. This array contains all of the valid
* vertex arrays. If a vertex array isn't in this array, then it isn't
* valid. For example, if an implementation does not support
* EXT_fog_coord, there won't be a GL_FOG_COORD_ARRAY entry in this
* array.
*/
struct array_state *arrays;
/**
* Number of currently enabled client-side arrays. The value of this
* field is only valid if \c array_info_cache_valid is true.
*/
size_t enabled_client_array_count;
/**
* \name ARRAY_INFO cache.
*
* These fields track the state of the ARRAY_INFO cache. The
* \c array_info_cache_size is the size of the actual data stored in
* \c array_info_cache. \c array_info_cache_buffer_size is the size of
* the buffer. This will always be greater than or equal to
* \c array_info_cache_size.
*
* \note
* There are some bytes of extra data before \c array_info_cache that is
* used to hold the header for RenderLarge commands. This is
* \b not included in \c array_info_cache_size or
* \c array_info_cache_buffer_size. \c array_info_cache_base stores a
* pointer to the true start of the buffer (i.e., what malloc returned).
*/
/*@{ */
size_t array_info_cache_size;
size_t array_info_cache_buffer_size;
void *array_info_cache;
void *array_info_cache_base;
/*@} */
/**
* Is the cache of ARRAY_INFO data valid? The cache can become invalid
* when one of several state changes occur. Among these chages are
* modifying the array settings for an enabled array and enabling /
* disabling an array.
*/
GLboolean array_info_cache_valid;
/**
* Is it possible to use the GL 1.1 / EXT_vertex_arrays protocol? Use
* of this protocol is disabled with really old servers (i.e., servers
* that don't support GL 1.1 or EXT_vertex_arrays) or when an environment
* variable is set.
*
* \todo
* GL 1.1 and EXT_vertex_arrays use identical protocol, but have different
* opcodes for \c glDrawArrays. For servers that advertise one or the
* other, there should be a way to select which opcode to use.
*/
GLboolean old_DrawArrays_possible;
/**
* Is it possible to use the new GL X.X / ARB_vertex_buffer_object
* protocol?
*
* \todo
* This protocol has not yet been defined by the ARB, but is currently a
* work in progress. This field is a place-holder.
*/
GLboolean new_DrawArrays_possible;
/**
* Active texture unit set by \c glClientActiveTexture.
*
* \sa __glXGetActiveTextureUnit
*/
unsigned active_texture_unit;
/**
* Number of supported texture units. Even if ARB_multitexture /
* GL 1.3 are not supported, this will be at least 1. When multitexture
* is supported, this will be the value queried by calling
* \c glGetIntegerv with \c GL_MAX_TEXTURE_UNITS.
*
* \todo
* Investigate if this should be the value of \c GL_MAX_TEXTURE_COORDS
* instead (if GL 2.0 / ARB_fragment_shader / ARB_fragment_program /
* NV_fragment_program are supported).
*/
unsigned num_texture_units;
/**
* Number of generic vertex program attribs. If GL_ARB_vertex_program
* is not supported, this will be zero. Otherwise it will be the value
* queries by calling \c glGetProgramiv with \c GL_VERTEX_PROGRAM_ARB
* and \c GL_MAX_PROGRAM_ATTRIBS_ARB.
*/
unsigned num_vertex_program_attribs;
/**
* \n Methods for implementing various GL functions.
*
* These method pointers are only valid \c array_info_cache_valid is set.
* When each function starts, it much check \c array_info_cache_valid.
* If it is not set, it must call \c fill_array_info_cache and call
* the new method.
*
* \sa fill_array_info_cache
*
* \todo
* Write code to plug these functions directly into the dispatch table.
*/
/*@{ */
void (*DrawArrays) (GLenum, GLint, GLsizei);
void (*DrawElements) (GLenum mode, GLsizei count, GLenum type,
const GLvoid * indices);
/*@} */
struct array_stack_state *stack;
unsigned active_texture_unit_stack[__GL_CLIENT_ATTRIB_STACK_DEPTH];
unsigned stack_index;
};
#endif /* _INDIRECT_VA_PRIVATE_ */