//===- LoadCombine.cpp - Combine Adjacent Loads ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This transformation combines adjacent loads.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "load-combine"
STATISTIC(NumLoadsAnalyzed, "Number of loads analyzed for combining");
STATISTIC(NumLoadsCombined, "Number of loads combined");
namespace {
struct PointerOffsetPair {
Value *Pointer;
uint64_t Offset;
};
struct LoadPOPPair {
LoadPOPPair() = default;
LoadPOPPair(LoadInst *L, PointerOffsetPair P, unsigned O)
: Load(L), POP(P), InsertOrder(O) {}
LoadInst *Load;
PointerOffsetPair POP;
/// \brief The new load needs to be created before the first load in IR order.
unsigned InsertOrder;
};
class LoadCombine : public BasicBlockPass {
LLVMContext *C;
AliasAnalysis *AA;
public:
LoadCombine() : BasicBlockPass(ID), C(nullptr), AA(nullptr) {
initializeLoadCombinePass(*PassRegistry::getPassRegistry());
}
using llvm::Pass::doInitialization;
bool doInitialization(Function &) override;
bool runOnBasicBlock(BasicBlock &BB) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
const char *getPassName() const override { return "LoadCombine"; }
static char ID;
typedef IRBuilder<true, TargetFolder> BuilderTy;
private:
BuilderTy *Builder;
PointerOffsetPair getPointerOffsetPair(LoadInst &);
bool combineLoads(DenseMap<const Value *, SmallVector<LoadPOPPair, 8>> &);
bool aggregateLoads(SmallVectorImpl<LoadPOPPair> &);
bool combineLoads(SmallVectorImpl<LoadPOPPair> &);
};
}
bool LoadCombine::doInitialization(Function &F) {
DEBUG(dbgs() << "LoadCombine function: " << F.getName() << "\n");
C = &F.getContext();
return true;
}
PointerOffsetPair LoadCombine::getPointerOffsetPair(LoadInst &LI) {
PointerOffsetPair POP;
POP.Pointer = LI.getPointerOperand();
POP.Offset = 0;
while (isa<BitCastInst>(POP.Pointer) || isa<GetElementPtrInst>(POP.Pointer)) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(POP.Pointer)) {
auto &DL = LI.getModule()->getDataLayout();
unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
APInt Offset(BitWidth, 0);
if (GEP->accumulateConstantOffset(DL, Offset))
POP.Offset += Offset.getZExtValue();
else
// Can't handle GEPs with variable indices.
return POP;
POP.Pointer = GEP->getPointerOperand();
} else if (auto *BC = dyn_cast<BitCastInst>(POP.Pointer))
POP.Pointer = BC->getOperand(0);
}
return POP;
}
bool LoadCombine::combineLoads(
DenseMap<const Value *, SmallVector<LoadPOPPair, 8>> &LoadMap) {
bool Combined = false;
for (auto &Loads : LoadMap) {
if (Loads.second.size() < 2)
continue;
std::sort(Loads.second.begin(), Loads.second.end(),
[](const LoadPOPPair &A, const LoadPOPPair &B) {
return A.POP.Offset < B.POP.Offset;
});
if (aggregateLoads(Loads.second))
Combined = true;
}
return Combined;
}
/// \brief Try to aggregate loads from a sorted list of loads to be combined.
///
/// It is guaranteed that no writes occur between any of the loads. All loads
/// have the same base pointer. There are at least two loads.
bool LoadCombine::aggregateLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
assert(Loads.size() >= 2 && "Insufficient loads!");
LoadInst *BaseLoad = nullptr;
SmallVector<LoadPOPPair, 8> AggregateLoads;
bool Combined = false;
uint64_t PrevOffset = -1ull;
uint64_t PrevSize = 0;
for (auto &L : Loads) {
if (PrevOffset == -1ull) {
BaseLoad = L.Load;
PrevOffset = L.POP.Offset;
PrevSize = L.Load->getModule()->getDataLayout().getTypeStoreSize(
L.Load->getType());
AggregateLoads.push_back(L);
continue;
}
if (L.Load->getAlignment() > BaseLoad->getAlignment())
continue;
if (L.POP.Offset > PrevOffset + PrevSize) {
// No other load will be combinable
if (combineLoads(AggregateLoads))
Combined = true;
AggregateLoads.clear();
PrevOffset = -1;
continue;
}
if (L.POP.Offset != PrevOffset + PrevSize)
// This load is offset less than the size of the last load.
// FIXME: We may want to handle this case.
continue;
PrevOffset = L.POP.Offset;
PrevSize = L.Load->getModule()->getDataLayout().getTypeStoreSize(
L.Load->getType());
AggregateLoads.push_back(L);
}
if (combineLoads(AggregateLoads))
Combined = true;
return Combined;
}
/// \brief Given a list of combinable load. Combine the maximum number of them.
bool LoadCombine::combineLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
// Remove loads from the end while the size is not a power of 2.
unsigned TotalSize = 0;
for (const auto &L : Loads)
TotalSize += L.Load->getType()->getPrimitiveSizeInBits();
while (TotalSize != 0 && !isPowerOf2_32(TotalSize))
TotalSize -= Loads.pop_back_val().Load->getType()->getPrimitiveSizeInBits();
if (Loads.size() < 2)
return false;
DEBUG({
dbgs() << "***** Combining Loads ******\n";
for (const auto &L : Loads) {
dbgs() << L.POP.Offset << ": " << *L.Load << "\n";
}
});
// Find first load. This is where we put the new load.
LoadPOPPair FirstLP;
FirstLP.InsertOrder = -1u;
for (const auto &L : Loads)
if (L.InsertOrder < FirstLP.InsertOrder)
FirstLP = L;
unsigned AddressSpace =
FirstLP.POP.Pointer->getType()->getPointerAddressSpace();
Builder->SetInsertPoint(FirstLP.Load);
Value *Ptr = Builder->CreateConstGEP1_64(
Builder->CreatePointerCast(Loads[0].POP.Pointer,
Builder->getInt8PtrTy(AddressSpace)),
Loads[0].POP.Offset);
LoadInst *NewLoad = new LoadInst(
Builder->CreatePointerCast(
Ptr, PointerType::get(IntegerType::get(Ptr->getContext(), TotalSize),
Ptr->getType()->getPointerAddressSpace())),
Twine(Loads[0].Load->getName()) + ".combined", false,
Loads[0].Load->getAlignment(), FirstLP.Load);
for (const auto &L : Loads) {
Builder->SetInsertPoint(L.Load);
Value *V = Builder->CreateExtractInteger(
L.Load->getModule()->getDataLayout(), NewLoad,
cast<IntegerType>(L.Load->getType()),
L.POP.Offset - Loads[0].POP.Offset, "combine.extract");
L.Load->replaceAllUsesWith(V);
}
NumLoadsCombined = NumLoadsCombined + Loads.size();
return true;
}
bool LoadCombine::runOnBasicBlock(BasicBlock &BB) {
if (skipOptnoneFunction(BB))
return false;
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
IRBuilder<true, TargetFolder> TheBuilder(
BB.getContext(), TargetFolder(BB.getModule()->getDataLayout()));
Builder = &TheBuilder;
DenseMap<const Value *, SmallVector<LoadPOPPair, 8>> LoadMap;
AliasSetTracker AST(*AA);
bool Combined = false;
unsigned Index = 0;
for (auto &I : BB) {
if (I.mayThrow() || (I.mayWriteToMemory() && AST.containsUnknown(&I))) {
if (combineLoads(LoadMap))
Combined = true;
LoadMap.clear();
AST.clear();
continue;
}
LoadInst *LI = dyn_cast<LoadInst>(&I);
if (!LI)
continue;
++NumLoadsAnalyzed;
if (!LI->isSimple() || !LI->getType()->isIntegerTy())
continue;
auto POP = getPointerOffsetPair(*LI);
if (!POP.Pointer)
continue;
LoadMap[POP.Pointer].push_back(LoadPOPPair(LI, POP, Index++));
AST.add(LI);
}
if (combineLoads(LoadMap))
Combined = true;
return Combined;
}
void LoadCombine::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
char LoadCombine::ID = 0;
BasicBlockPass *llvm::createLoadCombinePass() {
return new LoadCombine();
}
INITIALIZE_PASS_BEGIN(LoadCombine, "load-combine", "Combine Adjacent Loads",
false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(LoadCombine, "load-combine", "Combine Adjacent Loads",
false, false)