/*
* Copyright (C) 2009 Nicolai Haehnle.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef RADEON_OPCODES_H
#define RADEON_OPCODES_H
#include <assert.h>
/**
* Opcodes understood by the Radeon compiler.
*/
typedef enum {
RC_OPCODE_NOP = 0,
RC_OPCODE_ILLEGAL_OPCODE,
/** vec4 instruction: dst.c = abs(src0.c); */
RC_OPCODE_ABS,
/** vec4 instruction: dst.c = src0.c + src1.c; */
RC_OPCODE_ADD,
/** special instruction: load address register
* dst.x = floor(src.x), where dst must be an address register */
RC_OPCODE_ARL,
/** vec4 instruction: dst.c = ceil(src0.c) */
RC_OPCODE_CEIL,
/** vec4 instruction: dst.c = clamp(src0.c, src1.c, src2.c) */
RC_OPCODE_CLAMP,
/** vec4 instruction: dst.c = src0.c < 0.0 ? src1.c : src2.c */
RC_OPCODE_CMP,
/** vec4 instruction: dst.c = src2.c > 0.5 ? src0.c : src1.c */
RC_OPCODE_CND,
/** scalar instruction: dst = cos(src0.x) */
RC_OPCODE_COS,
/** special instruction: take vec4 partial derivative in X direction
* dst.c = d src0.c / dx */
RC_OPCODE_DDX,
/** special instruction: take vec4 partial derivative in Y direction
* dst.c = d src0.c / dy */
RC_OPCODE_DDY,
/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y */
RC_OPCODE_DP2,
/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y + src0.z*src1.z */
RC_OPCODE_DP3,
/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y + src0.z*src1.z + src0.w*src1.w */
RC_OPCODE_DP4,
/** scalar instruction: dst = src0.x*src1.x + src0.y*src1.y + src0.z*src1.z + src1.w */
RC_OPCODE_DPH,
/** special instruction, see ARB_fragment_program */
RC_OPCODE_DST,
/** scalar instruction: dst = 2**src0.x */
RC_OPCODE_EX2,
/** special instruction, see ARB_vertex_program */
RC_OPCODE_EXP,
/** vec4 instruction: dst.c = floor(src0.c) */
RC_OPCODE_FLR,
/** vec4 instruction: dst.c = src0.c - floor(src0.c) */
RC_OPCODE_FRC,
/** special instruction: stop execution if any component of src0 is negative */
RC_OPCODE_KIL,
/** scalar instruction: dst = log_2(src0.x) */
RC_OPCODE_LG2,
/** special instruction, see ARB_vertex_program */
RC_OPCODE_LIT,
/** special instruction, see ARB_vertex_program */
RC_OPCODE_LOG,
/** vec4 instruction: dst.c = src0.c*src1.c + (1 - src0.c)*src2.c */
RC_OPCODE_LRP,
/** vec4 instruction: dst.c = src0.c*src1.c + src2.c */
RC_OPCODE_MAD,
/** vec4 instruction: dst.c = max(src0.c, src1.c) */
RC_OPCODE_MAX,
/** vec4 instruction: dst.c = min(src0.c, src1.c) */
RC_OPCODE_MIN,
/** vec4 instruction: dst.c = src0.c */
RC_OPCODE_MOV,
/** vec4 instruction: dst.c = src0.c*src1.c */
RC_OPCODE_MUL,
/** scalar instruction: dst = src0.x ** src1.x */
RC_OPCODE_POW,
/** scalar instruction: dst = 1 / src0.x */
RC_OPCODE_RCP,
/** vec4 instruction: dst.c = floor(src0.c + 0.5) */
RC_OPCODE_ROUND,
/** scalar instruction: dst = 1 / sqrt(src0.x) */
RC_OPCODE_RSQ,
/** special instruction, see ARB_fragment_program */
RC_OPCODE_SCS,
/** vec4 instruction: dst.c = (src0.c == src1.c) ? 1.0 : 0.0 */
RC_OPCODE_SEQ,
/** vec4 instruction: dst.c = 0.0 */
RC_OPCODE_SFL,
/** vec4 instruction: dst.c = (src0.c >= src1.c) ? 1.0 : 0.0 */
RC_OPCODE_SGE,
/** vec4 instruction: dst.c = (src0.c > src1.c) ? 1.0 : 0.0 */
RC_OPCODE_SGT,
/** scalar instruction: dst = sin(src0.x) */
RC_OPCODE_SIN,
/** vec4 instruction: dst.c = (src0.c <= src1.c) ? 1.0 : 0.0 */
RC_OPCODE_SLE,
/** vec4 instruction: dst.c = (src0.c < src1.c) ? 1.0 : 0.0 */
RC_OPCODE_SLT,
/** vec4 instruction: dst.c = (src0.c != src1.c) ? 1.0 : 0.0 */
RC_OPCODE_SNE,
/** vec4 instruction: dst.c = (src0.c < 0 ?) -1 : ((src0.c > 0) : 1 : 0) */
RC_OPCODE_SSG,
/** vec4 instruction: dst.c = src0.c - src1.c */
RC_OPCODE_SUB,
/** vec4 instruction: dst.c = src0.c */
RC_OPCODE_SWZ,
/** vec4 instruction: dst.c = (abs(src0.c) - fract(abs(src0.c))) * sgn(src0.c) */
RC_OPCODE_TRUNC,
/** special instruction, see ARB_fragment_program */
RC_OPCODE_XPD,
RC_OPCODE_TEX,
RC_OPCODE_TXB,
RC_OPCODE_TXD,
RC_OPCODE_TXL,
RC_OPCODE_TXP,
/** branch instruction:
* If src0.x != 0.0, continue with the next instruction;
* otherwise, jump to matching RC_OPCODE_ELSE or RC_OPCODE_ENDIF.
*/
RC_OPCODE_IF,
/** branch instruction: jump to matching RC_OPCODE_ENDIF */
RC_OPCODE_ELSE,
/** branch instruction: has no effect */
RC_OPCODE_ENDIF,
RC_OPCODE_BGNLOOP,
RC_OPCODE_BRK,
RC_OPCODE_ENDLOOP,
RC_OPCODE_CONT,
/** special instruction, used in R300-R500 fragment program pair instructions
* indicates that the result of the alpha operation shall be replicated
* across all other channels */
RC_OPCODE_REPL_ALPHA,
/** special instruction, used in R300-R500 fragment programs
* to indicate the start of a block of texture instructions that
* can run simultaneously. */
RC_OPCODE_BEGIN_TEX,
/** Stop execution of the shader (GLSL discard) */
RC_OPCODE_KILP,
/* Vertex shader CF Instructions */
RC_ME_PRED_SEQ,
RC_ME_PRED_SGT,
RC_ME_PRED_SGE,
RC_ME_PRED_SNEQ,
RC_ME_PRED_SET_CLR,
RC_ME_PRED_SET_INV,
RC_ME_PRED_SET_POP,
RC_ME_PRED_SET_RESTORE,
RC_VE_PRED_SEQ_PUSH,
RC_VE_PRED_SGT_PUSH,
RC_VE_PRED_SGE_PUSH,
RC_VE_PRED_SNEQ_PUSH,
MAX_RC_OPCODE
} rc_opcode;
struct rc_opcode_info {
rc_opcode Opcode;
const char * Name;
/** true if the instruction reads from a texture.
*
* \note This is false for the KIL instruction, even though KIL is
* a texture instruction from a hardware point of view. */
unsigned int HasTexture:1;
unsigned int NumSrcRegs:2;
unsigned int HasDstReg:1;
/** true if this instruction affects control flow */
unsigned int IsFlowControl:1;
/** true if this is a vector instruction that operates on components in parallel
* without any cross-component interaction */
unsigned int IsComponentwise:1;
/** true if this instruction sources only its operands X components
* to compute one result which is smeared across all output channels */
unsigned int IsStandardScalar:1;
};
extern struct rc_opcode_info rc_opcodes[MAX_RC_OPCODE];
static inline const struct rc_opcode_info * rc_get_opcode_info(rc_opcode opcode)
{
assert((unsigned int)opcode < MAX_RC_OPCODE);
assert(rc_opcodes[opcode].Opcode == opcode);
return &rc_opcodes[opcode];
}
struct rc_instruction;
void rc_compute_sources_for_writemask(
const struct rc_instruction *inst,
unsigned int writemask,
unsigned int *srcmasks);
#endif /* RADEON_OPCODES_H */