/*
* Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
* Joakim Sindholt <opensource@zhasha.com>
* Copyright 2009 Marek Olšák <maraeo@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE. */
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_ureg.h"
#include "r300_cb.h"
#include "r300_context.h"
#include "r300_emit.h"
#include "r300_screen.h"
#include "r300_fs.h"
#include "r300_reg.h"
#include "r300_texture.h"
#include "r300_tgsi_to_rc.h"
#include "compiler/radeon_compiler.h"
/* Convert info about FS input semantics to r300_shader_semantics. */
void r300_shader_read_fs_inputs(struct tgsi_shader_info* info,
struct r300_shader_semantics* fs_inputs)
{
int i;
unsigned index;
r300_shader_semantics_reset(fs_inputs);
for (i = 0; i < info->num_inputs; i++) {
index = info->input_semantic_index[i];
switch (info->input_semantic_name[i]) {
case TGSI_SEMANTIC_COLOR:
assert(index < ATTR_COLOR_COUNT);
fs_inputs->color[index] = i;
break;
case TGSI_SEMANTIC_GENERIC:
assert(index < ATTR_GENERIC_COUNT);
fs_inputs->generic[index] = i;
break;
case TGSI_SEMANTIC_FOG:
assert(index == 0);
fs_inputs->fog = i;
break;
case TGSI_SEMANTIC_POSITION:
assert(index == 0);
fs_inputs->wpos = i;
break;
case TGSI_SEMANTIC_FACE:
assert(index == 0);
fs_inputs->face = i;
break;
default:
fprintf(stderr, "r300: FP: Unknown input semantic: %i\n",
info->input_semantic_name[i]);
}
}
}
static void find_output_registers(struct r300_fragment_program_compiler * compiler,
struct r300_fragment_shader_code *shader)
{
unsigned i, colorbuf_count = 0;
/* Mark the outputs as not present initially */
compiler->OutputColor[0] = shader->info.num_outputs;
compiler->OutputColor[1] = shader->info.num_outputs;
compiler->OutputColor[2] = shader->info.num_outputs;
compiler->OutputColor[3] = shader->info.num_outputs;
compiler->OutputDepth = shader->info.num_outputs;
/* Now see where they really are. */
for(i = 0; i < shader->info.num_outputs; ++i) {
switch(shader->info.output_semantic_name[i]) {
case TGSI_SEMANTIC_COLOR:
compiler->OutputColor[colorbuf_count] = i;
colorbuf_count++;
break;
case TGSI_SEMANTIC_POSITION:
compiler->OutputDepth = i;
break;
}
}
}
static void allocate_hardware_inputs(
struct r300_fragment_program_compiler * c,
void (*allocate)(void * data, unsigned input, unsigned hwreg),
void * mydata)
{
struct r300_shader_semantics* inputs =
(struct r300_shader_semantics*)c->UserData;
int i, reg = 0;
/* Allocate input registers. */
for (i = 0; i < ATTR_COLOR_COUNT; i++) {
if (inputs->color[i] != ATTR_UNUSED) {
allocate(mydata, inputs->color[i], reg++);
}
}
if (inputs->face != ATTR_UNUSED) {
allocate(mydata, inputs->face, reg++);
}
for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
if (inputs->generic[i] != ATTR_UNUSED) {
allocate(mydata, inputs->generic[i], reg++);
}
}
if (inputs->fog != ATTR_UNUSED) {
allocate(mydata, inputs->fog, reg++);
}
if (inputs->wpos != ATTR_UNUSED) {
allocate(mydata, inputs->wpos, reg++);
}
}
static void get_external_state(
struct r300_context* r300,
struct r300_fragment_program_external_state* state)
{
struct r300_textures_state *texstate = r300->textures_state.state;
unsigned i;
for (i = 0; i < texstate->sampler_state_count; i++) {
struct r300_sampler_state *s = texstate->sampler_states[i];
struct r300_sampler_view *v = texstate->sampler_views[i];
struct r300_resource *t;
if (!s || !v) {
continue;
}
t = r300_resource(v->base.texture);
if (s->state.compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
state->unit[i].compare_mode_enabled = 1;
/* Fortunately, no need to translate this. */
state->unit[i].texture_compare_func = s->state.compare_func;
}
state->unit[i].non_normalized_coords = !s->state.normalized_coords;
state->unit[i].convert_unorm_to_snorm =
v->base.format == PIPE_FORMAT_RGTC1_SNORM ||
v->base.format == PIPE_FORMAT_LATC1_SNORM;
/* Pass texture swizzling to the compiler, some lowering passes need it. */
if (v->base.format == PIPE_FORMAT_RGTC1_SNORM ||
v->base.format == PIPE_FORMAT_LATC1_SNORM) {
unsigned char swizzle[4];
util_format_compose_swizzles(
util_format_description(v->base.format)->swizzle,
v->swizzle,
swizzle);
state->unit[i].texture_swizzle =
RC_MAKE_SWIZZLE(swizzle[0], swizzle[1],
swizzle[2], swizzle[3]);
} else if (state->unit[i].compare_mode_enabled) {
state->unit[i].texture_swizzle =
RC_MAKE_SWIZZLE(v->swizzle[0], v->swizzle[1],
v->swizzle[2], v->swizzle[3]);
}
/* XXX this should probably take into account STR, not just S. */
if (t->tex.is_npot) {
switch (s->state.wrap_s) {
case PIPE_TEX_WRAP_REPEAT:
state->unit[i].wrap_mode = RC_WRAP_REPEAT;
break;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
state->unit[i].wrap_mode = RC_WRAP_MIRRORED_REPEAT;
break;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
state->unit[i].wrap_mode = RC_WRAP_MIRRORED_CLAMP;
break;
default:
state->unit[i].wrap_mode = RC_WRAP_NONE;
}
if (t->b.b.target == PIPE_TEXTURE_3D)
state->unit[i].clamp_and_scale_before_fetch = TRUE;
}
}
}
static void r300_translate_fragment_shader(
struct r300_context* r300,
struct r300_fragment_shader_code* shader,
const struct tgsi_token *tokens);
static void r300_dummy_fragment_shader(
struct r300_context* r300,
struct r300_fragment_shader_code* shader)
{
struct pipe_shader_state state;
struct ureg_program *ureg;
struct ureg_dst out;
struct ureg_src imm;
/* Make a simple fragment shader which outputs (0, 0, 0, 1) */
ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
imm = ureg_imm4f(ureg, 0, 0, 0, 1);
ureg_MOV(ureg, out, imm);
ureg_END(ureg);
state.tokens = ureg_finalize(ureg);
shader->dummy = TRUE;
r300_translate_fragment_shader(r300, shader, state.tokens);
ureg_destroy(ureg);
}
static void r300_emit_fs_code_to_buffer(
struct r300_context *r300,
struct r300_fragment_shader_code *shader)
{
struct rX00_fragment_program_code *generic_code = &shader->code;
unsigned imm_count = shader->immediates_count;
unsigned imm_first = shader->externals_count;
unsigned imm_end = generic_code->constants.Count;
struct rc_constant *constants = generic_code->constants.Constants;
unsigned i;
CB_LOCALS;
if (r300->screen->caps.is_r500) {
struct r500_fragment_program_code *code = &generic_code->code.r500;
shader->cb_code_size = 19 +
((code->inst_end + 1) * 6) +
imm_count * 7 +
code->int_constant_count * 2;
NEW_CB(shader->cb_code, shader->cb_code_size);
OUT_CB_REG(R500_US_CONFIG, R500_ZERO_TIMES_ANYTHING_EQUALS_ZERO);
OUT_CB_REG(R500_US_PIXSIZE, code->max_temp_idx);
OUT_CB_REG(R500_US_FC_CTRL, code->us_fc_ctrl);
for(i = 0; i < code->int_constant_count; i++){
OUT_CB_REG(R500_US_FC_INT_CONST_0 + (i * 4),
code->int_constants[i]);
}
OUT_CB_REG(R500_US_CODE_RANGE,
R500_US_CODE_RANGE_ADDR(0) | R500_US_CODE_RANGE_SIZE(code->inst_end));
OUT_CB_REG(R500_US_CODE_OFFSET, 0);
OUT_CB_REG(R500_US_CODE_ADDR,
R500_US_CODE_START_ADDR(0) | R500_US_CODE_END_ADDR(code->inst_end));
OUT_CB_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_INSTR);
OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, (code->inst_end + 1) * 6);
for (i = 0; i <= code->inst_end; i++) {
OUT_CB(code->inst[i].inst0);
OUT_CB(code->inst[i].inst1);
OUT_CB(code->inst[i].inst2);
OUT_CB(code->inst[i].inst3);
OUT_CB(code->inst[i].inst4);
OUT_CB(code->inst[i].inst5);
}
/* Emit immediates. */
if (imm_count) {
for(i = imm_first; i < imm_end; ++i) {
if (constants[i].Type == RC_CONSTANT_IMMEDIATE) {
const float *data = constants[i].u.Immediate;
OUT_CB_REG(R500_GA_US_VECTOR_INDEX,
R500_GA_US_VECTOR_INDEX_TYPE_CONST |
(i & R500_GA_US_VECTOR_INDEX_MASK));
OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
OUT_CB_TABLE(data, 4);
}
}
}
} else { /* r300 */
struct r300_fragment_program_code *code = &generic_code->code.r300;
unsigned int alu_length = code->alu.length;
unsigned int alu_iterations = ((alu_length - 1) / 64) + 1;
unsigned int tex_length = code->tex.length;
unsigned int tex_iterations =
tex_length > 0 ? ((tex_length - 1) / 32) + 1 : 0;
unsigned int iterations =
alu_iterations > tex_iterations ? alu_iterations : tex_iterations;
unsigned int bank = 0;
shader->cb_code_size = 15 +
/* R400_US_CODE_BANK */
(r300->screen->caps.is_r400 ? 2 * (iterations + 1): 0) +
/* R400_US_CODE_EXT */
(r300->screen->caps.is_r400 ? 2 : 0) +
/* R300_US_ALU_{RGB,ALPHA}_{INST,ADDR}_0, R400_US_ALU_EXT_ADDR_0 */
(code->r390_mode ? (5 * alu_iterations) : 4) +
/* R400_US_ALU_EXT_ADDR_[0-63] */
(code->r390_mode ? (code->alu.length) : 0) +
/* R300_US_ALU_{RGB,ALPHA}_{INST,ADDR}_0 */
code->alu.length * 4 +
/* R300_US_TEX_INST_0, R300_US_TEX_INST_[0-31] */
(code->tex.length > 0 ? code->tex.length + tex_iterations : 0) +
imm_count * 5;
NEW_CB(shader->cb_code, shader->cb_code_size);
OUT_CB_REG(R300_US_CONFIG, code->config);
OUT_CB_REG(R300_US_PIXSIZE, code->pixsize);
OUT_CB_REG(R300_US_CODE_OFFSET, code->code_offset);
if (code->r390_mode) {
OUT_CB_REG(R400_US_CODE_EXT, code->r400_code_offset_ext);
} else if (r300->screen->caps.is_r400) {
/* This register appears to affect shaders even if r390_mode is
* disabled, so it needs to be set to 0 for shaders that
* don't use r390_mode. */
OUT_CB_REG(R400_US_CODE_EXT, 0);
}
OUT_CB_REG_SEQ(R300_US_CODE_ADDR_0, 4);
OUT_CB_TABLE(code->code_addr, 4);
do {
unsigned int bank_alu_length = (alu_length < 64 ? alu_length : 64);
unsigned int bank_alu_offset = bank * 64;
unsigned int bank_tex_length = (tex_length < 32 ? tex_length : 32);
unsigned int bank_tex_offset = bank * 32;
if (r300->screen->caps.is_r400) {
OUT_CB_REG(R400_US_CODE_BANK, code->r390_mode ?
(bank << R400_BANK_SHIFT) | R400_R390_MODE_ENABLE : 0);//2
}
if (bank_alu_length > 0) {
OUT_CB_REG_SEQ(R300_US_ALU_RGB_INST_0, bank_alu_length);
for (i = 0; i < bank_alu_length; i++)
OUT_CB(code->alu.inst[i + bank_alu_offset].rgb_inst);
OUT_CB_REG_SEQ(R300_US_ALU_RGB_ADDR_0, bank_alu_length);
for (i = 0; i < bank_alu_length; i++)
OUT_CB(code->alu.inst[i + bank_alu_offset].rgb_addr);
OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_INST_0, bank_alu_length);
for (i = 0; i < bank_alu_length; i++)
OUT_CB(code->alu.inst[i + bank_alu_offset].alpha_inst);
OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_ADDR_0, bank_alu_length);
for (i = 0; i < bank_alu_length; i++)
OUT_CB(code->alu.inst[i + bank_alu_offset].alpha_addr);
if (code->r390_mode) {
OUT_CB_REG_SEQ(R400_US_ALU_EXT_ADDR_0, bank_alu_length);
for (i = 0; i < bank_alu_length; i++)
OUT_CB(code->alu.inst[i + bank_alu_offset].r400_ext_addr);
}
}
if (bank_tex_length > 0) {
OUT_CB_REG_SEQ(R300_US_TEX_INST_0, bank_tex_length);
OUT_CB_TABLE(code->tex.inst + bank_tex_offset, bank_tex_length);
}
alu_length -= bank_alu_length;
tex_length -= bank_tex_length;
bank++;
} while(code->r390_mode && (alu_length > 0 || tex_length > 0));
/* R400_US_CODE_BANK needs to be reset to 0, otherwise some shaders
* will be rendered incorrectly. */
if (r300->screen->caps.is_r400) {
OUT_CB_REG(R400_US_CODE_BANK,
code->r390_mode ? R400_R390_MODE_ENABLE : 0);
}
/* Emit immediates. */
if (imm_count) {
for(i = imm_first; i < imm_end; ++i) {
if (constants[i].Type == RC_CONSTANT_IMMEDIATE) {
const float *data = constants[i].u.Immediate;
OUT_CB_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
OUT_CB(pack_float24(data[0]));
OUT_CB(pack_float24(data[1]));
OUT_CB(pack_float24(data[2]));
OUT_CB(pack_float24(data[3]));
}
}
}
}
OUT_CB_REG(R300_FG_DEPTH_SRC, shader->fg_depth_src);
OUT_CB_REG(R300_US_W_FMT, shader->us_out_w);
END_CB;
}
static void r300_translate_fragment_shader(
struct r300_context* r300,
struct r300_fragment_shader_code* shader,
const struct tgsi_token *tokens)
{
struct r300_fragment_program_compiler compiler;
struct tgsi_to_rc ttr;
int wpos, face;
unsigned i;
tgsi_scan_shader(tokens, &shader->info);
r300_shader_read_fs_inputs(&shader->info, &shader->inputs);
wpos = shader->inputs.wpos;
face = shader->inputs.face;
/* Setup the compiler. */
memset(&compiler, 0, sizeof(compiler));
rc_init(&compiler.Base);
DBG_ON(r300, DBG_FP) ? compiler.Base.Debug |= RC_DBG_LOG : 0;
DBG_ON(r300, DBG_P_STAT) ? compiler.Base.Debug |= RC_DBG_STATS : 0;
compiler.code = &shader->code;
compiler.state = shader->compare_state;
compiler.Base.is_r500 = r300->screen->caps.is_r500;
compiler.Base.is_r400 = r300->screen->caps.is_r400;
compiler.Base.disable_optimizations = DBG_ON(r300, DBG_NO_OPT);
compiler.Base.has_half_swizzles = TRUE;
compiler.Base.has_presub = TRUE;
compiler.Base.has_omod = TRUE;
compiler.Base.max_temp_regs =
compiler.Base.is_r500 ? 128 : (compiler.Base.is_r400 ? 64 : 32);
compiler.Base.max_constants = compiler.Base.is_r500 ? 256 : 32;
compiler.Base.max_alu_insts =
(compiler.Base.is_r500 || compiler.Base.is_r400) ? 512 : 64;
compiler.Base.max_tex_insts =
(compiler.Base.is_r500 || compiler.Base.is_r400) ? 512 : 32;
compiler.AllocateHwInputs = &allocate_hardware_inputs;
compiler.UserData = &shader->inputs;
find_output_registers(&compiler, shader);
shader->write_all = FALSE;
for (i = 0; i < shader->info.num_properties; i++) {
if (shader->info.properties[i].name == TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
shader->write_all = TRUE;
}
}
if (compiler.Base.Debug & RC_DBG_LOG) {
DBG(r300, DBG_FP, "r300: Initial fragment program\n");
tgsi_dump(tokens, 0);
}
/* Translate TGSI to our internal representation */
ttr.compiler = &compiler.Base;
ttr.info = &shader->info;
ttr.use_half_swizzles = TRUE;
r300_tgsi_to_rc(&ttr, tokens);
if (ttr.error) {
fprintf(stderr, "r300 FP: Cannot translate a shader. "
"Using a dummy shader instead.\n");
r300_dummy_fragment_shader(r300, shader);
return;
}
if (!r300->screen->caps.is_r500 ||
compiler.Base.Program.Constants.Count > 200) {
compiler.Base.remove_unused_constants = TRUE;
}
/**
* Transform the program to support WPOS.
*
* Introduce a small fragment at the start of the program that will be
* the only code that directly reads the WPOS input.
* All other code pieces that reference that input will be rewritten
* to read from a newly allocated temporary. */
if (wpos != ATTR_UNUSED) {
/* Moving the input to some other reg is not really necessary. */
rc_transform_fragment_wpos(&compiler.Base, wpos, wpos, TRUE);
}
if (face != ATTR_UNUSED) {
rc_transform_fragment_face(&compiler.Base, face);
}
/* Invoke the compiler */
r3xx_compile_fragment_program(&compiler);
if (compiler.Base.Error) {
fprintf(stderr, "r300 FP: Compiler Error:\n%sUsing a dummy shader"
" instead.\n", compiler.Base.ErrorMsg);
if (shader->dummy) {
fprintf(stderr, "r300 FP: Cannot compile the dummy shader! "
"Giving up...\n");
abort();
}
rc_destroy(&compiler.Base);
r300_dummy_fragment_shader(r300, shader);
return;
}
/* Shaders with zero instructions are invalid,
* use the dummy shader instead. */
if (shader->code.code.r500.inst_end == -1) {
rc_destroy(&compiler.Base);
r300_dummy_fragment_shader(r300, shader);
return;
}
/* Initialize numbers of constants for each type. */
shader->externals_count = 0;
for (i = 0;
i < shader->code.constants.Count &&
shader->code.constants.Constants[i].Type == RC_CONSTANT_EXTERNAL; i++) {
shader->externals_count = i+1;
}
shader->immediates_count = 0;
shader->rc_state_count = 0;
for (i = shader->externals_count; i < shader->code.constants.Count; i++) {
switch (shader->code.constants.Constants[i].Type) {
case RC_CONSTANT_IMMEDIATE:
++shader->immediates_count;
break;
case RC_CONSTANT_STATE:
++shader->rc_state_count;
break;
default:
assert(0);
}
}
/* Setup shader depth output. */
if (shader->code.writes_depth) {
shader->fg_depth_src = R300_FG_DEPTH_SRC_SHADER;
shader->us_out_w = R300_W_FMT_W24 | R300_W_SRC_US;
} else {
shader->fg_depth_src = R300_FG_DEPTH_SRC_SCAN;
shader->us_out_w = R300_W_FMT_W0 | R300_W_SRC_US;
}
/* And, finally... */
rc_destroy(&compiler.Base);
/* Build the command buffer. */
r300_emit_fs_code_to_buffer(r300, shader);
}
boolean r300_pick_fragment_shader(struct r300_context* r300)
{
struct r300_fragment_shader* fs = r300_fs(r300);
struct r300_fragment_program_external_state state = {{{ 0 }}};
struct r300_fragment_shader_code* ptr;
get_external_state(r300, &state);
if (!fs->first) {
/* Build the fragment shader for the first time. */
fs->first = fs->shader = CALLOC_STRUCT(r300_fragment_shader_code);
memcpy(&fs->shader->compare_state, &state,
sizeof(struct r300_fragment_program_external_state));
r300_translate_fragment_shader(r300, fs->shader, fs->state.tokens);
return TRUE;
} else {
/* Check if the currently-bound shader has been compiled
* with the texture-compare state we need. */
if (memcmp(&fs->shader->compare_state, &state, sizeof(state)) != 0) {
/* Search for the right shader. */
ptr = fs->first;
while (ptr) {
if (memcmp(&ptr->compare_state, &state, sizeof(state)) == 0) {
if (fs->shader != ptr) {
fs->shader = ptr;
return TRUE;
}
/* The currently-bound one is OK. */
return FALSE;
}
ptr = ptr->next;
}
/* Not found, gotta compile a new one. */
ptr = CALLOC_STRUCT(r300_fragment_shader_code);
ptr->next = fs->first;
fs->first = fs->shader = ptr;
ptr->compare_state = state;
r300_translate_fragment_shader(r300, ptr, fs->state.tokens);
return TRUE;
}
}
return FALSE;
}