//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GCStrategy.h"
#include "ScheduleDAGSDNodes.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "isel"
STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
STATISTIC(NumFastIselFailLowerArguments,
"Number of entry blocks where fast isel failed to lower arguments");
#ifndef NDEBUG
static cl::opt<bool>
EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
cl::desc("Enable extra verbose messages in the \"fast\" "
"instruction selector"));
// Terminators
STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
// Standard binary operators...
STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
// Logical operators...
STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
// Memory instructions...
STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
// Convert instructions...
STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
// Other instructions...
STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
// Intrinsic instructions...
STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
STATISTIC(NumFastIselFailSAddWithOverflow,
"Fast isel fails on sadd.with.overflow");
STATISTIC(NumFastIselFailUAddWithOverflow,
"Fast isel fails on uadd.with.overflow");
STATISTIC(NumFastIselFailSSubWithOverflow,
"Fast isel fails on ssub.with.overflow");
STATISTIC(NumFastIselFailUSubWithOverflow,
"Fast isel fails on usub.with.overflow");
STATISTIC(NumFastIselFailSMulWithOverflow,
"Fast isel fails on smul.with.overflow");
STATISTIC(NumFastIselFailUMulWithOverflow,
"Fast isel fails on umul.with.overflow");
STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
#endif
static cl::opt<bool>
EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
cl::desc("Enable verbose messages in the \"fast\" "
"instruction selector"));
static cl::opt<int> EnableFastISelAbort(
"fast-isel-abort", cl::Hidden,
cl::desc("Enable abort calls when \"fast\" instruction selection "
"fails to lower an instruction: 0 disable the abort, 1 will "
"abort but for args, calls and terminators, 2 will also "
"abort for argument lowering, and 3 will never fallback "
"to SelectionDAG."));
static cl::opt<bool>
UseMBPI("use-mbpi",
cl::desc("use Machine Branch Probability Info"),
cl::init(true), cl::Hidden);
#ifndef NDEBUG
static cl::opt<std::string>
FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
cl::desc("Only display the basic block whose name "
"matches this for all view-*-dags options"));
static cl::opt<bool>
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the first "
"dag combine pass"));
static cl::opt<bool>
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize types"));
static cl::opt<bool>
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize"));
static cl::opt<bool>
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the second "
"dag combine pass"));
static cl::opt<bool>
ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the post legalize types"
" dag combine pass"));
static cl::opt<bool>
ViewISelDAGs("view-isel-dags", cl::Hidden,
cl::desc("Pop up a window to show isel dags as they are selected"));
static cl::opt<bool>
ViewSchedDAGs("view-sched-dags", cl::Hidden,
cl::desc("Pop up a window to show sched dags as they are processed"));
static cl::opt<bool>
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
cl::desc("Pop up a window to show SUnit dags after they are processed"));
#else
static const bool ViewDAGCombine1 = false,
ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
ViewDAGCombine2 = false,
ViewDAGCombineLT = false,
ViewISelDAGs = false, ViewSchedDAGs = false,
ViewSUnitDAGs = false;
#endif
//===---------------------------------------------------------------------===//
///
/// RegisterScheduler class - Track the registration of instruction schedulers.
///
//===---------------------------------------------------------------------===//
MachinePassRegistry RegisterScheduler::Registry;
//===---------------------------------------------------------------------===//
///
/// ISHeuristic command line option for instruction schedulers.
///
//===---------------------------------------------------------------------===//
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
RegisterPassParser<RegisterScheduler> >
ISHeuristic("pre-RA-sched",
cl::init(&createDefaultScheduler), cl::Hidden,
cl::desc("Instruction schedulers available (before register"
" allocation):"));
static RegisterScheduler
defaultListDAGScheduler("default", "Best scheduler for the target",
createDefaultScheduler);
namespace llvm {
//===--------------------------------------------------------------------===//
/// \brief This class is used by SelectionDAGISel to temporarily override
/// the optimization level on a per-function basis.
class OptLevelChanger {
SelectionDAGISel &IS;
CodeGenOpt::Level SavedOptLevel;
bool SavedFastISel;
public:
OptLevelChanger(SelectionDAGISel &ISel,
CodeGenOpt::Level NewOptLevel) : IS(ISel) {
SavedOptLevel = IS.OptLevel;
if (NewOptLevel == SavedOptLevel)
return;
IS.OptLevel = NewOptLevel;
IS.TM.setOptLevel(NewOptLevel);
DEBUG(dbgs() << "\nChanging optimization level for Function "
<< IS.MF->getFunction()->getName() << "\n");
DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
<< " ; After: -O" << NewOptLevel << "\n");
SavedFastISel = IS.TM.Options.EnableFastISel;
if (NewOptLevel == CodeGenOpt::None) {
IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
DEBUG(dbgs() << "\tFastISel is "
<< (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
<< "\n");
}
}
~OptLevelChanger() {
if (IS.OptLevel == SavedOptLevel)
return;
DEBUG(dbgs() << "\nRestoring optimization level for Function "
<< IS.MF->getFunction()->getName() << "\n");
DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
<< " ; After: -O" << SavedOptLevel << "\n");
IS.OptLevel = SavedOptLevel;
IS.TM.setOptLevel(SavedOptLevel);
IS.TM.setFastISel(SavedFastISel);
}
};
//===--------------------------------------------------------------------===//
/// createDefaultScheduler - This creates an instruction scheduler appropriate
/// for the target.
ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetLowering *TLI = IS->TLI;
const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
// Try first to see if the Target has its own way of selecting a scheduler
if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
return SchedulerCtor(IS, OptLevel);
}
if (OptLevel == CodeGenOpt::None ||
(ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
TLI->getSchedulingPreference() == Sched::Source)
return createSourceListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::RegPressure)
return createBURRListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::Hybrid)
return createHybridListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::VLIW)
return createVLIWDAGScheduler(IS, OptLevel);
assert(TLI->getSchedulingPreference() == Sched::ILP &&
"Unknown sched type!");
return createILPListDAGScheduler(IS, OptLevel);
}
}
// EmitInstrWithCustomInserter - This method should be implemented by targets
// that mark instructions with the 'usesCustomInserter' flag. These
// instructions are special in various ways, which require special support to
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and this method is called to expand it into a sequence of
// instructions, potentially also creating new basic blocks and control flow.
// When new basic blocks are inserted and the edges from MBB to its successors
// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
// DenseMap.
MachineBasicBlock *
TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const {
#ifndef NDEBUG
dbgs() << "If a target marks an instruction with "
"'usesCustomInserter', it must implement "
"TargetLowering::EmitInstrWithCustomInserter!";
#endif
llvm_unreachable(nullptr);
}
void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
assert(!MI->hasPostISelHook() &&
"If a target marks an instruction with 'hasPostISelHook', "
"it must implement TargetLowering::AdjustInstrPostInstrSelection!");
}
//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//
SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
CodeGenOpt::Level OL) :
MachineFunctionPass(ID), TM(tm),
FuncInfo(new FunctionLoweringInfo()),
CurDAG(new SelectionDAG(tm, OL)),
SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
GFI(),
OptLevel(OL),
DAGSize(0) {
initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
initializeBranchProbabilityInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
initializeTargetLibraryInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
SelectionDAGISel::~SelectionDAGISel() {
delete SDB;
delete CurDAG;
delete FuncInfo;
}
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<GCModuleInfo>();
AU.addPreserved<GCModuleInfo>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
if (UseMBPI && OptLevel != CodeGenOpt::None)
AU.addRequired<BranchProbabilityInfoWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
/// may trap on it. In this case we have to split the edge so that the path
/// through the predecessor block that doesn't go to the phi block doesn't
/// execute the possibly trapping instruction.
///
/// This is required for correctness, so it must be done at -O0.
///
static void SplitCriticalSideEffectEdges(Function &Fn) {
// Loop for blocks with phi nodes.
for (BasicBlock &BB : Fn) {
PHINode *PN = dyn_cast<PHINode>(BB.begin());
if (!PN) continue;
ReprocessBlock:
// For each block with a PHI node, check to see if any of the input values
// are potentially trapping constant expressions. Constant expressions are
// the only potentially trapping value that can occur as the argument to a
// PHI.
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
if (!CE || !CE->canTrap()) continue;
// The only case we have to worry about is when the edge is critical.
// Since this block has a PHI Node, we assume it has multiple input
// edges: check to see if the pred has multiple successors.
BasicBlock *Pred = PN->getIncomingBlock(i);
if (Pred->getTerminator()->getNumSuccessors() == 1)
continue;
// Okay, we have to split this edge.
SplitCriticalEdge(
Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
CriticalEdgeSplittingOptions().setMergeIdenticalEdges());
goto ReprocessBlock;
}
}
}
bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
// Do some sanity-checking on the command-line options.
assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
"-fast-isel-verbose requires -fast-isel");
assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
"-fast-isel-abort > 0 requires -fast-isel");
const Function &Fn = *mf.getFunction();
MF = &mf;
// Reset the target options before resetting the optimization
// level below.
// FIXME: This is a horrible hack and should be processed via
// codegen looking at the optimization level explicitly when
// it wants to look at it.
TM.resetTargetOptions(Fn);
// Reset OptLevel to None for optnone functions.
CodeGenOpt::Level NewOptLevel = OptLevel;
if (Fn.hasFnAttribute(Attribute::OptimizeNone))
NewOptLevel = CodeGenOpt::None;
OptLevelChanger OLC(*this, NewOptLevel);
TII = MF->getSubtarget().getInstrInfo();
TLI = MF->getSubtarget().getTargetLowering();
RegInfo = &MF->getRegInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
SplitCriticalSideEffectEdges(const_cast<Function &>(Fn));
CurDAG->init(*MF);
FuncInfo->set(Fn, *MF, CurDAG);
if (UseMBPI && OptLevel != CodeGenOpt::None)
FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
else
FuncInfo->BPI = nullptr;
SDB->init(GFI, *AA, LibInfo);
MF->setHasInlineAsm(false);
FuncInfo->SplitCSR = false;
SmallVector<MachineBasicBlock*, 4> Returns;
// We split CSR if the target supports it for the given function
// and the function has only return exits.
if (TLI->supportSplitCSR(MF)) {
FuncInfo->SplitCSR = true;
// Collect all the return blocks.
for (const BasicBlock &BB : Fn) {
if (!succ_empty(&BB))
continue;
const TerminatorInst *Term = BB.getTerminator();
if (isa<UnreachableInst>(Term))
continue;
if (isa<ReturnInst>(Term)) {
Returns.push_back(FuncInfo->MBBMap[&BB]);
continue;
}
// Bail out if the exit block is not Return nor Unreachable.
FuncInfo->SplitCSR = false;
break;
}
}
MachineBasicBlock *EntryMBB = &MF->front();
if (FuncInfo->SplitCSR)
// This performs initialization so lowering for SplitCSR will be correct.
TLI->initializeSplitCSR(EntryMBB);
SelectAllBasicBlocks(Fn);
// If the first basic block in the function has live ins that need to be
// copied into vregs, emit the copies into the top of the block before
// emitting the code for the block.
const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
// Insert copies in the entry block and the return blocks.
if (FuncInfo->SplitCSR)
TLI->insertCopiesSplitCSR(EntryMBB, Returns);
DenseMap<unsigned, unsigned> LiveInMap;
if (!FuncInfo->ArgDbgValues.empty())
for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
E = RegInfo->livein_end(); LI != E; ++LI)
if (LI->second)
LiveInMap.insert(std::make_pair(LI->first, LI->second));
// Insert DBG_VALUE instructions for function arguments to the entry block.
for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
bool hasFI = MI->getOperand(0).isFI();
unsigned Reg =
hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg))
EntryMBB->insert(EntryMBB->begin(), MI);
else {
MachineInstr *Def = RegInfo->getVRegDef(Reg);
if (Def) {
MachineBasicBlock::iterator InsertPos = Def;
// FIXME: VR def may not be in entry block.
Def->getParent()->insert(std::next(InsertPos), MI);
} else
DEBUG(dbgs() << "Dropping debug info for dead vreg"
<< TargetRegisterInfo::virtReg2Index(Reg) << "\n");
}
// If Reg is live-in then update debug info to track its copy in a vreg.
DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
if (LDI != LiveInMap.end()) {
assert(!hasFI && "There's no handling of frame pointer updating here yet "
"- add if needed");
MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
MachineBasicBlock::iterator InsertPos = Def;
const MDNode *Variable = MI->getDebugVariable();
const MDNode *Expr = MI->getDebugExpression();
DebugLoc DL = MI->getDebugLoc();
bool IsIndirect = MI->isIndirectDebugValue();
unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
// Def is never a terminator here, so it is ok to increment InsertPos.
BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
IsIndirect, LDI->second, Offset, Variable, Expr);
// If this vreg is directly copied into an exported register then
// that COPY instructions also need DBG_VALUE, if it is the only
// user of LDI->second.
MachineInstr *CopyUseMI = nullptr;
for (MachineRegisterInfo::use_instr_iterator
UI = RegInfo->use_instr_begin(LDI->second),
E = RegInfo->use_instr_end(); UI != E; ) {
MachineInstr *UseMI = &*(UI++);
if (UseMI->isDebugValue()) continue;
if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
CopyUseMI = UseMI; continue;
}
// Otherwise this is another use or second copy use.
CopyUseMI = nullptr; break;
}
if (CopyUseMI) {
// Use MI's debug location, which describes where Variable was
// declared, rather than whatever is attached to CopyUseMI.
MachineInstr *NewMI =
BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
MachineBasicBlock::iterator Pos = CopyUseMI;
EntryMBB->insertAfter(Pos, NewMI);
}
}
}
// Determine if there are any calls in this machine function.
MachineFrameInfo *MFI = MF->getFrameInfo();
for (const auto &MBB : *MF) {
if (MFI->hasCalls() && MF->hasInlineAsm())
break;
for (const auto &MI : MBB) {
const MCInstrDesc &MCID = TII->get(MI.getOpcode());
if ((MCID.isCall() && !MCID.isReturn()) ||
MI.isStackAligningInlineAsm()) {
MFI->setHasCalls(true);
}
if (MI.isInlineAsm()) {
MF->setHasInlineAsm(true);
}
}
}
// Determine if there is a call to setjmp in the machine function.
MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
// Replace forward-declared registers with the registers containing
// the desired value.
MachineRegisterInfo &MRI = MF->getRegInfo();
for (DenseMap<unsigned, unsigned>::iterator
I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
I != E; ++I) {
unsigned From = I->first;
unsigned To = I->second;
// If To is also scheduled to be replaced, find what its ultimate
// replacement is.
for (;;) {
DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
if (J == E) break;
To = J->second;
}
// Make sure the new register has a sufficiently constrained register class.
if (TargetRegisterInfo::isVirtualRegister(From) &&
TargetRegisterInfo::isVirtualRegister(To))
MRI.constrainRegClass(To, MRI.getRegClass(From));
// Replace it.
// Replacing one register with another won't touch the kill flags.
// We need to conservatively clear the kill flags as a kill on the old
// register might dominate existing uses of the new register.
if (!MRI.use_empty(To))
MRI.clearKillFlags(From);
MRI.replaceRegWith(From, To);
}
// Freeze the set of reserved registers now that MachineFrameInfo has been
// set up. All the information required by getReservedRegs() should be
// available now.
MRI.freezeReservedRegs(*MF);
// Release function-specific state. SDB and CurDAG are already cleared
// at this point.
FuncInfo->clear();
DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
DEBUG(MF->print(dbgs()));
return true;
}
void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
BasicBlock::const_iterator End,
bool &HadTailCall) {
// Lower the instructions. If a call is emitted as a tail call, cease emitting
// nodes for this block.
for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
SDB->visit(*I);
// Make sure the root of the DAG is up-to-date.
CurDAG->setRoot(SDB->getControlRoot());
HadTailCall = SDB->HasTailCall;
SDB->clear();
// Final step, emit the lowered DAG as machine code.
CodeGenAndEmitDAG();
}
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
SmallPtrSet<SDNode*, 128> VisitedNodes;
SmallVector<SDNode*, 128> Worklist;
Worklist.push_back(CurDAG->getRoot().getNode());
APInt KnownZero;
APInt KnownOne;
do {
SDNode *N = Worklist.pop_back_val();
// If we've already seen this node, ignore it.
if (!VisitedNodes.insert(N).second)
continue;
// Otherwise, add all chain operands to the worklist.
for (const SDValue &Op : N->op_values())
if (Op.getValueType() == MVT::Other)
Worklist.push_back(Op.getNode());
// If this is a CopyToReg with a vreg dest, process it.
if (N->getOpcode() != ISD::CopyToReg)
continue;
unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
continue;
// Ignore non-scalar or non-integer values.
SDValue Src = N->getOperand(2);
EVT SrcVT = Src.getValueType();
if (!SrcVT.isInteger() || SrcVT.isVector())
continue;
unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
} while (!Worklist.empty());
}
void SelectionDAGISel::CodeGenAndEmitDAG() {
std::string GroupName;
if (TimePassesIsEnabled)
GroupName = "Instruction Selection and Scheduling";
std::string BlockName;
int BlockNumber = -1;
(void)BlockNumber;
bool MatchFilterBB = false; (void)MatchFilterBB;
#ifndef NDEBUG
MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
FilterDAGBasicBlockName ==
FuncInfo->MBB->getBasicBlock()->getName().str());
#endif
#ifdef NDEBUG
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
ViewSUnitDAGs)
#endif
{
BlockNumber = FuncInfo->MBB->getNumber();
BlockName =
(MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
}
DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
if (ViewDAGCombine1 && MatchFilterBB)
CurDAG->viewGraph("dag-combine1 input for " + BlockName);
// Run the DAG combiner in pre-legalize mode.
{
NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
}
DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
// Second step, hack on the DAG until it only uses operations and types that
// the target supports.
if (ViewLegalizeTypesDAGs && MatchFilterBB)
CurDAG->viewGraph("legalize-types input for " + BlockName);
bool Changed;
{
NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
Changed = CurDAG->LegalizeTypes();
}
DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
CurDAG->NewNodesMustHaveLegalTypes = true;
if (Changed) {
if (ViewDAGCombineLT && MatchFilterBB)
CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
// Run the DAG combiner in post-type-legalize mode.
{
NamedRegionTimer T("DAG Combining after legalize types", GroupName,
TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
}
DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
}
{
NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
Changed = CurDAG->LegalizeVectors();
}
if (Changed) {
{
NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
CurDAG->LegalizeTypes();
}
if (ViewDAGCombineLT && MatchFilterBB)
CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
// Run the DAG combiner in post-type-legalize mode.
{
NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
}
DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
<< BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
}
if (ViewLegalizeDAGs && MatchFilterBB)
CurDAG->viewGraph("legalize input for " + BlockName);
{
NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
CurDAG->Legalize();
}
DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
if (ViewDAGCombine2 && MatchFilterBB)
CurDAG->viewGraph("dag-combine2 input for " + BlockName);
// Run the DAG combiner in post-legalize mode.
{
NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
}
DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
if (OptLevel != CodeGenOpt::None)
ComputeLiveOutVRegInfo();
if (ViewISelDAGs && MatchFilterBB)
CurDAG->viewGraph("isel input for " + BlockName);
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
{
NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
DoInstructionSelection();
}
DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
if (ViewSchedDAGs && MatchFilterBB)
CurDAG->viewGraph("scheduler input for " + BlockName);
// Schedule machine code.
ScheduleDAGSDNodes *Scheduler = CreateScheduler();
{
NamedRegionTimer T("Instruction Scheduling", GroupName,
TimePassesIsEnabled);
Scheduler->Run(CurDAG, FuncInfo->MBB);
}
if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph();
// Emit machine code to BB. This can change 'BB' to the last block being
// inserted into.
MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
{
NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
// FuncInfo->InsertPt is passed by reference and set to the end of the
// scheduled instructions.
LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
}
// If the block was split, make sure we update any references that are used to
// update PHI nodes later on.
if (FirstMBB != LastMBB)
SDB->UpdateSplitBlock(FirstMBB, LastMBB);
// Free the scheduler state.
{
NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
TimePassesIsEnabled);
delete Scheduler;
}
// Free the SelectionDAG state, now that we're finished with it.
CurDAG->clear();
}
namespace {
/// ISelUpdater - helper class to handle updates of the instruction selection
/// graph.
class ISelUpdater : public SelectionDAG::DAGUpdateListener {
SelectionDAG::allnodes_iterator &ISelPosition;
public:
ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
: SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
/// NodeDeleted - Handle nodes deleted from the graph. If the node being
/// deleted is the current ISelPosition node, update ISelPosition.
///
void NodeDeleted(SDNode *N, SDNode *E) override {
if (ISelPosition == SelectionDAG::allnodes_iterator(N))
++ISelPosition;
}
};
} // end anonymous namespace
void SelectionDAGISel::DoInstructionSelection() {
DEBUG(dbgs() << "===== Instruction selection begins: BB#"
<< FuncInfo->MBB->getNumber()
<< " '" << FuncInfo->MBB->getName() << "'\n");
PreprocessISelDAG();
// Select target instructions for the DAG.
{
// Number all nodes with a topological order and set DAGSize.
DAGSize = CurDAG->AssignTopologicalOrder();
// Create a dummy node (which is not added to allnodes), that adds
// a reference to the root node, preventing it from being deleted,
// and tracking any changes of the root.
HandleSDNode Dummy(CurDAG->getRoot());
SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
++ISelPosition;
// Make sure that ISelPosition gets properly updated when nodes are deleted
// in calls made from this function.
ISelUpdater ISU(*CurDAG, ISelPosition);
// The AllNodes list is now topological-sorted. Visit the
// nodes by starting at the end of the list (the root of the
// graph) and preceding back toward the beginning (the entry
// node).
while (ISelPosition != CurDAG->allnodes_begin()) {
SDNode *Node = &*--ISelPosition;
// Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
// but there are currently some corner cases that it misses. Also, this
// makes it theoretically possible to disable the DAGCombiner.
if (Node->use_empty())
continue;
SDNode *ResNode = Select(Node);
// FIXME: This is pretty gross. 'Select' should be changed to not return
// anything at all and this code should be nuked with a tactical strike.
// If node should not be replaced, continue with the next one.
if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
continue;
// Replace node.
if (ResNode) {
ReplaceUses(Node, ResNode);
}
// If after the replacement this node is not used any more,
// remove this dead node.
if (Node->use_empty()) // Don't delete EntryToken, etc.
CurDAG->RemoveDeadNode(Node);
}
CurDAG->setRoot(Dummy.getValue());
}
DEBUG(dbgs() << "===== Instruction selection ends:\n");
PostprocessISelDAG();
}
static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
for (const User *U : CPI->users()) {
if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
if (IID == Intrinsic::eh_exceptionpointer ||
IID == Intrinsic::eh_exceptioncode)
return true;
}
}
return false;
}
/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
/// do other setup for EH landing-pad blocks.
bool SelectionDAGISel::PrepareEHLandingPad() {
MachineBasicBlock *MBB = FuncInfo->MBB;
const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
const BasicBlock *LLVMBB = MBB->getBasicBlock();
const TargetRegisterClass *PtrRC =
TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
// Catchpads have one live-in register, which typically holds the exception
// pointer or code.
if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
if (hasExceptionPointerOrCodeUser(CPI)) {
// Get or create the virtual register to hold the pointer or code. Mark
// the live in physreg and copy into the vreg.
MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
assert(EHPhysReg && "target lacks exception pointer register");
MBB->addLiveIn(EHPhysReg);
unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
TII->get(TargetOpcode::COPY), VReg)
.addReg(EHPhysReg, RegState::Kill);
}
return true;
}
if (!LLVMBB->isLandingPad())
return true;
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
// Assign the call site to the landing pad's begin label.
MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
.addSym(Label);
// Mark exception register as live in.
if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
// Mark exception selector register as live in.
if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
return true;
}
/// isFoldedOrDeadInstruction - Return true if the specified instruction is
/// side-effect free and is either dead or folded into a generated instruction.
/// Return false if it needs to be emitted.
static bool isFoldedOrDeadInstruction(const Instruction *I,
FunctionLoweringInfo *FuncInfo) {
return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
!isa<TerminatorInst>(I) && // Terminators aren't folded.
!isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
!I->isEHPad() && // EH pad instructions aren't folded.
!FuncInfo->isExportedInst(I); // Exported instrs must be computed.
}
#ifndef NDEBUG
// Collect per Instruction statistics for fast-isel misses. Only those
// instructions that cause the bail are accounted for. It does not account for
// instructions higher in the block. Thus, summing the per instructions stats
// will not add up to what is reported by NumFastIselFailures.
static void collectFailStats(const Instruction *I) {
switch (I->getOpcode()) {
default: assert (0 && "<Invalid operator> ");
// Terminators
case Instruction::Ret: NumFastIselFailRet++; return;
case Instruction::Br: NumFastIselFailBr++; return;
case Instruction::Switch: NumFastIselFailSwitch++; return;
case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return;
case Instruction::Invoke: NumFastIselFailInvoke++; return;
case Instruction::Resume: NumFastIselFailResume++; return;
case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
// Standard binary operators...
case Instruction::Add: NumFastIselFailAdd++; return;
case Instruction::FAdd: NumFastIselFailFAdd++; return;
case Instruction::Sub: NumFastIselFailSub++; return;
case Instruction::FSub: NumFastIselFailFSub++; return;
case Instruction::Mul: NumFastIselFailMul++; return;
case Instruction::FMul: NumFastIselFailFMul++; return;
case Instruction::UDiv: NumFastIselFailUDiv++; return;
case Instruction::SDiv: NumFastIselFailSDiv++; return;
case Instruction::FDiv: NumFastIselFailFDiv++; return;
case Instruction::URem: NumFastIselFailURem++; return;
case Instruction::SRem: NumFastIselFailSRem++; return;
case Instruction::FRem: NumFastIselFailFRem++; return;
// Logical operators...
case Instruction::And: NumFastIselFailAnd++; return;
case Instruction::Or: NumFastIselFailOr++; return;
case Instruction::Xor: NumFastIselFailXor++; return;
// Memory instructions...
case Instruction::Alloca: NumFastIselFailAlloca++; return;
case Instruction::Load: NumFastIselFailLoad++; return;
case Instruction::Store: NumFastIselFailStore++; return;
case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return;
case Instruction::Fence: NumFastIselFailFence++; return;
case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
// Convert instructions...
case Instruction::Trunc: NumFastIselFailTrunc++; return;
case Instruction::ZExt: NumFastIselFailZExt++; return;
case Instruction::SExt: NumFastIselFailSExt++; return;
case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return;
case Instruction::FPExt: NumFastIselFailFPExt++; return;
case Instruction::FPToUI: NumFastIselFailFPToUI++; return;
case Instruction::FPToSI: NumFastIselFailFPToSI++; return;
case Instruction::UIToFP: NumFastIselFailUIToFP++; return;
case Instruction::SIToFP: NumFastIselFailSIToFP++; return;
case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
case Instruction::BitCast: NumFastIselFailBitCast++; return;
// Other instructions...
case Instruction::ICmp: NumFastIselFailICmp++; return;
case Instruction::FCmp: NumFastIselFailFCmp++; return;
case Instruction::PHI: NumFastIselFailPHI++; return;
case Instruction::Select: NumFastIselFailSelect++; return;
case Instruction::Call: {
if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
switch (Intrinsic->getIntrinsicID()) {
default:
NumFastIselFailIntrinsicCall++; return;
case Intrinsic::sadd_with_overflow:
NumFastIselFailSAddWithOverflow++; return;
case Intrinsic::uadd_with_overflow:
NumFastIselFailUAddWithOverflow++; return;
case Intrinsic::ssub_with_overflow:
NumFastIselFailSSubWithOverflow++; return;
case Intrinsic::usub_with_overflow:
NumFastIselFailUSubWithOverflow++; return;
case Intrinsic::smul_with_overflow:
NumFastIselFailSMulWithOverflow++; return;
case Intrinsic::umul_with_overflow:
NumFastIselFailUMulWithOverflow++; return;
case Intrinsic::frameaddress:
NumFastIselFailFrameaddress++; return;
case Intrinsic::sqrt:
NumFastIselFailSqrt++; return;
case Intrinsic::experimental_stackmap:
NumFastIselFailStackMap++; return;
case Intrinsic::experimental_patchpoint_void: // fall-through
case Intrinsic::experimental_patchpoint_i64:
NumFastIselFailPatchPoint++; return;
}
}
NumFastIselFailCall++;
return;
}
case Instruction::Shl: NumFastIselFailShl++; return;
case Instruction::LShr: NumFastIselFailLShr++; return;
case Instruction::AShr: NumFastIselFailAShr++; return;
case Instruction::VAArg: NumFastIselFailVAArg++; return;
case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
case Instruction::InsertElement: NumFastIselFailInsertElement++; return;
case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return;
case Instruction::ExtractValue: NumFastIselFailExtractValue++; return;
case Instruction::InsertValue: NumFastIselFailInsertValue++; return;
case Instruction::LandingPad: NumFastIselFailLandingPad++; return;
}
}
#endif
void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
// Initialize the Fast-ISel state, if needed.
FastISel *FastIS = nullptr;
if (TM.Options.EnableFastISel)
FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
// Iterate over all basic blocks in the function.
ReversePostOrderTraversal<const Function*> RPOT(&Fn);
for (ReversePostOrderTraversal<const Function*>::rpo_iterator
I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
const BasicBlock *LLVMBB = *I;
if (OptLevel != CodeGenOpt::None) {
bool AllPredsVisited = true;
for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
PI != PE; ++PI) {
if (!FuncInfo->VisitedBBs.count(*PI)) {
AllPredsVisited = false;
break;
}
}
if (AllPredsVisited) {
for (BasicBlock::const_iterator I = LLVMBB->begin();
const PHINode *PN = dyn_cast<PHINode>(I); ++I)
FuncInfo->ComputePHILiveOutRegInfo(PN);
} else {
for (BasicBlock::const_iterator I = LLVMBB->begin();
const PHINode *PN = dyn_cast<PHINode>(I); ++I)
FuncInfo->InvalidatePHILiveOutRegInfo(PN);
}
FuncInfo->VisitedBBs.insert(LLVMBB);
}
BasicBlock::const_iterator const Begin =
LLVMBB->getFirstNonPHI()->getIterator();
BasicBlock::const_iterator const End = LLVMBB->end();
BasicBlock::const_iterator BI = End;
FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
if (!FuncInfo->MBB)
continue; // Some blocks like catchpads have no code or MBB.
FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
// Setup an EH landing-pad block.
FuncInfo->ExceptionPointerVirtReg = 0;
FuncInfo->ExceptionSelectorVirtReg = 0;
if (LLVMBB->isEHPad())
if (!PrepareEHLandingPad())
continue;
// Before doing SelectionDAG ISel, see if FastISel has been requested.
if (FastIS) {
FastIS->startNewBlock();
// Emit code for any incoming arguments. This must happen before
// beginning FastISel on the entry block.
if (LLVMBB == &Fn.getEntryBlock()) {
++NumEntryBlocks;
// Lower any arguments needed in this block if this is the entry block.
if (!FastIS->lowerArguments()) {
// Fast isel failed to lower these arguments
++NumFastIselFailLowerArguments;
if (EnableFastISelAbort > 1)
report_fatal_error("FastISel didn't lower all arguments");
// Use SelectionDAG argument lowering
LowerArguments(Fn);
CurDAG->setRoot(SDB->getControlRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
// If we inserted any instructions at the beginning, make a note of
// where they are, so we can be sure to emit subsequent instructions
// after them.
if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
else
FastIS->setLastLocalValue(nullptr);
}
unsigned NumFastIselRemaining = std::distance(Begin, End);
// Do FastISel on as many instructions as possible.
for (; BI != Begin; --BI) {
const Instruction *Inst = &*std::prev(BI);
// If we no longer require this instruction, skip it.
if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
--NumFastIselRemaining;
continue;
}
// Bottom-up: reset the insert pos at the top, after any local-value
// instructions.
FastIS->recomputeInsertPt();
// Try to select the instruction with FastISel.
if (FastIS->selectInstruction(Inst)) {
--NumFastIselRemaining;
++NumFastIselSuccess;
// If fast isel succeeded, skip over all the folded instructions, and
// then see if there is a load right before the selected instructions.
// Try to fold the load if so.
const Instruction *BeforeInst = Inst;
while (BeforeInst != &*Begin) {
BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
break;
}
if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
BeforeInst->hasOneUse() &&
FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
// If we succeeded, don't re-select the load.
BI = std::next(BasicBlock::const_iterator(BeforeInst));
--NumFastIselRemaining;
++NumFastIselSuccess;
}
continue;
}
#ifndef NDEBUG
if (EnableFastISelVerbose2)
collectFailStats(Inst);
#endif
// Then handle certain instructions as single-LLVM-Instruction blocks.
if (isa<CallInst>(Inst)) {
if (EnableFastISelVerbose || EnableFastISelAbort) {
dbgs() << "FastISel missed call: ";
Inst->dump();
}
if (EnableFastISelAbort > 2)
// FastISel selector couldn't handle something and bailed.
// For the purpose of debugging, just abort.
report_fatal_error("FastISel didn't select the entire block");
if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
!Inst->use_empty()) {
unsigned &R = FuncInfo->ValueMap[Inst];
if (!R)
R = FuncInfo->CreateRegs(Inst->getType());
}
bool HadTailCall = false;
MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
// If the call was emitted as a tail call, we're done with the block.
// We also need to delete any previously emitted instructions.
if (HadTailCall) {
FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
--BI;
break;
}
// Recompute NumFastIselRemaining as Selection DAG instruction
// selection may have handled the call, input args, etc.
unsigned RemainingNow = std::distance(Begin, BI);
NumFastIselFailures += NumFastIselRemaining - RemainingNow;
NumFastIselRemaining = RemainingNow;
continue;
}
bool ShouldAbort = EnableFastISelAbort;
if (EnableFastISelVerbose || EnableFastISelAbort) {
if (isa<TerminatorInst>(Inst)) {
// Use a different message for terminator misses.
dbgs() << "FastISel missed terminator: ";
// Don't abort unless for terminator unless the level is really high
ShouldAbort = (EnableFastISelAbort > 2);
} else {
dbgs() << "FastISel miss: ";
}
Inst->dump();
}
if (ShouldAbort)
// FastISel selector couldn't handle something and bailed.
// For the purpose of debugging, just abort.
report_fatal_error("FastISel didn't select the entire block");
NumFastIselFailures += NumFastIselRemaining;
break;
}
FastIS->recomputeInsertPt();
} else {
// Lower any arguments needed in this block if this is the entry block.
if (LLVMBB == &Fn.getEntryBlock()) {
++NumEntryBlocks;
LowerArguments(Fn);
}
}
if (Begin != BI)
++NumDAGBlocks;
else
++NumFastIselBlocks;
if (Begin != BI) {
// Run SelectionDAG instruction selection on the remainder of the block
// not handled by FastISel. If FastISel is not run, this is the entire
// block.
bool HadTailCall;
SelectBasicBlock(Begin, BI, HadTailCall);
}
FinishBasicBlock();
FuncInfo->PHINodesToUpdate.clear();
}
delete FastIS;
SDB->clearDanglingDebugInfo();
SDB->SPDescriptor.resetPerFunctionState();
}
/// Given that the input MI is before a partial terminator sequence TSeq, return
/// true if M + TSeq also a partial terminator sequence.
///
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
/// lowering copy vregs into physical registers, which are then passed into
/// terminator instructors so we can satisfy ABI constraints. A partial
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
/// may be the whole terminator sequence).
static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
// If we do not have a copy or an implicit def, we return true if and only if
// MI is a debug value.
if (!MI->isCopy() && !MI->isImplicitDef())
// Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
// physical registers if there is debug info associated with the terminator
// of our mbb. We want to include said debug info in our terminator
// sequence, so we return true in that case.
return MI->isDebugValue();
// We have left the terminator sequence if we are not doing one of the
// following:
//
// 1. Copying a vreg into a physical register.
// 2. Copying a vreg into a vreg.
// 3. Defining a register via an implicit def.
// OPI should always be a register definition...
MachineInstr::const_mop_iterator OPI = MI->operands_begin();
if (!OPI->isReg() || !OPI->isDef())
return false;
// Defining any register via an implicit def is always ok.
if (MI->isImplicitDef())
return true;
// Grab the copy source...
MachineInstr::const_mop_iterator OPI2 = OPI;
++OPI2;
assert(OPI2 != MI->operands_end()
&& "Should have a copy implying we should have 2 arguments.");
// Make sure that the copy dest is not a vreg when the copy source is a
// physical register.
if (!OPI2->isReg() ||
(!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
return false;
return true;
}
/// Find the split point at which to splice the end of BB into its success stack
/// protector check machine basic block.
///
/// On many platforms, due to ABI constraints, terminators, even before register
/// allocation, use physical registers. This creates an issue for us since
/// physical registers at this point can not travel across basic
/// blocks. Luckily, selectiondag always moves physical registers into vregs
/// when they enter functions and moves them through a sequence of copies back
/// into the physical registers right before the terminator creating a
/// ``Terminator Sequence''. This function is searching for the beginning of the
/// terminator sequence so that we can ensure that we splice off not just the
/// terminator, but additionally the copies that move the vregs into the
/// physical registers.
static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
//
if (SplitPoint == BB->begin())
return SplitPoint;
MachineBasicBlock::iterator Start = BB->begin();
MachineBasicBlock::iterator Previous = SplitPoint;
--Previous;
while (MIIsInTerminatorSequence(Previous)) {
SplitPoint = Previous;
if (Previous == Start)
break;
--Previous;
}
return SplitPoint;
}
void
SelectionDAGISel::FinishBasicBlock() {
DEBUG(dbgs() << "Total amount of phi nodes to update: "
<< FuncInfo->PHINodesToUpdate.size() << "\n";
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
dbgs() << "Node " << i << " : ("
<< FuncInfo->PHINodesToUpdate[i].first
<< ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
// Next, now that we know what the last MBB the LLVM BB expanded is, update
// PHI nodes in successors.
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!");
if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
continue;
PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
}
// Handle stack protector.
if (SDB->SPDescriptor.shouldEmitStackProtector()) {
MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
// Find the split point to split the parent mbb. At the same time copy all
// physical registers used in the tail of parent mbb into virtual registers
// before the split point and back into physical registers after the split
// point. This prevents us needing to deal with Live-ins and many other
// register allocation issues caused by us splitting the parent mbb. The
// register allocator will clean up said virtual copies later on.
MachineBasicBlock::iterator SplitPoint =
FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
// Splice the terminator of ParentMBB into SuccessMBB.
SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
SplitPoint,
ParentMBB->end());
// Add compare/jump on neq/jump to the parent BB.
FuncInfo->MBB = ParentMBB;
FuncInfo->InsertPt = ParentMBB->end();
SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// CodeGen Failure MBB if we have not codegened it yet.
MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
if (!FailureMBB->size()) {
FuncInfo->MBB = FailureMBB;
FuncInfo->InsertPt = FailureMBB->end();
SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
// Clear the Per-BB State.
SDB->SPDescriptor.resetPerBBState();
}
for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
// Lower header first, if it wasn't already lowered
if (!SDB->BitTestCases[i].Emitted) {
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->BitTestCases[i].Parent;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
BranchProbability UnhandledProb = SDB->BitTestCases[i].Prob;
for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
UnhandledProb -= SDB->BitTestCases[i].Cases[j].ExtraProb;
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
// If all cases cover a contiguous range, it is not necessary to jump to
// the default block after the last bit test fails. This is because the
// range check during bit test header creation has guaranteed that every
// case here doesn't go outside the range.
MachineBasicBlock *NextMBB;
if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
NextMBB = SDB->BitTestCases[i].Cases[j + 1].TargetBB;
else if (j + 1 != ej)
NextMBB = SDB->BitTestCases[i].Cases[j + 1].ThisBB;
else
NextMBB = SDB->BitTestCases[i].Default;
SDB->visitBitTestCase(SDB->BitTestCases[i],
NextMBB,
UnhandledProb,
SDB->BitTestCases[i].Reg,
SDB->BitTestCases[i].Cases[j],
FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
break;
}
// Update PHI Nodes
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
pi != pe; ++pi) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!");
// This is "default" BB. We have two jumps to it. From "header" BB and
// from last "case" BB.
if (PHIBB == SDB->BitTestCases[i].Default)
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
.addMBB(SDB->BitTestCases[i].Parent)
.addReg(FuncInfo->PHINodesToUpdate[pi].second)
.addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
// One of "cases" BB.
for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
j != ej; ++j) {
MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
if (cBB->isSuccessor(PHIBB))
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
}
}
}
SDB->BitTestCases.clear();
// If the JumpTable record is filled in, then we need to emit a jump table.
// Updating the PHI nodes is tricky in this case, since we need to determine
// whether the PHI is a successor of the range check MBB or the jump table MBB
for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
// Lower header first, if it wasn't already lowered
if (!SDB->JTCases[i].first.Emitted) {
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->JTCases[i].second.MBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
SDB->visitJumpTable(SDB->JTCases[i].second);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// Update PHI Nodes
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
pi != pe; ++pi) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!");
// "default" BB. We can go there only from header BB.
if (PHIBB == SDB->JTCases[i].second.Default)
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
.addMBB(SDB->JTCases[i].first.HeaderBB);
// JT BB. Just iterate over successors here
if (FuncInfo->MBB->isSuccessor(PHIBB))
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
}
}
SDB->JTCases.clear();
// If we generated any switch lowering information, build and codegen any
// additional DAGs necessary.
for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Determine the unique successors.
SmallVector<MachineBasicBlock *, 2> Succs;
Succs.push_back(SDB->SwitchCases[i].TrueBB);
if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
Succs.push_back(SDB->SwitchCases[i].FalseBB);
// Emit the code. Note that this could result in FuncInfo->MBB being split.
SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// Remember the last block, now that any splitting is done, for use in
// populating PHI nodes in successors.
MachineBasicBlock *ThisBB = FuncInfo->MBB;
// Handle any PHI nodes in successors of this chunk, as if we were coming
// from the original BB before switch expansion. Note that PHI nodes can
// occur multiple times in PHINodesToUpdate. We have to be very careful to
// handle them the right number of times.
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
FuncInfo->MBB = Succs[i];
FuncInfo->InsertPt = FuncInfo->MBB->end();
// FuncInfo->MBB may have been removed from the CFG if a branch was
// constant folded.
if (ThisBB->isSuccessor(FuncInfo->MBB)) {
for (MachineBasicBlock::iterator
MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
MachineInstrBuilder PHI(*MF, MBBI);
// This value for this PHI node is recorded in PHINodesToUpdate.
for (unsigned pn = 0; ; ++pn) {
assert(pn != FuncInfo->PHINodesToUpdate.size() &&
"Didn't find PHI entry!");
if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
break;
}
}
}
}
}
}
SDB->SwitchCases.clear();
}
/// Create the scheduler. If a specific scheduler was specified
/// via the SchedulerRegistry, use it, otherwise select the
/// one preferred by the target.
///
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
return ISHeuristic(this, OptLevel);
}
//===----------------------------------------------------------------------===//
// Helper functions used by the generated instruction selector.
//===----------------------------------------------------------------------===//
// Calls to these methods are generated by tblgen.
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
const APInt &ActualMask = RHS->getAPIntValue();
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask.intersects(~DesiredMask))
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
APInt NeededMask = DesiredMask & ~ActualMask;
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
const APInt &ActualMask = RHS->getAPIntValue();
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask.intersects(~DesiredMask))
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
APInt NeededMask = DesiredMask & ~ActualMask;
APInt KnownZero, KnownOne;
CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
// If all the missing bits in the or are already known to be set, match!
if ((NeededMask & KnownOne) == NeededMask)
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
/// by tblgen. Others should not call it.
void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) {
std::vector<SDValue> InOps;
std::swap(InOps, Ops);
Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
if (InOps[e-1].getValueType() == MVT::Glue)
--e; // Don't process a glue operand if it is here.
while (i != e) {
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
if (!InlineAsm::isMemKind(Flags)) {
// Just skip over this operand, copying the operands verbatim.
Ops.insert(Ops.end(), InOps.begin()+i,
InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
i += InlineAsm::getNumOperandRegisters(Flags) + 1;
} else {
assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
"Memory operand with multiple values?");
unsigned TiedToOperand;
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
// We need the constraint ID from the operand this is tied to.
unsigned CurOp = InlineAsm::Op_FirstOperand;
Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
for (; TiedToOperand; --TiedToOperand) {
CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
}
}
// Otherwise, this is a memory operand. Ask the target to select it.
std::vector<SDValue> SelOps;
if (SelectInlineAsmMemoryOperand(InOps[i+1],
InlineAsm::getMemoryConstraintID(Flags),
SelOps))
report_fatal_error("Could not match memory address. Inline asm"
" failure!");
// Add this to the output node.
unsigned NewFlags =
InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
i += 2;
}
}
// Add the glue input back if present.
if (e != InOps.size())
Ops.push_back(InOps.back());
}
/// findGlueUse - Return use of MVT::Glue value produced by the specified
/// SDNode.
///
static SDNode *findGlueUse(SDNode *N) {
unsigned FlagResNo = N->getNumValues()-1;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDUse &Use = I.getUse();
if (Use.getResNo() == FlagResNo)
return Use.getUser();
}
return nullptr;
}
/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
/// This function recursively traverses up the operand chain, ignoring
/// certain nodes.
static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
bool IgnoreChains) {
// The NodeID's are given uniques ID's where a node ID is guaranteed to be
// greater than all of its (recursive) operands. If we scan to a point where
// 'use' is smaller than the node we're scanning for, then we know we will
// never find it.
//
// The Use may be -1 (unassigned) if it is a newly allocated node. This can
// happen because we scan down to newly selected nodes in the case of glue
// uses.
if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
return false;
// Don't revisit nodes if we already scanned it and didn't fail, we know we
// won't fail if we scan it again.
if (!Visited.insert(Use).second)
return false;
for (const SDValue &Op : Use->op_values()) {
// Ignore chain uses, they are validated by HandleMergeInputChains.
if (Op.getValueType() == MVT::Other && IgnoreChains)
continue;
SDNode *N = Op.getNode();
if (N == Def) {
if (Use == ImmedUse || Use == Root)
continue; // We are not looking for immediate use.
assert(N != Root);
return true;
}
// Traverse up the operand chain.
if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
return true;
}
return false;
}
/// IsProfitableToFold - Returns true if it's profitable to fold the specific
/// operand node N of U during instruction selection that starts at Root.
bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
SDNode *Root) const {
if (OptLevel == CodeGenOpt::None) return false;
return N.hasOneUse();
}
/// IsLegalToFold - Returns true if the specific operand node N of
/// U can be folded during instruction selection that starts at Root.
bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
CodeGenOpt::Level OptLevel,
bool IgnoreChains) {
if (OptLevel == CodeGenOpt::None) return false;
// If Root use can somehow reach N through a path that that doesn't contain
// U then folding N would create a cycle. e.g. In the following
// diagram, Root can reach N through X. If N is folded into into Root, then
// X is both a predecessor and a successor of U.
//
// [N*] //
// ^ ^ //
// / \ //
// [U*] [X]? //
// ^ ^ //
// \ / //
// \ / //
// [Root*] //
//
// * indicates nodes to be folded together.
//
// If Root produces glue, then it gets (even more) interesting. Since it
// will be "glued" together with its glue use in the scheduler, we need to
// check if it might reach N.
//
// [N*] //
// ^ ^ //
// / \ //
// [U*] [X]? //
// ^ ^ //
// \ \ //
// \ | //
// [Root*] | //
// ^ | //
// f | //
// | / //
// [Y] / //
// ^ / //
// f / //
// | / //
// [GU] //
//
// If GU (glue use) indirectly reaches N (the load), and Root folds N
// (call it Fold), then X is a predecessor of GU and a successor of
// Fold. But since Fold and GU are glued together, this will create
// a cycle in the scheduling graph.
// If the node has glue, walk down the graph to the "lowest" node in the
// glueged set.
EVT VT = Root->getValueType(Root->getNumValues()-1);
while (VT == MVT::Glue) {
SDNode *GU = findGlueUse(Root);
if (!GU)
break;
Root = GU;
VT = Root->getValueType(Root->getNumValues()-1);
// If our query node has a glue result with a use, we've walked up it. If
// the user (which has already been selected) has a chain or indirectly uses
// the chain, our WalkChainUsers predicate will not consider it. Because of
// this, we cannot ignore chains in this predicate.
IgnoreChains = false;
}
SmallPtrSet<SDNode*, 16> Visited;
return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
}
SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
SDLoc DL(N);
std::vector<SDValue> Ops(N->op_begin(), N->op_end());
SelectInlineAsmMemoryOperands(Ops, DL);
const EVT VTs[] = {MVT::Other, MVT::Glue};
SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
New->setNodeId(-1);
return New.getNode();
}
SDNode
*SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
SDLoc dl(Op);
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
unsigned Reg =
TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
*CurDAG);
SDValue New = CurDAG->getCopyFromReg(
Op->getOperand(0), dl, Reg, Op->getValueType(0));
New->setNodeId(-1);
return New.getNode();
}
SDNode
*SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
SDLoc dl(Op);
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
Op->getOperand(2).getValueType(),
*CurDAG);
SDValue New = CurDAG->getCopyToReg(
Op->getOperand(0), dl, Reg, Op->getOperand(2));
New->setNodeId(-1);
return New.getNode();
}
SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
}
/// GetVBR - decode a vbr encoding whose top bit is set.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
assert(Val >= 128 && "Not a VBR");
Val &= 127; // Remove first vbr bit.
unsigned Shift = 7;
uint64_t NextBits;
do {
NextBits = MatcherTable[Idx++];
Val |= (NextBits&127) << Shift;
Shift += 7;
} while (NextBits & 128);
return Val;
}
/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
/// interior glue and chain results to use the new glue and chain results.
void SelectionDAGISel::
UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
const SmallVectorImpl<SDNode*> &ChainNodesMatched,
SDValue InputGlue,
const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
bool isMorphNodeTo) {
SmallVector<SDNode*, 4> NowDeadNodes;
// Now that all the normal results are replaced, we replace the chain and
// glue results if present.
if (!ChainNodesMatched.empty()) {
assert(InputChain.getNode() &&
"Matched input chains but didn't produce a chain");
// Loop over all of the nodes we matched that produced a chain result.
// Replace all the chain results with the final chain we ended up with.
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
SDNode *ChainNode = ChainNodesMatched[i];
// If this node was already deleted, don't look at it.
if (ChainNode->getOpcode() == ISD::DELETED_NODE)
continue;
// Don't replace the results of the root node if we're doing a
// MorphNodeTo.
if (ChainNode == NodeToMatch && isMorphNodeTo)
continue;
SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
if (ChainVal.getValueType() == MVT::Glue)
ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
// If the node became dead and we haven't already seen it, delete it.
if (ChainNode->use_empty() &&
!std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
NowDeadNodes.push_back(ChainNode);
}
}
// If the result produces glue, update any glue results in the matched
// pattern with the glue result.
if (InputGlue.getNode()) {
// Handle any interior nodes explicitly marked.
for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
SDNode *FRN = GlueResultNodesMatched[i];
// If this node was already deleted, don't look at it.
if (FRN->getOpcode() == ISD::DELETED_NODE)
continue;
assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
"Doesn't have a glue result");
CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
InputGlue);
// If the node became dead and we haven't already seen it, delete it.
if (FRN->use_empty() &&
!std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
NowDeadNodes.push_back(FRN);
}
}
if (!NowDeadNodes.empty())
CurDAG->RemoveDeadNodes(NowDeadNodes);
DEBUG(dbgs() << "ISEL: Match complete!\n");
}
enum ChainResult {
CR_Simple,
CR_InducesCycle,
CR_LeadsToInteriorNode
};
/// WalkChainUsers - Walk down the users of the specified chained node that is
/// part of the pattern we're matching, looking at all of the users we find.
/// This determines whether something is an interior node, whether we have a
/// non-pattern node in between two pattern nodes (which prevent folding because
/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
/// between pattern nodes (in which case the TF becomes part of the pattern).
///
/// The walk we do here is guaranteed to be small because we quickly get down to
/// already selected nodes "below" us.
static ChainResult
WalkChainUsers(const SDNode *ChainedNode,
SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
ChainResult Result = CR_Simple;
for (SDNode::use_iterator UI = ChainedNode->use_begin(),
E = ChainedNode->use_end(); UI != E; ++UI) {
// Make sure the use is of the chain, not some other value we produce.
if (UI.getUse().getValueType() != MVT::Other) continue;
SDNode *User = *UI;
if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
continue;
// If we see an already-selected machine node, then we've gone beyond the
// pattern that we're selecting down into the already selected chunk of the
// DAG.
unsigned UserOpcode = User->getOpcode();
if (User->isMachineOpcode() ||
UserOpcode == ISD::CopyToReg ||
UserOpcode == ISD::CopyFromReg ||
UserOpcode == ISD::INLINEASM ||
UserOpcode == ISD::EH_LABEL ||
UserOpcode == ISD::LIFETIME_START ||
UserOpcode == ISD::LIFETIME_END) {
// If their node ID got reset to -1 then they've already been selected.
// Treat them like a MachineOpcode.
if (User->getNodeId() == -1)
continue;
}
// If we have a TokenFactor, we handle it specially.
if (User->getOpcode() != ISD::TokenFactor) {
// If the node isn't a token factor and isn't part of our pattern, then it
// must be a random chained node in between two nodes we're selecting.
// This happens when we have something like:
// x = load ptr
// call
// y = x+4
// store y -> ptr
// Because we structurally match the load/store as a read/modify/write,
// but the call is chained between them. We cannot fold in this case
// because it would induce a cycle in the graph.
if (!std::count(ChainedNodesInPattern.begin(),
ChainedNodesInPattern.end(), User))
return CR_InducesCycle;
// Otherwise we found a node that is part of our pattern. For example in:
// x = load ptr
// y = x+4
// store y -> ptr
// This would happen when we're scanning down from the load and see the
// store as a user. Record that there is a use of ChainedNode that is
// part of the pattern and keep scanning uses.
Result = CR_LeadsToInteriorNode;
InteriorChainedNodes.push_back(User);
continue;
}
// If we found a TokenFactor, there are two cases to consider: first if the
// TokenFactor is just hanging "below" the pattern we're matching (i.e. no
// uses of the TF are in our pattern) we just want to ignore it. Second,
// the TokenFactor can be sandwiched in between two chained nodes, like so:
// [Load chain]
// ^
// |
// [Load]
// ^ ^
// | \ DAG's like cheese
// / \ do you?
// / |
// [TokenFactor] [Op]
// ^ ^
// | |
// \ /
// \ /
// [Store]
//
// In this case, the TokenFactor becomes part of our match and we rewrite it
// as a new TokenFactor.
//
// To distinguish these two cases, do a recursive walk down the uses.
switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
case CR_Simple:
// If the uses of the TokenFactor are just already-selected nodes, ignore
// it, it is "below" our pattern.
continue;
case CR_InducesCycle:
// If the uses of the TokenFactor lead to nodes that are not part of our
// pattern that are not selected, folding would turn this into a cycle,
// bail out now.
return CR_InducesCycle;
case CR_LeadsToInteriorNode:
break; // Otherwise, keep processing.
}
// Okay, we know we're in the interesting interior case. The TokenFactor
// is now going to be considered part of the pattern so that we rewrite its
// uses (it may have uses that are not part of the pattern) with the
// ultimate chain result of the generated code. We will also add its chain
// inputs as inputs to the ultimate TokenFactor we create.
Result = CR_LeadsToInteriorNode;
ChainedNodesInPattern.push_back(User);
InteriorChainedNodes.push_back(User);
continue;
}
return Result;
}
/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
/// operation for when the pattern matched at least one node with a chains. The
/// input vector contains a list of all of the chained nodes that we match. We
/// must determine if this is a valid thing to cover (i.e. matching it won't
/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
/// be used as the input node chain for the generated nodes.
static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
SelectionDAG *CurDAG) {
// Walk all of the chained nodes we've matched, recursively scanning down the
// users of the chain result. This adds any TokenFactor nodes that are caught
// in between chained nodes to the chained and interior nodes list.
SmallVector<SDNode*, 3> InteriorChainedNodes;
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
InteriorChainedNodes) == CR_InducesCycle)
return SDValue(); // Would induce a cycle.
}
// Okay, we have walked all the matched nodes and collected TokenFactor nodes
// that we are interested in. Form our input TokenFactor node.
SmallVector<SDValue, 3> InputChains;
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
// Add the input chain of this node to the InputChains list (which will be
// the operands of the generated TokenFactor) if it's not an interior node.
SDNode *N = ChainNodesMatched[i];
if (N->getOpcode() != ISD::TokenFactor) {
if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
continue;
// Otherwise, add the input chain.
SDValue InChain = ChainNodesMatched[i]->getOperand(0);
assert(InChain.getValueType() == MVT::Other && "Not a chain");
InputChains.push_back(InChain);
continue;
}
// If we have a token factor, we want to add all inputs of the token factor
// that are not part of the pattern we're matching.
for (const SDValue &Op : N->op_values()) {
if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
Op.getNode()))
InputChains.push_back(Op);
}
}
if (InputChains.size() == 1)
return InputChains[0];
return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
MVT::Other, InputChains);
}
/// MorphNode - Handle morphing a node in place for the selector.
SDNode *SelectionDAGISel::
MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
// It is possible we're using MorphNodeTo to replace a node with no
// normal results with one that has a normal result (or we could be
// adding a chain) and the input could have glue and chains as well.
// In this case we need to shift the operands down.
// FIXME: This is a horrible hack and broken in obscure cases, no worse
// than the old isel though.
int OldGlueResultNo = -1, OldChainResultNo = -1;
unsigned NTMNumResults = Node->getNumValues();
if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
OldGlueResultNo = NTMNumResults-1;
if (NTMNumResults != 1 &&
Node->getValueType(NTMNumResults-2) == MVT::Other)
OldChainResultNo = NTMNumResults-2;
} else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
OldChainResultNo = NTMNumResults-1;
// Call the underlying SelectionDAG routine to do the transmogrification. Note
// that this deletes operands of the old node that become dead.
SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
// MorphNodeTo can operate in two ways: if an existing node with the
// specified operands exists, it can just return it. Otherwise, it
// updates the node in place to have the requested operands.
if (Res == Node) {
// If we updated the node in place, reset the node ID. To the isel,
// this should be just like a newly allocated machine node.
Res->setNodeId(-1);
}
unsigned ResNumResults = Res->getNumValues();
// Move the glue if needed.
if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
(unsigned)OldGlueResultNo != ResNumResults-1)
CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
SDValue(Res, ResNumResults-1));
if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
--ResNumResults;
// Move the chain reference if needed.
if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
(unsigned)OldChainResultNo != ResNumResults-1)
CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
SDValue(Res, ResNumResults-1));
// Otherwise, no replacement happened because the node already exists. Replace
// Uses of the old node with the new one.
if (Res != Node)
CurDAG->ReplaceAllUsesWith(Node, Res);
return Res;
}
/// CheckSame - Implements OP_CheckSame.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N,
const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
// Accept if it is exactly the same as a previously recorded node.
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
return N == RecordedNodes[RecNo].first;
}
/// CheckChildSame - Implements OP_CheckChildXSame.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N,
const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
unsigned ChildNo) {
if (ChildNo >= N.getNumOperands())
return false; // Match fails if out of range child #.
return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
RecordedNodes);
}
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
const SelectionDAGISel &SDISel) {
return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
}
/// CheckNodePredicate - Implements OP_CheckNodePredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
const SelectionDAGISel &SDISel, SDNode *N) {
return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDNode *N) {
uint16_t Opc = MatcherTable[MatcherIndex++];
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
return N->getOpcode() == Opc;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
const TargetLowering *TLI, const DataLayout &DL) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (N.getValueType() == VT) return true;
// Handle the case when VT is iPTR.
return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const TargetLowering *TLI, const DataLayout &DL,
unsigned ChildNo) {
if (ChildNo >= N.getNumOperands())
return false; // Match fails if out of range child #.
return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
DL);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N) {
return cast<CondCodeSDNode>(N)->get() ==
(ISD::CondCode)MatcherTable[MatcherIndex++];
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (cast<VTSDNode>(N)->getVT() == VT)
return true;
// Handle the case when VT is iPTR.
return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N) {
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
return C && C->getSExtValue() == Val;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, unsigned ChildNo) {
if (ChildNo >= N.getNumOperands())
return false; // Match fails if out of range child #.
return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const SelectionDAGISel &SDISel) {
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
if (N->getOpcode() != ISD::AND) return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const SelectionDAGISel &SDISel) {
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
if (N->getOpcode() != ISD::OR) return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
}
/// IsPredicateKnownToFail - If we know how and can do so without pushing a
/// scope, evaluate the current node. If the current predicate is known to
/// fail, set Result=true and return anything. If the current predicate is
/// known to pass, set Result=false and return the MatcherIndex to continue
/// with. If the current predicate is unknown, set Result=false and return the
/// MatcherIndex to continue with.
static unsigned IsPredicateKnownToFail(const unsigned char *Table,
unsigned Index, SDValue N,
bool &Result,
const SelectionDAGISel &SDISel,
SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
switch (Table[Index++]) {
default:
Result = false;
return Index-1; // Could not evaluate this predicate.
case SelectionDAGISel::OPC_CheckSame:
Result = !::CheckSame(Table, Index, N, RecordedNodes);
return Index;
case SelectionDAGISel::OPC_CheckChild0Same:
case SelectionDAGISel::OPC_CheckChild1Same:
case SelectionDAGISel::OPC_CheckChild2Same:
case SelectionDAGISel::OPC_CheckChild3Same:
Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
return Index;
case SelectionDAGISel::OPC_CheckPatternPredicate:
Result = !::CheckPatternPredicate(Table, Index, SDISel);
return Index;
case SelectionDAGISel::OPC_CheckPredicate:
Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
return Index;
case SelectionDAGISel::OPC_CheckOpcode:
Result = !::CheckOpcode(Table, Index, N.getNode());
return Index;
case SelectionDAGISel::OPC_CheckType:
Result = !::CheckType(Table, Index, N, SDISel.TLI,
SDISel.CurDAG->getDataLayout());
return Index;
case SelectionDAGISel::OPC_CheckChild0Type:
case SelectionDAGISel::OPC_CheckChild1Type:
case SelectionDAGISel::OPC_CheckChild2Type:
case SelectionDAGISel::OPC_CheckChild3Type:
case SelectionDAGISel::OPC_CheckChild4Type:
case SelectionDAGISel::OPC_CheckChild5Type:
case SelectionDAGISel::OPC_CheckChild6Type:
case SelectionDAGISel::OPC_CheckChild7Type:
Result = !::CheckChildType(
Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
return Index;
case SelectionDAGISel::OPC_CheckCondCode:
Result = !::CheckCondCode(Table, Index, N);
return Index;
case SelectionDAGISel::OPC_CheckValueType:
Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
SDISel.CurDAG->getDataLayout());
return Index;
case SelectionDAGISel::OPC_CheckInteger:
Result = !::CheckInteger(Table, Index, N);
return Index;
case SelectionDAGISel::OPC_CheckChild0Integer:
case SelectionDAGISel::OPC_CheckChild1Integer:
case SelectionDAGISel::OPC_CheckChild2Integer:
case SelectionDAGISel::OPC_CheckChild3Integer:
case SelectionDAGISel::OPC_CheckChild4Integer:
Result = !::CheckChildInteger(Table, Index, N,
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
return Index;
case SelectionDAGISel::OPC_CheckAndImm:
Result = !::CheckAndImm(Table, Index, N, SDISel);
return Index;
case SelectionDAGISel::OPC_CheckOrImm:
Result = !::CheckOrImm(Table, Index, N, SDISel);
return Index;
}
}
namespace {
struct MatchScope {
/// FailIndex - If this match fails, this is the index to continue with.
unsigned FailIndex;
/// NodeStack - The node stack when the scope was formed.
SmallVector<SDValue, 4> NodeStack;
/// NumRecordedNodes - The number of recorded nodes when the scope was formed.
unsigned NumRecordedNodes;
/// NumMatchedMemRefs - The number of matched memref entries.
unsigned NumMatchedMemRefs;
/// InputChain/InputGlue - The current chain/glue
SDValue InputChain, InputGlue;
/// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
bool HasChainNodesMatched, HasGlueResultNodesMatched;
};
/// \\brief A DAG update listener to keep the matching state
/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
/// change the DAG while matching. X86 addressing mode matcher is an example
/// for this.
class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
{
SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
SmallVectorImpl<MatchScope> &MatchScopes;
public:
MatchStateUpdater(SelectionDAG &DAG,
SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
SmallVectorImpl<MatchScope> &MS) :
SelectionDAG::DAGUpdateListener(DAG),
RecordedNodes(RN), MatchScopes(MS) { }
void NodeDeleted(SDNode *N, SDNode *E) override {
// Some early-returns here to avoid the search if we deleted the node or
// if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
// do, so it's unnecessary to update matching state at that point).
// Neither of these can occur currently because we only install this
// update listener during matching a complex patterns.
if (!E || E->isMachineOpcode())
return;
// Performing linear search here does not matter because we almost never
// run this code. You'd have to have a CSE during complex pattern
// matching.
for (auto &I : RecordedNodes)
if (I.first.getNode() == N)
I.first.setNode(E);
for (auto &I : MatchScopes)
for (auto &J : I.NodeStack)
if (J.getNode() == N)
J.setNode(E);
}
};
}
SDNode *SelectionDAGISel::
SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
unsigned TableSize) {
// FIXME: Should these even be selected? Handle these cases in the caller?
switch (NodeToMatch->getOpcode()) {
default:
break;
case ISD::EntryToken: // These nodes remain the same.
case ISD::BasicBlock:
case ISD::Register:
case ISD::RegisterMask:
case ISD::HANDLENODE:
case ISD::MDNODE_SDNODE:
case ISD::TargetConstant:
case ISD::TargetConstantFP:
case ISD::TargetConstantPool:
case ISD::TargetFrameIndex:
case ISD::TargetExternalSymbol:
case ISD::MCSymbol:
case ISD::TargetBlockAddress:
case ISD::TargetJumpTable:
case ISD::TargetGlobalTLSAddress:
case ISD::TargetGlobalAddress:
case ISD::TokenFactor:
case ISD::CopyFromReg:
case ISD::CopyToReg:
case ISD::EH_LABEL:
case ISD::LIFETIME_START:
case ISD::LIFETIME_END:
NodeToMatch->setNodeId(-1); // Mark selected.
return nullptr;
case ISD::AssertSext:
case ISD::AssertZext:
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
NodeToMatch->getOperand(0));
return nullptr;
case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch);
case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch);
case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
}
assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
// Set up the node stack with NodeToMatch as the only node on the stack.
SmallVector<SDValue, 8> NodeStack;
SDValue N = SDValue(NodeToMatch, 0);
NodeStack.push_back(N);
// MatchScopes - Scopes used when matching, if a match failure happens, this
// indicates where to continue checking.
SmallVector<MatchScope, 8> MatchScopes;
// RecordedNodes - This is the set of nodes that have been recorded by the
// state machine. The second value is the parent of the node, or null if the
// root is recorded.
SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
// MatchedMemRefs - This is the set of MemRef's we've seen in the input
// pattern.
SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
// These are the current input chain and glue for use when generating nodes.
// Various Emit operations change these. For example, emitting a copytoreg
// uses and updates these.
SDValue InputChain, InputGlue;
// ChainNodesMatched - If a pattern matches nodes that have input/output
// chains, the OPC_EmitMergeInputChains operation is emitted which indicates
// which ones they are. The result is captured into this list so that we can
// update the chain results when the pattern is complete.
SmallVector<SDNode*, 3> ChainNodesMatched;
SmallVector<SDNode*, 3> GlueResultNodesMatched;
DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
NodeToMatch->dump(CurDAG);
dbgs() << '\n');
// Determine where to start the interpreter. Normally we start at opcode #0,
// but if the state machine starts with an OPC_SwitchOpcode, then we
// accelerate the first lookup (which is guaranteed to be hot) with the
// OpcodeOffset table.
unsigned MatcherIndex = 0;
if (!OpcodeOffset.empty()) {
// Already computed the OpcodeOffset table, just index into it.
if (N.getOpcode() < OpcodeOffset.size())
MatcherIndex = OpcodeOffset[N.getOpcode()];
DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
} else if (MatcherTable[0] == OPC_SwitchOpcode) {
// Otherwise, the table isn't computed, but the state machine does start
// with an OPC_SwitchOpcode instruction. Populate the table now, since this
// is the first time we're selecting an instruction.
unsigned Idx = 1;
while (1) {
// Get the size of this case.
unsigned CaseSize = MatcherTable[Idx++];
if (CaseSize & 128)
CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
if (CaseSize == 0) break;
// Get the opcode, add the index to the table.
uint16_t Opc = MatcherTable[Idx++];
Opc |= (unsigned short)MatcherTable[Idx++] << 8;
if (Opc >= OpcodeOffset.size())
OpcodeOffset.resize((Opc+1)*2);
OpcodeOffset[Opc] = Idx;
Idx += CaseSize;
}
// Okay, do the lookup for the first opcode.
if (N.getOpcode() < OpcodeOffset.size())
MatcherIndex = OpcodeOffset[N.getOpcode()];
}
while (1) {
assert(MatcherIndex < TableSize && "Invalid index");
#ifndef NDEBUG
unsigned CurrentOpcodeIndex = MatcherIndex;
#endif
BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
switch (Opcode) {
case OPC_Scope: {
// Okay, the semantics of this operation are that we should push a scope
// then evaluate the first child. However, pushing a scope only to have
// the first check fail (which then pops it) is inefficient. If we can
// determine immediately that the first check (or first several) will
// immediately fail, don't even bother pushing a scope for them.
unsigned FailIndex;
while (1) {
unsigned NumToSkip = MatcherTable[MatcherIndex++];
if (NumToSkip & 128)
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
// Found the end of the scope with no match.
if (NumToSkip == 0) {
FailIndex = 0;
break;
}
FailIndex = MatcherIndex+NumToSkip;
unsigned MatcherIndexOfPredicate = MatcherIndex;
(void)MatcherIndexOfPredicate; // silence warning.
// If we can't evaluate this predicate without pushing a scope (e.g. if
// it is a 'MoveParent') or if the predicate succeeds on this node, we
// push the scope and evaluate the full predicate chain.
bool Result;
MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
Result, *this, RecordedNodes);
if (!Result)
break;
DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at "
<< "index " << MatcherIndexOfPredicate
<< ", continuing at " << FailIndex << "\n");
++NumDAGIselRetries;
// Otherwise, we know that this case of the Scope is guaranteed to fail,
// move to the next case.
MatcherIndex = FailIndex;
}
// If the whole scope failed to match, bail.
if (FailIndex == 0) break;
// Push a MatchScope which indicates where to go if the first child fails
// to match.
MatchScope NewEntry;
NewEntry.FailIndex = FailIndex;
NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
NewEntry.NumRecordedNodes = RecordedNodes.size();
NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
NewEntry.InputChain = InputChain;
NewEntry.InputGlue = InputGlue;
NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
MatchScopes.push_back(NewEntry);
continue;
}
case OPC_RecordNode: {
// Remember this node, it may end up being an operand in the pattern.
SDNode *Parent = nullptr;
if (NodeStack.size() > 1)
Parent = NodeStack[NodeStack.size()-2].getNode();
RecordedNodes.push_back(std::make_pair(N, Parent));
continue;
}
case OPC_RecordChild0: case OPC_RecordChild1:
case OPC_RecordChild2: case OPC_RecordChild3:
case OPC_RecordChild4: case OPC_RecordChild5:
case OPC_RecordChild6: case OPC_RecordChild7: {
unsigned ChildNo = Opcode-OPC_RecordChild0;
if (ChildNo >= N.getNumOperands())
break; // Match fails if out of range child #.
RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
N.getNode()));
continue;
}
case OPC_RecordMemRef:
MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
continue;
case OPC_CaptureGlueInput:
// If the current node has an input glue, capture it in InputGlue.
if (N->getNumOperands() != 0 &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
InputGlue = N->getOperand(N->getNumOperands()-1);
continue;
case OPC_MoveChild: {
unsigned ChildNo = MatcherTable[MatcherIndex++];
if (ChildNo >= N.getNumOperands())
break; // Match fails if out of range child #.
N = N.getOperand(ChildNo);
NodeStack.push_back(N);
continue;
}
case OPC_MoveParent:
// Pop the current node off the NodeStack.
NodeStack.pop_back();
assert(!NodeStack.empty() && "Node stack imbalance!");
N = NodeStack.back();
continue;
case OPC_CheckSame:
if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
continue;
case OPC_CheckChild0Same: case OPC_CheckChild1Same:
case OPC_CheckChild2Same: case OPC_CheckChild3Same:
if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
Opcode-OPC_CheckChild0Same))
break;
continue;
case OPC_CheckPatternPredicate:
if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
continue;
case OPC_CheckPredicate:
if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
N.getNode()))
break;
continue;
case OPC_CheckComplexPat: {
unsigned CPNum = MatcherTable[MatcherIndex++];
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
// If target can modify DAG during matching, keep the matching state
// consistent.
std::unique_ptr<MatchStateUpdater> MSU;
if (ComplexPatternFuncMutatesDAG())
MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
MatchScopes));
if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
RecordedNodes[RecNo].first, CPNum,
RecordedNodes))
break;
continue;
}
case OPC_CheckOpcode:
if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
continue;
case OPC_CheckType:
if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
CurDAG->getDataLayout()))
break;
continue;
case OPC_SwitchOpcode: {
unsigned CurNodeOpcode = N.getOpcode();
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
unsigned CaseSize;
while (1) {
// Get the size of this case.
CaseSize = MatcherTable[MatcherIndex++];
if (CaseSize & 128)
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
if (CaseSize == 0) break;
uint16_t Opc = MatcherTable[MatcherIndex++];
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
// If the opcode matches, then we will execute this case.
if (CurNodeOpcode == Opc)
break;
// Otherwise, skip over this case.
MatcherIndex += CaseSize;
}
// If no cases matched, bail out.
if (CaseSize == 0) break;
// Otherwise, execute the case we found.
DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to " << MatcherIndex << "\n");
continue;
}
case OPC_SwitchType: {
MVT CurNodeVT = N.getSimpleValueType();
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
unsigned CaseSize;
while (1) {
// Get the size of this case.
CaseSize = MatcherTable[MatcherIndex++];
if (CaseSize & 128)
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
if (CaseSize == 0) break;
MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (CaseVT == MVT::iPTR)
CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
// If the VT matches, then we will execute this case.
if (CurNodeVT == CaseVT)
break;
// Otherwise, skip over this case.
MatcherIndex += CaseSize;
}
// If no cases matched, bail out.
if (CaseSize == 0) break;
// Otherwise, execute the case we found.
DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
<< "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
continue;
}
case OPC_CheckChild0Type: case OPC_CheckChild1Type:
case OPC_CheckChild2Type: case OPC_CheckChild3Type:
case OPC_CheckChild4Type: case OPC_CheckChild5Type:
case OPC_CheckChild6Type: case OPC_CheckChild7Type:
if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
CurDAG->getDataLayout(),
Opcode - OPC_CheckChild0Type))
break;
continue;
case OPC_CheckCondCode:
if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
continue;
case OPC_CheckValueType:
if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
CurDAG->getDataLayout()))
break;
continue;
case OPC_CheckInteger:
if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
continue;
case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
case OPC_CheckChild4Integer:
if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
Opcode-OPC_CheckChild0Integer)) break;
continue;
case OPC_CheckAndImm:
if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
continue;
case OPC_CheckOrImm:
if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
continue;
case OPC_CheckFoldableChainNode: {
assert(NodeStack.size() != 1 && "No parent node");
// Verify that all intermediate nodes between the root and this one have
// a single use.
bool HasMultipleUses = false;
for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
if (!NodeStack[i].hasOneUse()) {
HasMultipleUses = true;
break;
}
if (HasMultipleUses) break;
// Check to see that the target thinks this is profitable to fold and that
// we can fold it without inducing cycles in the graph.
if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
NodeToMatch) ||
!IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
NodeToMatch, OptLevel,
true/*We validate our own chains*/))
break;
continue;
}
case OPC_EmitInteger: {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
VT), nullptr));
continue;
}
case OPC_EmitRegister: {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
unsigned RegNo = MatcherTable[MatcherIndex++];
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
CurDAG->getRegister(RegNo, VT), nullptr));
continue;
}
case OPC_EmitRegister2: {
// For targets w/ more than 256 register names, the register enum
// values are stored in two bytes in the matcher table (just like
// opcodes).
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
unsigned RegNo = MatcherTable[MatcherIndex++];
RegNo |= MatcherTable[MatcherIndex++] << 8;
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
CurDAG->getRegister(RegNo, VT), nullptr));
continue;
}
case OPC_EmitConvertToTarget: {
// Convert from IMM/FPIMM to target version.
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
SDValue Imm = RecordedNodes[RecNo].first;
if (Imm->getOpcode() == ISD::Constant) {
const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
Imm = CurDAG->getConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType(),
true);
} else if (Imm->getOpcode() == ISD::ConstantFP) {
const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
Imm = CurDAG->getConstantFP(*Val, SDLoc(NodeToMatch),
Imm.getValueType(), true);
}
RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
continue;
}
case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
// These are space-optimized forms of OPC_EmitMergeInputChains.
assert(!InputChain.getNode() &&
"EmitMergeInputChains should be the first chain producing node");
assert(ChainNodesMatched.empty() &&
"Should only have one EmitMergeInputChains per match");
// Read all of the chained nodes.
unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
// FIXME: What if other value results of the node have uses not matched
// by this pattern?
if (ChainNodesMatched.back() != NodeToMatch &&
!RecordedNodes[RecNo].first.hasOneUse()) {
ChainNodesMatched.clear();
break;
}
// Merge the input chains if they are not intra-pattern references.
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
if (!InputChain.getNode())
break; // Failed to merge.
continue;
}
case OPC_EmitMergeInputChains: {
assert(!InputChain.getNode() &&
"EmitMergeInputChains should be the first chain producing node");
// This node gets a list of nodes we matched in the input that have
// chains. We want to token factor all of the input chains to these nodes
// together. However, if any of the input chains is actually one of the
// nodes matched in this pattern, then we have an intra-match reference.
// Ignore these because the newly token factored chain should not refer to
// the old nodes.
unsigned NumChains = MatcherTable[MatcherIndex++];
assert(NumChains != 0 && "Can't TF zero chains");
assert(ChainNodesMatched.empty() &&
"Should only have one EmitMergeInputChains per match");
// Read all of the chained nodes.
for (unsigned i = 0; i != NumChains; ++i) {
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
// FIXME: What if other value results of the node have uses not matched
// by this pattern?
if (ChainNodesMatched.back() != NodeToMatch &&
!RecordedNodes[RecNo].first.hasOneUse()) {
ChainNodesMatched.clear();
break;
}
}
// If the inner loop broke out, the match fails.
if (ChainNodesMatched.empty())
break;
// Merge the input chains if they are not intra-pattern references.
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
if (!InputChain.getNode())
break; // Failed to merge.
continue;
}
case OPC_EmitCopyToReg: {
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
unsigned DestPhysReg = MatcherTable[MatcherIndex++];
if (!InputChain.getNode())
InputChain = CurDAG->getEntryNode();
InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
DestPhysReg, RecordedNodes[RecNo].first,
InputGlue);
InputGlue = InputChain.getValue(1);
continue;
}
case OPC_EmitNodeXForm: {
unsigned XFormNo = MatcherTable[MatcherIndex++];
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
continue;
}
case OPC_EmitNode:
case OPC_MorphNodeTo: {
uint16_t TargetOpc = MatcherTable[MatcherIndex++];
TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
// Get the result VT list.
unsigned NumVTs = MatcherTable[MatcherIndex++];
SmallVector<EVT, 4> VTs;
for (unsigned i = 0; i != NumVTs; ++i) {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (VT == MVT::iPTR)
VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
VTs.push_back(VT);
}
if (EmitNodeInfo & OPFL_Chain)
VTs.push_back(MVT::Other);
if (EmitNodeInfo & OPFL_GlueOutput)
VTs.push_back(MVT::Glue);
// This is hot code, so optimize the two most common cases of 1 and 2
// results.
SDVTList VTList;
if (VTs.size() == 1)
VTList = CurDAG->getVTList(VTs[0]);
else if (VTs.size() == 2)
VTList = CurDAG->getVTList(VTs[0], VTs[1]);
else
VTList = CurDAG->getVTList(VTs);
// Get the operand list.
unsigned NumOps = MatcherTable[MatcherIndex++];
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i != NumOps; ++i) {
unsigned RecNo = MatcherTable[MatcherIndex++];
if (RecNo & 128)
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
Ops.push_back(RecordedNodes[RecNo].first);
}
// If there are variadic operands to add, handle them now.
if (EmitNodeInfo & OPFL_VariadicInfo) {
// Determine the start index to copy from.
unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
"Invalid variadic node");
// Copy all of the variadic operands, not including a potential glue
// input.
for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
i != e; ++i) {
SDValue V = NodeToMatch->getOperand(i);
if (V.getValueType() == MVT::Glue) break;
Ops.push_back(V);
}
}
// If this has chain/glue inputs, add them.
if (EmitNodeInfo & OPFL_Chain)
Ops.push_back(InputChain);
if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
Ops.push_back(InputGlue);
// Create the node.
SDNode *Res = nullptr;
if (Opcode != OPC_MorphNodeTo) {
// If this is a normal EmitNode command, just create the new node and
// add the results to the RecordedNodes list.
Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
VTList, Ops);
// Add all the non-glue/non-chain results to the RecordedNodes list.
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
nullptr));
}
} else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
} else {
// NodeToMatch was eliminated by CSE when the target changed the DAG.
// We will visit the equivalent node later.
DEBUG(dbgs() << "Node was eliminated by CSE\n");
return nullptr;
}
// If the node had chain/glue results, update our notion of the current
// chain and glue.
if (EmitNodeInfo & OPFL_GlueOutput) {
InputGlue = SDValue(Res, VTs.size()-1);
if (EmitNodeInfo & OPFL_Chain)
InputChain = SDValue(Res, VTs.size()-2);
} else if (EmitNodeInfo & OPFL_Chain)
InputChain = SDValue(Res, VTs.size()-1);
// If the OPFL_MemRefs glue is set on this node, slap all of the
// accumulated memrefs onto it.
//
// FIXME: This is vastly incorrect for patterns with multiple outputs
// instructions that access memory and for ComplexPatterns that match
// loads.
if (EmitNodeInfo & OPFL_MemRefs) {
// Only attach load or store memory operands if the generated
// instruction may load or store.
const MCInstrDesc &MCID = TII->get(TargetOpc);
bool mayLoad = MCID.mayLoad();
bool mayStore = MCID.mayStore();
unsigned NumMemRefs = 0;
for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
if ((*I)->isLoad()) {
if (mayLoad)
++NumMemRefs;
} else if ((*I)->isStore()) {
if (mayStore)
++NumMemRefs;
} else {
++NumMemRefs;
}
}
MachineSDNode::mmo_iterator MemRefs =
MF->allocateMemRefsArray(NumMemRefs);
MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
if ((*I)->isLoad()) {
if (mayLoad)
*MemRefsPos++ = *I;
} else if ((*I)->isStore()) {
if (mayStore)
*MemRefsPos++ = *I;
} else {
*MemRefsPos++ = *I;
}
}
cast<MachineSDNode>(Res)
->setMemRefs(MemRefs, MemRefs + NumMemRefs);
}
DEBUG(dbgs() << " "
<< (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
<< " node: "; Res->dump(CurDAG); dbgs() << "\n");
// If this was a MorphNodeTo then we're completely done!
if (Opcode == OPC_MorphNodeTo) {
// Update chain and glue uses.
UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
InputGlue, GlueResultNodesMatched, true);
return Res;
}
continue;
}
case OPC_MarkGlueResults: {
unsigned NumNodes = MatcherTable[MatcherIndex++];
// Read and remember all the glue-result nodes.
for (unsigned i = 0; i != NumNodes; ++i) {
unsigned RecNo = MatcherTable[MatcherIndex++];
if (RecNo & 128)
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
}
continue;
}
case OPC_CompleteMatch: {
// The match has been completed, and any new nodes (if any) have been
// created. Patch up references to the matched dag to use the newly
// created nodes.
unsigned NumResults = MatcherTable[MatcherIndex++];
for (unsigned i = 0; i != NumResults; ++i) {
unsigned ResSlot = MatcherTable[MatcherIndex++];
if (ResSlot & 128)
ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
SDValue Res = RecordedNodes[ResSlot].first;
assert(i < NodeToMatch->getNumValues() &&
NodeToMatch->getValueType(i) != MVT::Other &&
NodeToMatch->getValueType(i) != MVT::Glue &&
"Invalid number of results to complete!");
assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
NodeToMatch->getValueType(i) == MVT::iPTR ||
Res.getValueType() == MVT::iPTR ||
NodeToMatch->getValueType(i).getSizeInBits() ==
Res.getValueType().getSizeInBits()) &&
"invalid replacement");
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
}
// If the root node defines glue, add it to the glue nodes to update list.
if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
GlueResultNodesMatched.push_back(NodeToMatch);
// Update chain and glue uses.
UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
InputGlue, GlueResultNodesMatched, false);
assert(NodeToMatch->use_empty() &&
"Didn't replace all uses of the node?");
// FIXME: We just return here, which interacts correctly with SelectRoot
// above. We should fix this to not return an SDNode* anymore.
return nullptr;
}
}
// If the code reached this point, then the match failed. See if there is
// another child to try in the current 'Scope', otherwise pop it until we
// find a case to check.
DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
++NumDAGIselRetries;
while (1) {
if (MatchScopes.empty()) {
CannotYetSelect(NodeToMatch);
return nullptr;
}
// Restore the interpreter state back to the point where the scope was
// formed.
MatchScope &LastScope = MatchScopes.back();
RecordedNodes.resize(LastScope.NumRecordedNodes);
NodeStack.clear();
NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
N = NodeStack.back();
if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
MatcherIndex = LastScope.FailIndex;
DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
InputChain = LastScope.InputChain;
InputGlue = LastScope.InputGlue;
if (!LastScope.HasChainNodesMatched)
ChainNodesMatched.clear();
if (!LastScope.HasGlueResultNodesMatched)
GlueResultNodesMatched.clear();
// Check to see what the offset is at the new MatcherIndex. If it is zero
// we have reached the end of this scope, otherwise we have another child
// in the current scope to try.
unsigned NumToSkip = MatcherTable[MatcherIndex++];
if (NumToSkip & 128)
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
// If we have another child in this scope to match, update FailIndex and
// try it.
if (NumToSkip != 0) {
LastScope.FailIndex = MatcherIndex+NumToSkip;
break;
}
// End of this scope, pop it and try the next child in the containing
// scope.
MatchScopes.pop_back();
}
}
}
void SelectionDAGISel::CannotYetSelect(SDNode *N) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Cannot select: ";
if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
N->getOpcode() != ISD::INTRINSIC_VOID) {
N->printrFull(Msg, CurDAG);
Msg << "\nIn function: " << MF->getName();
} else {
bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
unsigned iid =
cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
if (iid < Intrinsic::num_intrinsics)
Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
Msg << "target intrinsic %" << TII->getName(iid);
else
Msg << "unknown intrinsic #" << iid;
}
report_fatal_error(Msg.str());
}
char SelectionDAGISel::ID = 0;