HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.0
|
7.0.0_r31
下载
查看原文件
收藏
根目录
external
llvm
lib
CodeGen
SelectionDAG
DAGCombiner.cpp
//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run // both before and after the DAG is legalized. // // This pass is not a substitute for the LLVM IR instcombine pass. This pass is // primarily intended to handle simplification opportunities that are implicit // in the LLVM IR and exposed by the various codegen lowering phases. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include
using namespace llvm; #define DEBUG_TYPE "dagcombine" STATISTIC(NodesCombined , "Number of dag nodes combined"); STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); STATISTIC(SlicedLoads, "Number of load sliced"); namespace { static cl::opt
CombinerAA("combiner-alias-analysis", cl::Hidden, cl::desc("Enable DAG combiner alias-analysis heuristics")); static cl::opt
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, cl::desc("Enable DAG combiner's use of IR alias analysis")); static cl::opt
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), cl::desc("Enable DAG combiner's use of TBAA")); #ifndef NDEBUG static cl::opt
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, cl::desc("Only use DAG-combiner alias analysis in this" " function")); #endif /// Hidden option to stress test load slicing, i.e., when this option /// is enabled, load slicing bypasses most of its profitability guards. static cl::opt
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, cl::desc("Bypass the profitability model of load " "slicing"), cl::init(false)); static cl::opt
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), cl::desc("DAG combiner may split indexing from loads")); //------------------------------ DAGCombiner ---------------------------------// class DAGCombiner { SelectionDAG &DAG; const TargetLowering &TLI; CombineLevel Level; CodeGenOpt::Level OptLevel; bool LegalOperations; bool LegalTypes; bool ForCodeSize; /// \brief Worklist of all of the nodes that need to be simplified. /// /// This must behave as a stack -- new nodes to process are pushed onto the /// back and when processing we pop off of the back. /// /// The worklist will not contain duplicates but may contain null entries /// due to nodes being deleted from the underlying DAG. SmallVector
Worklist; /// \brief Mapping from an SDNode to its position on the worklist. /// /// This is used to find and remove nodes from the worklist (by nulling /// them) when they are deleted from the underlying DAG. It relies on /// stable indices of nodes within the worklist. DenseMap
WorklistMap; /// \brief Set of nodes which have been combined (at least once). /// /// This is used to allow us to reliably add any operands of a DAG node /// which have not yet been combined to the worklist. SmallPtrSet
CombinedNodes; // AA - Used for DAG load/store alias analysis. AliasAnalysis &AA; /// When an instruction is simplified, add all users of the instruction to /// the work lists because they might get more simplified now. void AddUsersToWorklist(SDNode *N) { for (SDNode *Node : N->uses()) AddToWorklist(Node); } /// Call the node-specific routine that folds each particular type of node. SDValue visit(SDNode *N); public: /// Add to the worklist making sure its instance is at the back (next to be /// processed.) void AddToWorklist(SDNode *N) { // Skip handle nodes as they can't usefully be combined and confuse the // zero-use deletion strategy. if (N->getOpcode() == ISD::HANDLENODE) return; if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) Worklist.push_back(N); } /// Remove all instances of N from the worklist. void removeFromWorklist(SDNode *N) { CombinedNodes.erase(N); auto It = WorklistMap.find(N); if (It == WorklistMap.end()) return; // Not in the worklist. // Null out the entry rather than erasing it to avoid a linear operation. Worklist[It->second] = nullptr; WorklistMap.erase(It); } void deleteAndRecombine(SDNode *N); bool recursivelyDeleteUnusedNodes(SDNode *N); /// Replaces all uses of the results of one DAG node with new values. SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, bool AddTo = true); /// Replaces all uses of the results of one DAG node with new values. SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { return CombineTo(N, &Res, 1, AddTo); } /// Replaces all uses of the results of one DAG node with new values. SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true) { SDValue To[] = { Res0, Res1 }; return CombineTo(N, To, 2, AddTo); } void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); private: /// Check the specified integer node value to see if it can be simplified or /// if things it uses can be simplified by bit propagation. /// If so, return true. bool SimplifyDemandedBits(SDValue Op) { unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); APInt Demanded = APInt::getAllOnesValue(BitWidth); return SimplifyDemandedBits(Op, Demanded); } bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); bool CombineToPreIndexedLoadStore(SDNode *N); bool CombineToPostIndexedLoadStore(SDNode *N); SDValue SplitIndexingFromLoad(LoadSDNode *LD); bool SliceUpLoad(SDNode *N); /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed /// load. /// /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. /// \param InVecVT type of the input vector to EVE with bitcasts resolved. /// \param EltNo index of the vector element to load. /// \param OriginalLoad load that EVE came from to be replaced. /// \returns EVE on success SDValue() on failure. SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); SDValue SExtPromoteOperand(SDValue Op, EVT PVT); SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); SDValue PromoteIntBinOp(SDValue Op); SDValue PromoteIntShiftOp(SDValue Op); SDValue PromoteExtend(SDValue Op); bool PromoteLoad(SDValue Op); void ExtendSetCCUses(const SmallVectorImpl
&SetCCs, SDValue Trunc, SDValue ExtLoad, SDLoc DL, ISD::NodeType ExtType); /// Call the node-specific routine that knows how to fold each /// particular type of node. If that doesn't do anything, try the /// target-specific DAG combines. SDValue combine(SDNode *N); // Visitation implementation - Implement dag node combining for different // node types. The semantics are as follows: // Return Value: // SDValue.getNode() == 0 - No change was made // SDValue.getNode() == N - N was replaced, is dead and has been handled. // otherwise - N should be replaced by the returned Operand. // SDValue visitTokenFactor(SDNode *N); SDValue visitMERGE_VALUES(SDNode *N); SDValue visitADD(SDNode *N); SDValue visitSUB(SDNode *N); SDValue visitADDC(SDNode *N); SDValue visitSUBC(SDNode *N); SDValue visitADDE(SDNode *N); SDValue visitSUBE(SDNode *N); SDValue visitMUL(SDNode *N); SDValue useDivRem(SDNode *N); SDValue visitSDIV(SDNode *N); SDValue visitUDIV(SDNode *N); SDValue visitREM(SDNode *N); SDValue visitMULHU(SDNode *N); SDValue visitMULHS(SDNode *N); SDValue visitSMUL_LOHI(SDNode *N); SDValue visitUMUL_LOHI(SDNode *N); SDValue visitSMULO(SDNode *N); SDValue visitUMULO(SDNode *N); SDValue visitIMINMAX(SDNode *N); SDValue visitAND(SDNode *N); SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); SDValue visitOR(SDNode *N); SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); SDValue visitXOR(SDNode *N); SDValue SimplifyVBinOp(SDNode *N); SDValue visitSHL(SDNode *N); SDValue visitSRA(SDNode *N); SDValue visitSRL(SDNode *N); SDValue visitRotate(SDNode *N); SDValue visitBSWAP(SDNode *N); SDValue visitCTLZ(SDNode *N); SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); SDValue visitCTTZ(SDNode *N); SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); SDValue visitCTPOP(SDNode *N); SDValue visitSELECT(SDNode *N); SDValue visitVSELECT(SDNode *N); SDValue visitSELECT_CC(SDNode *N); SDValue visitSETCC(SDNode *N); SDValue visitSETCCE(SDNode *N); SDValue visitSIGN_EXTEND(SDNode *N); SDValue visitZERO_EXTEND(SDNode *N); SDValue visitANY_EXTEND(SDNode *N); SDValue visitSIGN_EXTEND_INREG(SDNode *N); SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); SDValue visitTRUNCATE(SDNode *N); SDValue visitBITCAST(SDNode *N); SDValue visitBUILD_PAIR(SDNode *N); SDValue visitFADD(SDNode *N); SDValue visitFSUB(SDNode *N); SDValue visitFMUL(SDNode *N); SDValue visitFMA(SDNode *N); SDValue visitFDIV(SDNode *N); SDValue visitFREM(SDNode *N); SDValue visitFSQRT(SDNode *N); SDValue visitFCOPYSIGN(SDNode *N); SDValue visitSINT_TO_FP(SDNode *N); SDValue visitUINT_TO_FP(SDNode *N); SDValue visitFP_TO_SINT(SDNode *N); SDValue visitFP_TO_UINT(SDNode *N); SDValue visitFP_ROUND(SDNode *N); SDValue visitFP_ROUND_INREG(SDNode *N); SDValue visitFP_EXTEND(SDNode *N); SDValue visitFNEG(SDNode *N); SDValue visitFABS(SDNode *N); SDValue visitFCEIL(SDNode *N); SDValue visitFTRUNC(SDNode *N); SDValue visitFFLOOR(SDNode *N); SDValue visitFMINNUM(SDNode *N); SDValue visitFMAXNUM(SDNode *N); SDValue visitBRCOND(SDNode *N); SDValue visitBR_CC(SDNode *N); SDValue visitLOAD(SDNode *N); SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); SDValue replaceStoreOfFPConstant(StoreSDNode *ST); SDValue visitSTORE(SDNode *N); SDValue visitINSERT_VECTOR_ELT(SDNode *N); SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); SDValue visitBUILD_VECTOR(SDNode *N); SDValue visitCONCAT_VECTORS(SDNode *N); SDValue visitEXTRACT_SUBVECTOR(SDNode *N); SDValue visitVECTOR_SHUFFLE(SDNode *N); SDValue visitSCALAR_TO_VECTOR(SDNode *N); SDValue visitINSERT_SUBVECTOR(SDNode *N); SDValue visitMLOAD(SDNode *N); SDValue visitMSTORE(SDNode *N); SDValue visitMGATHER(SDNode *N); SDValue visitMSCATTER(SDNode *N); SDValue visitFP_TO_FP16(SDNode *N); SDValue visitFP16_TO_FP(SDNode *N); SDValue visitFADDForFMACombine(SDNode *N); SDValue visitFSUBForFMACombine(SDNode *N); SDValue visitFMULForFMACombine(SDNode *N); SDValue XformToShuffleWithZero(SDNode *N); SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, bool NotExtCompare = false); SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, SDLoc DL, bool foldBooleans = true); bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, SDValue &CC) const; bool isOneUseSetCC(SDValue N) const; SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp); SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); SDValue CombineExtLoad(SDNode *N); SDValue combineRepeatedFPDivisors(SDNode *N); SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); SDValue BuildSDIV(SDNode *N); SDValue BuildSDIVPow2(SDNode *N); SDValue BuildUDIV(SDNode *N); SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, SDNodeFlags *Flags); SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, SDNodeFlags *Flags); SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, bool DemandHighBits = true); SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, SDValue InnerPos, SDValue InnerNeg, unsigned PosOpcode, unsigned NegOpcode, SDLoc DL); SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); SDValue ReduceLoadWidth(SDNode *N); SDValue ReduceLoadOpStoreWidth(SDNode *N); SDValue TransformFPLoadStorePair(SDNode *N); SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); SDValue GetDemandedBits(SDValue V, const APInt &Mask); /// Walk up chain skipping non-aliasing memory nodes, /// looking for aliasing nodes and adding them to the Aliases vector. void GatherAllAliases(SDNode *N, SDValue OriginalChain, SmallVectorImpl
&Aliases); /// Return true if there is any possibility that the two addresses overlap. bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; /// Walk up chain skipping non-aliasing memory nodes, looking for a better /// chain (aliasing node.) SDValue FindBetterChain(SDNode *N, SDValue Chain); /// Do FindBetterChain for a store and any possibly adjacent stores on /// consecutive chains. bool findBetterNeighborChains(StoreSDNode *St); /// Holds a pointer to an LSBaseSDNode as well as information on where it /// is located in a sequence of memory operations connected by a chain. struct MemOpLink { MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } // Ptr to the mem node. LSBaseSDNode *MemNode; // Offset from the base ptr. int64_t OffsetFromBase; // What is the sequence number of this mem node. // Lowest mem operand in the DAG starts at zero. unsigned SequenceNum; }; /// This is a helper function for visitMUL to check the profitability /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). /// MulNode is the original multiply, AddNode is (add x, c1), /// and ConstNode is c2. bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue &AddNode, SDValue &ConstNode); /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a /// constant build_vector of the stored constant values in Stores. SDValue getMergedConstantVectorStore(SelectionDAG &DAG, SDLoc SL, ArrayRef
Stores, SmallVectorImpl
&Chains, EVT Ty) const; /// This is a helper function for visitAND and visitZERO_EXTEND. Returns /// true if the (and (load x) c) pattern matches an extload. ExtVT returns /// the type of the loaded value to be extended. LoadedVT returns the type /// of the original loaded value. NarrowLoad returns whether the load would /// need to be narrowed in order to match. bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, bool &NarrowLoad); /// This is a helper function for MergeConsecutiveStores. When the source /// elements of the consecutive stores are all constants or all extracted /// vector elements, try to merge them into one larger store. /// \return True if a merged store was created. bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl
&StoreNodes, EVT MemVT, unsigned NumStores, bool IsConstantSrc, bool UseVector); /// This is a helper function for MergeConsecutiveStores. /// Stores that may be merged are placed in StoreNodes. /// Loads that may alias with those stores are placed in AliasLoadNodes. void getStoreMergeAndAliasCandidates( StoreSDNode* St, SmallVectorImpl
&StoreNodes, SmallVectorImpl
&AliasLoadNodes); /// Merge consecutive store operations into a wide store. /// This optimization uses wide integers or vectors when possible. /// \return True if some memory operations were changed. bool MergeConsecutiveStores(StoreSDNode *N); /// \brief Try to transform a truncation where C is a constant: /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) /// /// \p N needs to be a truncation and its first operand an AND. Other /// requirements are checked by the function (e.g. that trunc is /// single-use) and if missed an empty SDValue is returned. SDValue distributeTruncateThroughAnd(SDNode *N); public: DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); } /// Runs the dag combiner on all nodes in the work list void Run(CombineLevel AtLevel); SelectionDAG &getDAG() const { return DAG; } /// Returns a type large enough to hold any valid shift amount - before type /// legalization these can be huge. EVT getShiftAmountTy(EVT LHSTy) { assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); if (LHSTy.isVector()) return LHSTy; auto &DL = DAG.getDataLayout(); return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) : TLI.getPointerTy(DL); } /// This method returns true if we are running before type legalization or /// if the specified VT is legal. bool isTypeLegal(const EVT &VT) { if (!LegalTypes) return true; return TLI.isTypeLegal(VT); } /// Convenience wrapper around TargetLowering::getSetCCResultType EVT getSetCCResultType(EVT VT) const { return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); } }; } namespace { /// This class is a DAGUpdateListener that removes any deleted /// nodes from the worklist. class WorklistRemover : public SelectionDAG::DAGUpdateListener { DAGCombiner &DC; public: explicit WorklistRemover(DAGCombiner &dc) : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} void NodeDeleted(SDNode *N, SDNode *E) override { DC.removeFromWorklist(N); } }; } //===----------------------------------------------------------------------===// // TargetLowering::DAGCombinerInfo implementation //===----------------------------------------------------------------------===// void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { ((DAGCombiner*)DC)->AddToWorklist(N); } void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { ((DAGCombiner*)DC)->removeFromWorklist(N); } SDValue TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, ArrayRef
To, bool AddTo) { return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); } SDValue TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDValue Res, bool AddTo) { return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); } SDValue TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); } void TargetLowering::DAGCombinerInfo:: CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); } //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// void DAGCombiner::deleteAndRecombine(SDNode *N) { removeFromWorklist(N); // If the operands of this node are only used by the node, they will now be // dead. Make sure to re-visit them and recursively delete dead nodes. for (const SDValue &Op : N->ops()) // For an operand generating multiple values, one of the values may // become dead allowing further simplification (e.g. split index // arithmetic from an indexed load). if (Op->hasOneUse() || Op->getNumValues() > 1) AddToWorklist(Op.getNode()); DAG.DeleteNode(N); } /// Return 1 if we can compute the negated form of the specified expression for /// the same cost as the expression itself, or 2 if we can compute the negated /// form more cheaply than the expression itself. static char isNegatibleForFree(SDValue Op, bool LegalOperations, const TargetLowering &TLI, const TargetOptions *Options, unsigned Depth = 0) { // fneg is removable even if it has multiple uses. if (Op.getOpcode() == ISD::FNEG) return 2; // Don't allow anything with multiple uses. if (!Op.hasOneUse()) return 0; // Don't recurse exponentially. if (Depth > 6) return 0; switch (Op.getOpcode()) { default: return false; case ISD::ConstantFP: // Don't invert constant FP values after legalize. The negated constant // isn't necessarily legal. return LegalOperations ? 0 : 1; case ISD::FADD: // FIXME: determine better conditions for this xform. if (!Options->UnsafeFPMath) return 0; // After operation legalization, it might not be legal to create new FSUBs. if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) return 0; // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, Depth + 1)) return V; // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, Depth + 1); case ISD::FSUB: // We can't turn -(A-B) into B-A when we honor signed zeros. if (!Options->UnsafeFPMath) return 0; // fold (fneg (fsub A, B)) -> (fsub B, A) return 1; case ISD::FMUL: case ISD::FDIV: if (Options->HonorSignDependentRoundingFPMath()) return 0; // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, Depth + 1)) return V; return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, Depth + 1); case ISD::FP_EXTEND: case ISD::FP_ROUND: case ISD::FSIN: return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, Depth + 1); } } /// If isNegatibleForFree returns true, return the newly negated expression. static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOperations, unsigned Depth = 0) { const TargetOptions &Options = DAG.getTarget().Options; // fneg is removable even if it has multiple uses. if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); // Don't allow anything with multiple uses. assert(Op.hasOneUse() && "Unknown reuse!"); assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); const SDNodeFlags *Flags = Op.getNode()->getFlags(); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown code"); case ISD::ConstantFP: { APFloat V = cast
(Op)->getValueAPF(); V.changeSign(); return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); } case ISD::FADD: // FIXME: determine better conditions for this xform. assert(Options.UnsafeFPMath); // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) if (isNegatibleForFree(Op.getOperand(0), LegalOperations, DAG.getTargetLoweringInfo(), &Options, Depth+1)) return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1), Op.getOperand(1), Flags); // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), GetNegatedExpression(Op.getOperand(1), DAG, LegalOperations, Depth+1), Op.getOperand(0), Flags); case ISD::FSUB: // We can't turn -(A-B) into B-A when we honor signed zeros. assert(Options.UnsafeFPMath); // fold (fneg (fsub 0, B)) -> B if (ConstantFPSDNode *N0CFP = dyn_cast
(Op.getOperand(0))) if (N0CFP->isZero()) return Op.getOperand(1); // fold (fneg (fsub A, B)) -> (fsub B, A) return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(0), Flags); case ISD::FMUL: case ISD::FDIV: assert(!Options.HonorSignDependentRoundingFPMath()); // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) if (isNegatibleForFree(Op.getOperand(0), LegalOperations, DAG.getTargetLoweringInfo(), &Options, Depth+1)) return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1), Op.getOperand(1), Flags); // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), GetNegatedExpression(Op.getOperand(1), DAG, LegalOperations, Depth+1), Flags); case ISD::FP_EXTEND: case ISD::FSIN: return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1)); case ISD::FP_ROUND: return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, LegalOperations, Depth+1), Op.getOperand(1)); } } // Return true if this node is a setcc, or is a select_cc // that selects between the target values used for true and false, making it // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to // the appropriate nodes based on the type of node we are checking. This // simplifies life a bit for the callers. bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, SDValue &CC) const { if (N.getOpcode() == ISD::SETCC) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(2); return true; } if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2).getNode()) || !TLI.isConstFalseVal(N.getOperand(3).getNode())) return false; if (TLI.getBooleanContents(N.getValueType()) == TargetLowering::UndefinedBooleanContent) return false; LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(4); return true; } /// Return true if this is a SetCC-equivalent operation with only one use. /// If this is true, it allows the users to invert the operation for free when /// it is profitable to do so. bool DAGCombiner::isOneUseSetCC(SDValue N) const { SDValue N0, N1, N2; if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) return true; return false; } /// Returns true if N is a BUILD_VECTOR node whose /// elements are all the same constant or undefined. static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { BuildVectorSDNode *C = dyn_cast
(N); if (!C) return false; APInt SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; EVT EltVT = N->getValueType(0).getVectorElementType(); return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs) && EltVT.getSizeInBits() >= SplatBitSize); } // \brief Returns the SDNode if it is a constant integer BuildVector // or constant integer. static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) { if (isa
(N)) return N.getNode(); if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) return N.getNode(); return nullptr; } // \brief Returns the SDNode if it is a constant float BuildVector // or constant float. static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { if (isa
(N)) return N.getNode(); if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) return N.getNode(); return nullptr; } // \brief Returns the SDNode if it is a constant splat BuildVector or constant // int. static ConstantSDNode *isConstOrConstSplat(SDValue N) { if (ConstantSDNode *CN = dyn_cast
(N)) return CN; if (BuildVectorSDNode *BV = dyn_cast
(N)) { BitVector UndefElements; ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); // BuildVectors can truncate their operands. Ignore that case here. // FIXME: We blindly ignore splats which include undef which is overly // pessimistic. if (CN && UndefElements.none() && CN->getValueType(0) == N.getValueType().getScalarType()) return CN; } return nullptr; } // \brief Returns the SDNode if it is a constant splat BuildVector or constant // float. static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { if (ConstantFPSDNode *CN = dyn_cast
(N)) return CN; if (BuildVectorSDNode *BV = dyn_cast
(N)) { BitVector UndefElements; ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); if (CN && UndefElements.none()) return CN; } return nullptr; } SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, SDValue N0, SDValue N1) { EVT VT = N0.getValueType(); if (N0.getOpcode() == Opc) { if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) { // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); return SDValue(); } if (N0.hasOneUse()) { // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one // use SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); if (!OpNode.getNode()) return SDValue(); AddToWorklist(OpNode.getNode()); return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); } } } if (N1.getOpcode() == Opc) { if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) { // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); return SDValue(); } if (N1.hasOneUse()) { // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one // use SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0); if (!OpNode.getNode()) return SDValue(); AddToWorklist(OpNode.getNode()); return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); } } } return SDValue(); } SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, bool AddTo) { assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); ++NodesCombined; DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; To[0].getNode()->dump(&DAG); dbgs() << " and " << NumTo-1 << " other values\n"); for (unsigned i = 0, e = NumTo; i != e; ++i) assert((!To[i].getNode() || N->getValueType(i) == To[i].getValueType()) && "Cannot combine value to value of different type!"); WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesWith(N, To); if (AddTo) { // Push the new nodes and any users onto the worklist for (unsigned i = 0, e = NumTo; i != e; ++i) { if (To[i].getNode()) { AddToWorklist(To[i].getNode()); AddUsersToWorklist(To[i].getNode()); } } } // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (N->use_empty()) deleteAndRecombine(N); return SDValue(N, 0); } void DAGCombiner:: CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { // Replace all uses. If any nodes become isomorphic to other nodes and // are deleted, make sure to remove them from our worklist. WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); // Push the new node and any (possibly new) users onto the worklist. AddToWorklist(TLO.New.getNode()); AddUsersToWorklist(TLO.New.getNode()); // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (TLO.Old.getNode()->use_empty()) deleteAndRecombine(TLO.Old.getNode()); } /// Check the specified integer node value to see if it can be simplified or if /// things it uses can be simplified by bit propagation. If so, return true. bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); APInt KnownZero, KnownOne; if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) return false; // Revisit the node. AddToWorklist(Op.getNode()); // Replace the old value with the new one. ++NodesCombined; DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); dbgs() << '\n'); CommitTargetLoweringOpt(TLO); return true; } void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { SDLoc dl(Load); EVT VT = Load->getValueType(0); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; Trunc.getNode()->dump(&DAG); dbgs() << '\n'); WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); deleteAndRecombine(Load); AddToWorklist(Trunc.getNode()); } SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { Replace = false; SDLoc dl(Op); if (LoadSDNode *LD = dyn_cast
(Op)) { EVT MemVT = LD->getMemoryVT(); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD : ISD::EXTLOAD) : LD->getExtensionType(); Replace = true; return DAG.getExtLoad(ExtType, dl, PVT, LD->getChain(), LD->getBasePtr(), MemVT, LD->getMemOperand()); } unsigned Opc = Op.getOpcode(); switch (Opc) { default: break; case ISD::AssertSext: return DAG.getNode(ISD::AssertSext, dl, PVT, SExtPromoteOperand(Op.getOperand(0), PVT), Op.getOperand(1)); case ISD::AssertZext: return DAG.getNode(ISD::AssertZext, dl, PVT, ZExtPromoteOperand(Op.getOperand(0), PVT), Op.getOperand(1)); case ISD::Constant: { unsigned ExtOpc = Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; return DAG.getNode(ExtOpc, dl, PVT, Op); } } if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) return SDValue(); return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); } SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) return SDValue(); EVT OldVT = Op.getValueType(); SDLoc dl(Op); bool Replace = false; SDValue NewOp = PromoteOperand(Op, PVT, Replace); if (!NewOp.getNode()) return SDValue(); AddToWorklist(NewOp.getNode()); if (Replace) ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, DAG.getValueType(OldVT)); } SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { EVT OldVT = Op.getValueType(); SDLoc dl(Op); bool Replace = false; SDValue NewOp = PromoteOperand(Op, PVT, Replace); if (!NewOp.getNode()) return SDValue(); AddToWorklist(NewOp.getNode()); if (Replace) ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); return DAG.getZeroExtendInReg(NewOp, dl, OldVT); } /// Promote the specified integer binary operation if the target indicates it is /// beneficial. e.g. On x86, it's usually better to promote i16 operations to /// i32 since i16 instructions are longer. SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { if (!LegalOperations) return SDValue(); EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return SDValue(); // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return SDValue(); EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); bool Replace0 = false; SDValue N0 = Op.getOperand(0); SDValue NN0 = PromoteOperand(N0, PVT, Replace0); if (!NN0.getNode()) return SDValue(); bool Replace1 = false; SDValue N1 = Op.getOperand(1); SDValue NN1; if (N0 == N1) NN1 = NN0; else { NN1 = PromoteOperand(N1, PVT, Replace1); if (!NN1.getNode()) return SDValue(); } AddToWorklist(NN0.getNode()); if (NN1.getNode()) AddToWorklist(NN1.getNode()); if (Replace0) ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); if (Replace1) ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); SDLoc dl(Op); return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(Opc, dl, PVT, NN0, NN1)); } return SDValue(); } /// Promote the specified integer shift operation if the target indicates it is /// beneficial. e.g. On x86, it's usually better to promote i16 operations to /// i32 since i16 instructions are longer. SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { if (!LegalOperations) return SDValue(); EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return SDValue(); // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return SDValue(); EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); bool Replace = false; SDValue N0 = Op.getOperand(0); if (Opc == ISD::SRA) N0 = SExtPromoteOperand(Op.getOperand(0), PVT); else if (Opc == ISD::SRL) N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); else N0 = PromoteOperand(N0, PVT, Replace); if (!N0.getNode()) return SDValue(); AddToWorklist(N0.getNode()); if (Replace) ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); SDLoc dl(Op); return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); } return SDValue(); } SDValue DAGCombiner::PromoteExtend(SDValue Op) { if (!LegalOperations) return SDValue(); EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return SDValue(); // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return SDValue(); EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); // fold (aext (aext x)) -> (aext x) // fold (aext (zext x)) -> (zext x) // fold (aext (sext x)) -> (sext x) DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); } return SDValue(); } bool DAGCombiner::PromoteLoad(SDValue Op) { if (!LegalOperations) return false; EVT VT = Op.getValueType(); if (VT.isVector() || !VT.isInteger()) return false; // If operation type is 'undesirable', e.g. i16 on x86, consider // promoting it. unsigned Opc = Op.getOpcode(); if (TLI.isTypeDesirableForOp(Opc, VT)) return false; EVT PVT = VT; // Consult target whether it is a good idea to promote this operation and // what's the right type to promote it to. if (TLI.IsDesirableToPromoteOp(Op, PVT)) { assert(PVT != VT && "Don't know what type to promote to!"); SDLoc dl(Op); SDNode *N = Op.getNode(); LoadSDNode *LD = cast
(N); EVT MemVT = LD->getMemoryVT(); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD : ISD::EXTLOAD) : LD->getExtensionType(); SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, LD->getChain(), LD->getBasePtr(), MemVT, LD->getMemOperand()); SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; Result.getNode()->dump(&DAG); dbgs() << '\n'); WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); deleteAndRecombine(N); AddToWorklist(Result.getNode()); return true; } return false; } /// \brief Recursively delete a node which has no uses and any operands for /// which it is the only use. /// /// Note that this both deletes the nodes and removes them from the worklist. /// It also adds any nodes who have had a user deleted to the worklist as they /// may now have only one use and subject to other combines. bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { if (!N->use_empty()) return false; SmallSetVector
Nodes; Nodes.insert(N); do { N = Nodes.pop_back_val(); if (!N) continue; if (N->use_empty()) { for (const SDValue &ChildN : N->op_values()) Nodes.insert(ChildN.getNode()); removeFromWorklist(N); DAG.DeleteNode(N); } else { AddToWorklist(N); } } while (!Nodes.empty()); return true; } //===----------------------------------------------------------------------===// // Main DAG Combiner implementation //===----------------------------------------------------------------------===// void DAGCombiner::Run(CombineLevel AtLevel) { // set the instance variables, so that the various visit routines may use it. Level = AtLevel; LegalOperations = Level >= AfterLegalizeVectorOps; LegalTypes = Level >= AfterLegalizeTypes; // Add all the dag nodes to the worklist. for (SDNode &Node : DAG.allnodes()) AddToWorklist(&Node); // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted, and tracking any // changes of the root. HandleSDNode Dummy(DAG.getRoot()); // while the worklist isn't empty, find a node and // try and combine it. while (!WorklistMap.empty()) { SDNode *N; // The Worklist holds the SDNodes in order, but it may contain null entries. do { N = Worklist.pop_back_val(); } while (!N); bool GoodWorklistEntry = WorklistMap.erase(N); (void)GoodWorklistEntry; assert(GoodWorklistEntry && "Found a worklist entry without a corresponding map entry!"); // If N has no uses, it is dead. Make sure to revisit all N's operands once // N is deleted from the DAG, since they too may now be dead or may have a // reduced number of uses, allowing other xforms. if (recursivelyDeleteUnusedNodes(N)) continue; WorklistRemover DeadNodes(*this); // If this combine is running after legalizing the DAG, re-legalize any // nodes pulled off the worklist. if (Level == AfterLegalizeDAG) { SmallSetVector
UpdatedNodes; bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); for (SDNode *LN : UpdatedNodes) { AddToWorklist(LN); AddUsersToWorklist(LN); } if (!NIsValid) continue; } DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); // Add any operands of the new node which have not yet been combined to the // worklist as well. Because the worklist uniques things already, this // won't repeatedly process the same operand. CombinedNodes.insert(N); for (const SDValue &ChildN : N->op_values()) if (!CombinedNodes.count(ChildN.getNode())) AddToWorklist(ChildN.getNode()); SDValue RV = combine(N); if (!RV.getNode()) continue; ++NodesCombined; // If we get back the same node we passed in, rather than a new node or // zero, we know that the node must have defined multiple values and // CombineTo was used. Since CombineTo takes care of the worklist // mechanics for us, we have no work to do in this case. if (RV.getNode() == N) continue; assert(N->getOpcode() != ISD::DELETED_NODE && RV.getNode()->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned new node!"); DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); // Transfer debug value. DAG.TransferDbgValues(SDValue(N, 0), RV); if (N->getNumValues() == RV.getNode()->getNumValues()) DAG.ReplaceAllUsesWith(N, RV.getNode()); else { assert(N->getValueType(0) == RV.getValueType() && N->getNumValues() == 1 && "Type mismatch"); SDValue OpV = RV; DAG.ReplaceAllUsesWith(N, &OpV); } // Push the new node and any users onto the worklist AddToWorklist(RV.getNode()); AddUsersToWorklist(RV.getNode()); // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. This will also take care of adding any // operands which have lost a user to the worklist. recursivelyDeleteUnusedNodes(N); } // If the root changed (e.g. it was a dead load, update the root). DAG.setRoot(Dummy.getValue()); DAG.RemoveDeadNodes(); } SDValue DAGCombiner::visit(SDNode *N) { switch (N->getOpcode()) { default: break; case ISD::TokenFactor: return visitTokenFactor(N); case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); case ISD::ADD: return visitADD(N); case ISD::SUB: return visitSUB(N); case ISD::ADDC: return visitADDC(N); case ISD::SUBC: return visitSUBC(N); case ISD::ADDE: return visitADDE(N); case ISD::SUBE: return visitSUBE(N); case ISD::MUL: return visitMUL(N); case ISD::SDIV: return visitSDIV(N); case ISD::UDIV: return visitUDIV(N); case ISD::SREM: case ISD::UREM: return visitREM(N); case ISD::MULHU: return visitMULHU(N); case ISD::MULHS: return visitMULHS(N); case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); case ISD::SMULO: return visitSMULO(N); case ISD::UMULO: return visitUMULO(N); case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: return visitIMINMAX(N); case ISD::AND: return visitAND(N); case ISD::OR: return visitOR(N); case ISD::XOR: return visitXOR(N); case ISD::SHL: return visitSHL(N); case ISD::SRA: return visitSRA(N); case ISD::SRL: return visitSRL(N); case ISD::ROTR: case ISD::ROTL: return visitRotate(N); case ISD::BSWAP: return visitBSWAP(N); case ISD::CTLZ: return visitCTLZ(N); case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); case ISD::CTTZ: return visitCTTZ(N); case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); case ISD::CTPOP: return visitCTPOP(N); case ISD::SELECT: return visitSELECT(N); case ISD::VSELECT: return visitVSELECT(N); case ISD::SELECT_CC: return visitSELECT_CC(N); case ISD::SETCC: return visitSETCC(N); case ISD::SETCCE: return visitSETCCE(N); case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); case ISD::ANY_EXTEND: return visitANY_EXTEND(N); case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); case ISD::TRUNCATE: return visitTRUNCATE(N); case ISD::BITCAST: return visitBITCAST(N); case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); case ISD::FADD: return visitFADD(N); case ISD::FSUB: return visitFSUB(N); case ISD::FMUL: return visitFMUL(N); case ISD::FMA: return visitFMA(N); case ISD::FDIV: return visitFDIV(N); case ISD::FREM: return visitFREM(N); case ISD::FSQRT: return visitFSQRT(N); case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); case ISD::FP_ROUND: return visitFP_ROUND(N); case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); case ISD::FP_EXTEND: return visitFP_EXTEND(N); case ISD::FNEG: return visitFNEG(N); case ISD::FABS: return visitFABS(N); case ISD::FFLOOR: return visitFFLOOR(N); case ISD::FMINNUM: return visitFMINNUM(N); case ISD::FMAXNUM: return visitFMAXNUM(N); case ISD::FCEIL: return visitFCEIL(N); case ISD::FTRUNC: return visitFTRUNC(N); case ISD::BRCOND: return visitBRCOND(N); case ISD::BR_CC: return visitBR_CC(N); case ISD::LOAD: return visitLOAD(N); case ISD::STORE: return visitSTORE(N); case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); case ISD::MGATHER: return visitMGATHER(N); case ISD::MLOAD: return visitMLOAD(N); case ISD::MSCATTER: return visitMSCATTER(N); case ISD::MSTORE: return visitMSTORE(N); case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); } return SDValue(); } SDValue DAGCombiner::combine(SDNode *N) { SDValue RV = visit(N); // If nothing happened, try a target-specific DAG combine. if (!RV.getNode()) { assert(N->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned NULL!"); if (N->getOpcode() >= ISD::BUILTIN_OP_END || TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { // Expose the DAG combiner to the target combiner impls. TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, Level, false, this); RV = TLI.PerformDAGCombine(N, DagCombineInfo); } } // If nothing happened still, try promoting the operation. if (!RV.getNode()) { switch (N->getOpcode()) { default: break; case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: RV = PromoteIntBinOp(SDValue(N, 0)); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: RV = PromoteIntShiftOp(SDValue(N, 0)); break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: RV = PromoteExtend(SDValue(N, 0)); break; case ISD::LOAD: if (PromoteLoad(SDValue(N, 0))) RV = SDValue(N, 0); break; } } // If N is a commutative binary node, try commuting it to enable more // sdisel CSE. if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && N->getNumValues() == 1) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // Constant operands are canonicalized to RHS. if (isa
(N0) || !isa
(N1)) { SDValue Ops[] = {N1, N0}; SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, N->getFlags()); if (CSENode) return SDValue(CSENode, 0); } } return RV; } /// Given a node, return its input chain if it has one, otherwise return a null /// sd operand. static SDValue getInputChainForNode(SDNode *N) { if (unsigned NumOps = N->getNumOperands()) { if (N->getOperand(0).getValueType() == MVT::Other) return N->getOperand(0); if (N->getOperand(NumOps-1).getValueType() == MVT::Other) return N->getOperand(NumOps-1); for (unsigned i = 1; i < NumOps-1; ++i) if (N->getOperand(i).getValueType() == MVT::Other) return N->getOperand(i); } return SDValue(); } SDValue DAGCombiner::visitTokenFactor(SDNode *N) { // If N has two operands, where one has an input chain equal to the other, // the 'other' chain is redundant. if (N->getNumOperands() == 2) { if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) return N->getOperand(0); if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) return N->getOperand(1); } SmallVector
TFs; // List of token factors to visit. SmallVector
Ops; // Ops for replacing token factor. SmallPtrSet
SeenOps; bool Changed = false; // If we should replace this token factor. // Start out with this token factor. TFs.push_back(N); // Iterate through token factors. The TFs grows when new token factors are // encountered. for (unsigned i = 0; i < TFs.size(); ++i) { SDNode *TF = TFs[i]; // Check each of the operands. for (const SDValue &Op : TF->op_values()) { switch (Op.getOpcode()) { case ISD::EntryToken: // Entry tokens don't need to be added to the list. They are // redundant. Changed = true; break; case ISD::TokenFactor: if (Op.hasOneUse() && std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { // Queue up for processing. TFs.push_back(Op.getNode()); // Clean up in case the token factor is removed. AddToWorklist(Op.getNode()); Changed = true; break; } // Fall thru default: // Only add if it isn't already in the list. if (SeenOps.insert(Op.getNode()).second) Ops.push_back(Op); else Changed = true; break; } } } SDValue Result; // If we've changed things around then replace token factor. if (Changed) { if (Ops.empty()) { // The entry token is the only possible outcome. Result = DAG.getEntryNode(); } else { // New and improved token factor. Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); } // Add users to worklist if AA is enabled, since it may introduce // a lot of new chained token factors while removing memory deps. bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA : DAG.getSubtarget().useAA(); return CombineTo(N, Result, UseAA /*add to worklist*/); } return Result; } /// MERGE_VALUES can always be eliminated. SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { WorklistRemover DeadNodes(*this); // Replacing results may cause a different MERGE_VALUES to suddenly // be CSE'd with N, and carry its uses with it. Iterate until no // uses remain, to ensure that the node can be safely deleted. // First add the users of this node to the work list so that they // can be tried again once they have new operands. AddUsersToWorklist(N); do { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); } while (!N->use_empty()); deleteAndRecombine(N); return SDValue(N, 0); // Return N so it doesn't get rechecked! } /// If \p N is a ContantSDNode with isOpaque() == false return it casted to a /// ContantSDNode pointer else nullptr. static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { ConstantSDNode *Const = dyn_cast
(N); return Const != nullptr && !Const->isOpaque() ? Const : nullptr; } SDValue DAGCombiner::visitADD(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (add x, 0) -> x, vector edition if (ISD::isBuildVectorAllZeros(N1.getNode())) return N0; if (ISD::isBuildVectorAllZeros(N0.getNode())) return N1; } // fold (add x, undef) -> undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // fold (add c1, c2) -> c1+c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C); // canonicalize constant to RHS if (isConstantIntBuildVectorOrConstantInt(N0) && !isConstantIntBuildVectorOrConstantInt(N1)) return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); // fold (add x, 0) -> x if (isNullConstant(N1)) return N0; // fold (add Sym, c) -> Sym+c if (GlobalAddressSDNode *GA = dyn_cast
(N0)) if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && GA->getOpcode() == ISD::GlobalAddress) return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, GA->getOffset() + (uint64_t)N1C->getSExtValue()); // fold ((c1-A)+c2) -> (c1+c2)-A if (N1C && N0.getOpcode() == ISD::SUB) if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { SDLoc DL(N); return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(N1C->getAPIntValue()+ N0C->getAPIntValue(), DL, VT), N0.getOperand(1)); } // reassociate add if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) return RADD; // fold ((0-A) + B) -> B-A if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); // fold (A + (0-B)) -> A-B if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); // fold (A+(B-A)) -> B if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) return N1.getOperand(0); // fold ((B-A)+A) -> B if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) return N0.getOperand(0); // fold (A+(B-(A+C))) to (B-C) if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && N0 == N1.getOperand(1).getOperand(0)) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), N1.getOperand(1).getOperand(1)); // fold (A+(B-(C+A))) to (B-C) if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && N0 == N1.getOperand(1).getOperand(1)) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), N1.getOperand(1).getOperand(0)); // fold (A+((B-A)+or-C)) to (B+or-C) if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && N1.getOperand(0).getOpcode() == ISD::SUB && N0 == N1.getOperand(0).getOperand(1)) return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, N1.getOperand(0).getOperand(0), N1.getOperand(1)); // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); SDValue N10 = N1.getOperand(0); SDValue N11 = N1.getOperand(1); if (isa
(N00) || isa
(N10)) return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); } if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (a+b) -> (a|b) iff a and b share no bits. if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1)) return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0).getOperand(0))) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, DAG.getNode(ISD::SHL, SDLoc(N), VT, N1.getOperand(0).getOperand(1), N1.getOperand(1))); if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0).getOperand(0))) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0).getOperand(1), N0.getOperand(1))); if (N1.getOpcode() == ISD::AND) { SDValue AndOp0 = N1.getOperand(0); unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); unsigned DestBits = VT.getScalarType().getSizeInBits(); // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) // and similar xforms where the inner op is either ~0 or 0. if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { SDLoc DL(N); return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); } } // add (sext i1), X -> sub X, (zext i1) if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.getOperand(0).getValueType() == MVT::i1 && !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { SDLoc DL(N); SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); } // add X, (sextinreg Y i1) -> sub X, (and Y 1) if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { VTSDNode *TN = cast
(N1.getOperand(1)); if (TN->getVT() == MVT::i1) { SDLoc DL(N); SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), DAG.getConstant(1, DL, VT)); return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); } } return SDValue(); } SDValue DAGCombiner::visitADDC(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); // If the flag result is dead, turn this into an ADD. if (!N->hasAnyUseOfValue(1)) return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), MVT::Glue)); // canonicalize constant to RHS. ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); if (N0C && !N1C) return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); // fold (addc x, 0) -> x + no carry out if (isNullConstant(N1)) return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), MVT::Glue)); // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. APInt LHSZero, LHSOne; APInt RHSZero, RHSOne; DAG.computeKnownBits(N0, LHSZero, LHSOne); if (LHSZero.getBoolValue()) { DAG.computeKnownBits(N1, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), MVT::Glue)); } return SDValue(); } SDValue DAGCombiner::visitADDE(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue CarryIn = N->getOperand(2); // canonicalize constant to RHS ConstantSDNode *N0C = dyn_cast
(N0); ConstantSDNode *N1C = dyn_cast
(N1); if (N0C && !N1C) return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), N1, N0, CarryIn); // fold (adde x, y, false) -> (addc x, y) if (CarryIn.getOpcode() == ISD::CARRY_FALSE) return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); return SDValue(); } // Since it may not be valid to emit a fold to zero for vector initializers // check if we can before folding. static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, SelectionDAG &DAG, bool LegalOperations, bool LegalTypes) { if (!VT.isVector()) return DAG.getConstant(0, DL, VT); if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) return DAG.getConstant(0, DL, VT); return SDValue(); } SDValue DAGCombiner::visitSUB(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (sub x, 0) -> x, vector edition if (ISD::isBuildVectorAllZeros(N1.getNode())) return N0; } // fold (sub x, x) -> 0 // FIXME: Refactor this and xor and other similar operations together. if (N0 == N1) return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); // fold (sub c1, c2) -> c1-c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C); // fold (sub x, c) -> (add x, -c) if (N1C) { SDLoc DL(N); return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); } // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) if (isAllOnesConstant(N0)) return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); // fold A-(A-B) -> B if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) return N1.getOperand(1); // fold (A+B)-A -> B if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) return N0.getOperand(1); // fold (A+B)-B -> A if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) return N0.getOperand(0); // fold C2-(A+C1) -> (C2-C1)-A ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : dyn_cast
(N1.getOperand(1).getNode()); if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { SDLoc DL(N); SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), DL, VT); return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); } // fold ((A+(B+or-C))-B) -> A+or-C if (N0.getOpcode() == ISD::ADD && (N0.getOperand(1).getOpcode() == ISD::SUB || N0.getOperand(1).getOpcode() == ISD::ADD) && N0.getOperand(1).getOperand(0) == N1) return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1).getOperand(1)); // fold ((A+(C+B))-B) -> A+C if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && N0.getOperand(1).getOperand(1) == N1) return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1).getOperand(0)); // fold ((A-(B-C))-C) -> A-B if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && N0.getOperand(1).getOperand(1) == N1) return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1).getOperand(0)); // If either operand of a sub is undef, the result is undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // If the relocation model supports it, consider symbol offsets. if (GlobalAddressSDNode *GA = dyn_cast
(N0)) if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { // fold (sub Sym, c) -> Sym-c if (N1C && GA->getOpcode() == ISD::GlobalAddress) return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, GA->getOffset() - (uint64_t)N1C->getSExtValue()); // fold (sub Sym+c1, Sym+c2) -> c1-c2 if (GlobalAddressSDNode *GB = dyn_cast
(N1)) if (GA->getGlobal() == GB->getGlobal()) return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), SDLoc(N), VT); } // sub X, (sextinreg Y i1) -> add X, (and Y 1) if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { VTSDNode *TN = cast
(N1.getOperand(1)); if (TN->getVT() == MVT::i1) { SDLoc DL(N); SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), DAG.getConstant(1, DL, VT)); return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); } } return SDValue(); } SDValue DAGCombiner::visitSUBC(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); SDLoc DL(N); // If the flag result is dead, turn this into an SUB. if (!N->hasAnyUseOfValue(1)) return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); // fold (subc x, x) -> 0 + no borrow if (N0 == N1) return CombineTo(N, DAG.getConstant(0, DL, VT), DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); // fold (subc x, 0) -> x + no borrow if (isNullConstant(N1)) return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow if (isAllOnesConstant(N0)) return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); return SDValue(); } SDValue DAGCombiner::visitSUBE(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue CarryIn = N->getOperand(2); // fold (sube x, y, false) -> (subc x, y) if (CarryIn.getOpcode() == ISD::CARRY_FALSE) return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); return SDValue(); } SDValue DAGCombiner::visitMUL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); // fold (mul x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, SDLoc(N), VT); bool N0IsConst = false; bool N1IsConst = false; bool N1IsOpaqueConst = false; bool N0IsOpaqueConst = false; APInt ConstValue0, ConstValue1; // fold vector ops if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); } else { N0IsConst = isa
(N0); if (N0IsConst) { ConstValue0 = cast
(N0)->getAPIntValue(); N0IsOpaqueConst = cast
(N0)->isOpaque(); } N1IsConst = isa
(N1); if (N1IsConst) { ConstValue1 = cast
(N1)->getAPIntValue(); N1IsOpaqueConst = cast
(N1)->isOpaque(); } } // fold (mul c1, c2) -> c1*c2 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, N0.getNode(), N1.getNode()); // canonicalize constant to RHS (vector doesn't have to splat) if (isConstantIntBuildVectorOrConstantInt(N0) && !isConstantIntBuildVectorOrConstantInt(N1)) return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); // fold (mul x, 0) -> 0 if (N1IsConst && ConstValue1 == 0) return N1; // We require a splat of the entire scalar bit width for non-contiguous // bit patterns. bool IsFullSplat = ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); // fold (mul x, 1) -> x if (N1IsConst && ConstValue1 == 1 && IsFullSplat) return N0; // fold (mul x, -1) -> 0-x if (N1IsConst && ConstValue1.isAllOnesValue()) { SDLoc DL(N); return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); } // fold (mul x, (1 << c)) -> x << c if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && IsFullSplat) { SDLoc DL(N); return DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ConstValue1.logBase2(), DL, getShiftAmountTy(N0.getValueType()))); } // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && IsFullSplat) { unsigned Log2Val = (-ConstValue1).logBase2(); SDLoc DL(N); // FIXME: If the input is something that is easily negated (e.g. a // single-use add), we should put the negate there. return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(Log2Val, DL, getShiftAmountTy(N0.getValueType())))); } APInt Val; // (mul (shl X, c1), c2) -> (mul X, c2 << c1) if (N1IsConst && N0.getOpcode() == ISD::SHL && (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || isa
(N0.getOperand(1)))) { SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); AddToWorklist(C3.getNode()); return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); } // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one // use. { SDValue Sh(nullptr,0), Y(nullptr,0); // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). if (N0.getOpcode() == ISD::SHL && (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || isa
(N0.getOperand(1))) && N0.getNode()->hasOneUse()) { Sh = N0; Y = N1; } else if (N1.getOpcode() == ISD::SHL && isa
(N1.getOperand(1)) && N1.getNode()->hasOneUse()) { Sh = N1; Y = N0; } if (Sh.getNode()) { SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); } } // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) if (isConstantIntBuildVectorOrConstantInt(N1) && N0.getOpcode() == ISD::ADD && isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && isMulAddWithConstProfitable(N, N0, N1)) return DAG.getNode(ISD::ADD, SDLoc(N), VT, DAG.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1), DAG.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1)); // reassociate mul if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) return RMUL; return SDValue(); } /// Return true if divmod libcall is available. static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, const TargetLowering &TLI) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: return false; // No libcall for vector types. case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; } return TLI.getLibcallName(LC) != nullptr; } /// Issue divrem if both quotient and remainder are needed. SDValue DAGCombiner::useDivRem(SDNode *Node) { if (Node->use_empty()) return SDValue(); // This is a dead node, leave it alone. EVT VT = Node->getValueType(0); if (!TLI.isTypeLegal(VT)) return SDValue(); unsigned Opcode = Node->getOpcode(); bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; // If DIVREM is going to get expanded into a libcall, // but there is no libcall available, then don't combine. if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && !isDivRemLibcallAvailable(Node, isSigned, TLI)) return SDValue(); // If div is legal, it's better to do the normal expansion unsigned OtherOpcode = 0; if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; if (TLI.isOperationLegalOrCustom(Opcode, VT)) return SDValue(); } else { OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) return SDValue(); } SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); SDValue combined; for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), UE = Op0.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == Node || User->use_empty()) continue; // Convert the other matching node(s), too; // otherwise, the DIVREM may get target-legalized into something // target-specific that we won't be able to recognize. unsigned UserOpc = User->getOpcode(); if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && User->getOperand(0) == Op0 && User->getOperand(1) == Op1) { if (!combined) { if (UserOpc == OtherOpcode) { SDVTList VTs = DAG.getVTList(VT, VT); combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); } else if (UserOpc == DivRemOpc) { combined = SDValue(User, 0); } else { assert(UserOpc == Opcode); continue; } } if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) CombineTo(User, combined); else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) CombineTo(User, combined.getValue(1)); } } return combined; } SDValue DAGCombiner::visitSDIV(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; SDLoc DL(N); // fold (sdiv c1, c2) -> c1/c2 ConstantSDNode *N0C = isConstOrConstSplat(N0); ConstantSDNode *N1C = isConstOrConstSplat(N1); if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); // fold (sdiv X, 1) -> X if (N1C && N1C->isOne()) return N0; // fold (sdiv X, -1) -> 0-X if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); // If we know the sign bits of both operands are zero, strength reduce to a // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 if (!VT.isVector()) { if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); } // fold (sdiv X, pow2) -> simple ops after legalize // FIXME: We check for the exact bit here because the generic lowering gives // better results in that case. The target-specific lowering should learn how // to handle exact sdivs efficiently. if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && !cast
(N)->Flags.hasExact() && (N1C->getAPIntValue().isPowerOf2() || (-N1C->getAPIntValue()).isPowerOf2())) { // Target-specific implementation of sdiv x, pow2. if (SDValue Res = BuildSDIVPow2(N)) return Res; unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); // Splat the sign bit into the register SDValue SGN = DAG.getNode(ISD::SRA, DL, VT, N0, DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, getShiftAmountTy(N0.getValueType()))); AddToWorklist(SGN.getNode()); // Add (N0 < 0) ? abs2 - 1 : 0; SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, SGN, DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, getShiftAmountTy(SGN.getValueType()))); SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); AddToWorklist(SRL.getNode()); AddToWorklist(ADD.getNode()); // Divide by pow2 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, DAG.getConstant(lg2, DL, getShiftAmountTy(ADD.getValueType()))); // If we're dividing by a positive value, we're done. Otherwise, we must // negate the result. if (N1C->getAPIntValue().isNonNegative()) return SRA; AddToWorklist(SRA.getNode()); return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); } // If integer divide is expensive and we satisfy the requirements, emit an // alternate sequence. Targets may check function attributes for size/speed // trade-offs. AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) if (SDValue Op = BuildSDIV(N)) return Op; // sdiv, srem -> sdivrem // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. // Otherwise, we break the simplification logic in visitREM(). if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) if (SDValue DivRem = useDivRem(N)) return DivRem; // undef / X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, DL, VT); // X / undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } SDValue DAGCombiner::visitUDIV(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; SDLoc DL(N); // fold (udiv c1, c2) -> c1/c2 ConstantSDNode *N0C = isConstOrConstSplat(N0); ConstantSDNode *N1C = isConstOrConstSplat(N1); if (N0C && N1C) if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, N0C, N1C)) return Folded; // fold (udiv x, (1 << c)) -> x >>u c if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::SRL, DL, VT, N0, DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, getShiftAmountTy(N0.getValueType()))); // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { if (SHC->getAPIntValue().isPowerOf2()) { EVT ADDVT = N1.getOperand(1).getValueType(); SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), DAG.getConstant(SHC->getAPIntValue() .logBase2(), DL, ADDVT)); AddToWorklist(Add.getNode()); return DAG.getNode(ISD::SRL, DL, VT, N0, Add); } } } // fold (udiv x, c) -> alternate AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) if (SDValue Op = BuildUDIV(N)) return Op; // sdiv, srem -> sdivrem // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. // Otherwise, we break the simplification logic in visitREM(). if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) if (SDValue DivRem = useDivRem(N)) return DivRem; // undef / X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, DL, VT); // X / undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } // handles ISD::SREM and ISD::UREM SDValue DAGCombiner::visitREM(SDNode *N) { unsigned Opcode = N->getOpcode(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); bool isSigned = (Opcode == ISD::SREM); SDLoc DL(N); // fold (rem c1, c2) -> c1%c2 ConstantSDNode *N0C = isConstOrConstSplat(N0); ConstantSDNode *N1C = isConstOrConstSplat(N1); if (N0C && N1C) if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) return Folded; if (isSigned) { // If we know the sign bits of both operands are zero, strength reduce to a // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 if (!VT.isVector()) { if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UREM, DL, VT, N0, N1); } } else { // fold (urem x, pow2) -> (and x, pow2-1) if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) { return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); } // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { if (SHC->getAPIntValue().isPowerOf2()) { SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT)); AddToWorklist(Add.getNode()); return DAG.getNode(ISD::AND, DL, VT, N0, Add); } } } } AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); // If X/C can be simplified by the division-by-constant logic, lower // X%C to the equivalent of X-X/C*C. // To avoid mangling nodes, this simplification requires that the combine() // call for the speculative DIV must not cause a DIVREM conversion. We guard // against this by skipping the simplification if isIntDivCheap(). When // div is not cheap, combine will not return a DIVREM. Regardless, // checking cheapness here makes sense since the simplification results in // fatter code. if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); AddToWorklist(Div.getNode()); SDValue OptimizedDiv = combine(Div.getNode()); if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && (OptimizedDiv.getOpcode() != ISD::SDIVREM)); SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); AddToWorklist(Mul.getNode()); return Sub; } } // sdiv, srem -> sdivrem if (SDValue DivRem = useDivRem(N)) return DivRem.getValue(1); // undef % X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, DL, VT); // X % undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDValue(); } SDValue DAGCombiner::visitMULHS(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); // fold (mulhs x, 0) -> 0 if (isNullConstant(N1)) return N1; // fold (mulhs x, 1) -> (sra x, size(x)-1) if (isOneConstant(N1)) { SDLoc DL(N); return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, DAG.getConstant(N0.getValueType().getSizeInBits() - 1, DL, getShiftAmountTy(N0.getValueType()))); } // fold (mulhs x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, SDLoc(N), VT); // If the type twice as wide is legal, transform the mulhs to a wider multiply // plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, DAG.getConstant(SimpleSize, DL, getShiftAmountTy(N1.getValueType()))); return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); } } return SDValue(); } SDValue DAGCombiner::visitMULHU(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); // fold (mulhu x, 0) -> 0 if (isNullConstant(N1)) return N1; // fold (mulhu x, 1) -> 0 if (isOneConstant(N1)) return DAG.getConstant(0, DL, N0.getValueType()); // fold (mulhu x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, DL, VT); // If the type twice as wide is legal, transform the mulhu to a wider multiply // plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, DAG.getConstant(SimpleSize, DL, getShiftAmountTy(N1.getValueType()))); return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); } } return SDValue(); } /// Perform optimizations common to nodes that compute two values. LoOp and HiOp /// give the opcodes for the two computations that are being performed. Return /// true if a simplification was made. SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp) { // If the high half is not needed, just compute the low half. bool HiExists = N->hasAnyUseOfValue(1); if (!HiExists && (!LegalOperations || TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); return CombineTo(N, Res, Res); } // If the low half is not needed, just compute the high half. bool LoExists = N->hasAnyUseOfValue(0); if (!LoExists && (!LegalOperations || TLI.isOperationLegal(HiOp, N->getValueType(1)))) { SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); return CombineTo(N, Res, Res); } // If both halves are used, return as it is. if (LoExists && HiExists) return SDValue(); // If the two computed results can be simplified separately, separate them. if (LoExists) { SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); AddToWorklist(Lo.getNode()); SDValue LoOpt = combine(Lo.getNode()); if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && (!LegalOperations || TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) return CombineTo(N, LoOpt, LoOpt); } if (HiExists) { SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); AddToWorklist(Hi.getNode()); SDValue HiOpt = combine(Hi.getNode()); if (HiOpt.getNode() && HiOpt != Hi && (!LegalOperations || TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) return CombineTo(N, HiOpt, HiOpt); } return SDValue(); } SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) return Res; EVT VT = N->getValueType(0); SDLoc DL(N); // If the type is twice as wide is legal, transform the mulhu to a wider // multiply plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); // Compute the high part as N1. Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, DAG.getConstant(SimpleSize, DL, getShiftAmountTy(Lo.getValueType()))); Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); // Compute the low part as N0. Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); return CombineTo(N, Lo, Hi); } } return SDValue(); } SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) return Res; EVT VT = N->getValueType(0); SDLoc DL(N); // If the type is twice as wide is legal, transform the mulhu to a wider // multiply plus a shift. if (VT.isSimple() && !VT.isVector()) { MVT Simple = VT.getSimpleVT(); unsigned SimpleSize = Simple.getSizeInBits(); EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); if (TLI.isOperationLegal(ISD::MUL, NewVT)) { SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); // Compute the high part as N1. Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, DAG.getConstant(SimpleSize, DL, getShiftAmountTy(Lo.getValueType()))); Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); // Compute the low part as N0. Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); return CombineTo(N, Lo, Hi); } } return SDValue(); } SDValue DAGCombiner::visitSMULO(SDNode *N) { // (smulo x, 2) -> (saddo x, x) if (ConstantSDNode *C2 = dyn_cast
(N->getOperand(1))) if (C2->getAPIntValue() == 2) return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), N->getOperand(0), N->getOperand(0)); return SDValue(); } SDValue DAGCombiner::visitUMULO(SDNode *N) { // (umulo x, 2) -> (uaddo x, x) if (ConstantSDNode *C2 = dyn_cast
(N->getOperand(1))) if (C2->getAPIntValue() == 2) return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), N->getOperand(0), N->getOperand(0)); return SDValue(); } SDValue DAGCombiner::visitIMINMAX(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (add c1, c2) -> c1+c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); if (N0C && N1C) return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); // canonicalize constant to RHS if (isConstantIntBuildVectorOrConstantInt(N0) && !isConstantIntBuildVectorOrConstantInt(N1)) return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); return SDValue(); } /// If this is a binary operator with two operands of the same opcode, try to /// simplify it. SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); EVT VT = N0.getValueType(); assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); // Bail early if none of these transforms apply. if (N0.getNode()->getNumOperands() == 0) return SDValue(); // For each of OP in AND/OR/XOR: // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) // // do not sink logical op inside of a vector extend, since it may combine // into a vsetcc. EVT Op0VT = N0.getOperand(0).getValueType(); if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::BSWAP || // Avoid infinite looping with PromoteIntBinOp. (N0.getOpcode() == ISD::ANY_EXTEND && (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || (N0.getOpcode() == ISD::TRUNCATE && (!TLI.isZExtFree(VT, Op0VT) || !TLI.isTruncateFree(Op0VT, VT)) && TLI.isTypeLegal(Op0VT))) && !VT.isVector() && Op0VT == N1.getOperand(0).getValueType() && (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorklist(ORNode.getNode()); return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); } // For each of OP in SHL/SRL/SRA/AND... // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && N0.getOperand(1) == N1.getOperand(1)) { SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorklist(ORNode.getNode()); return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode, N0.getOperand(1)); } // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) // Only perform this optimization after type legalization and before // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and // we don't want to undo this promotion. // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper // on scalars. if ((N0.getOpcode() == ISD::BITCAST || N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && Level == AfterLegalizeTypes) { SDValue In0 = N0.getOperand(0); SDValue In1 = N1.getOperand(0); EVT In0Ty = In0.getValueType(); EVT In1Ty = In1.getValueType(); SDLoc DL(N); // If both incoming values are integers, and the original types are the // same. if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); AddToWorklist(Op.getNode()); return BC; } } // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) // If both shuffles use the same mask, and both shuffle within a single // vector, then it is worthwhile to move the swizzle after the operation. // The type-legalizer generates this pattern when loading illegal // vector types from memory. In many cases this allows additional shuffle // optimizations. // There are other cases where moving the shuffle after the xor/and/or // is profitable even if shuffles don't perform a swizzle. // If both shuffles use the same mask, and both shuffles have the same first // or second operand, then it might still be profitable to move the shuffle // after the xor/and/or operation. if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { ShuffleVectorSDNode *SVN0 = cast
(N0); ShuffleVectorSDNode *SVN1 = cast
(N1); assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && "Inputs to shuffles are not the same type"); // Check that both shuffles use the same mask. The masks are known to be of // the same length because the result vector type is the same. // Check also that shuffles have only one use to avoid introducing extra // instructions. if (SVN0->hasOneUse() && SVN1->hasOneUse() && SVN0->getMask().equals(SVN1->getMask())) { SDValue ShOp = N0->getOperand(1); // Don't try to fold this node if it requires introducing a // build vector of all zeros that might be illegal at this stage. if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { if (!LegalTypes) ShOp = DAG.getConstant(0, SDLoc(N), VT); else ShOp = SDValue(); } // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0->getOperand(0), N1->getOperand(0)); AddToWorklist(NewNode.getNode()); return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, &SVN0->getMask()[0]); } // Don't try to fold this node if it requires introducing a // build vector of all zeros that might be illegal at this stage. ShOp = N0->getOperand(0); if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { if (!LegalTypes) ShOp = DAG.getConstant(0, SDLoc(N), VT); else ShOp = SDValue(); } // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0->getOperand(1), N1->getOperand(1)); AddToWorklist(NewNode.getNode()); return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, &SVN0->getMask()[0]); } } } return SDValue(); } /// This contains all DAGCombine rules which reduce two values combined by /// an And operation to a single value. This makes them reusable in the context /// of visitSELECT(). Rules involving constants are not included as /// visitSELECT() already handles those cases. SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference) { EVT VT = N1.getValueType(); // fold (and x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, SDLoc(LocReference), VT); // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) SDValue LL, LR, RL, RR, CC0, CC1; if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast
(CC0)->get(); ISD::CondCode Op1 = cast
(CC1)->get(); if (LR == RR && isa
(LR) && Op0 == Op1 && LL.getValueType().isInteger()) { // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) if (isNullConstant(LR) && Op1 == ISD::SETEQ) { SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), LR.getValueType(), LL, RL); AddToWorklist(ORNode.getNode()); return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); } if (isAllOnesConstant(LR)) { // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) if (Op1 == ISD::SETEQ) { SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), LR.getValueType(), LL, RL); AddToWorklist(ANDNode.getNode()); return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); } // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) if (Op1 == ISD::SETGT) { SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), LR.getValueType(), LL, RL); AddToWorklist(ORNode.getNode()); return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); } } } // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) if (LL == RL && isa
(LR) && isa
(RR) && Op0 == Op1 && LL.getValueType().isInteger() && Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || (isAllOnesConstant(LR) && isNullConstant(RR)))) { SDLoc DL(N0); SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), LL, DAG.getConstant(1, DL, LL.getValueType())); AddToWorklist(ADDNode.getNode()); return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, DAG.getConstant(2, DL, LL.getValueType()), ISD::SETUGE); } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = LL.getValueType().isInteger(); ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID && (!LegalOperations || (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { EVT CCVT = getSetCCResultType(LL.getValueType()); if (N0.getValueType() == CCVT || (!LegalOperations && N0.getValueType() == MVT::i1)) return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), LL, LR, Result); } } } if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && VT.getSizeInBits() <= 64) { if (ConstantSDNode *ADDI = dyn_cast
(N0.getOperand(1))) { APInt ADDC = ADDI->getAPIntValue(); if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal // immediate for an add, but it is legal if its top c2 bits are set, // transform the ADD so the immediate doesn't need to be materialized // in a register. if (ConstantSDNode *SRLI = dyn_cast
(N1.getOperand(1))) { APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), SRLI->getZExtValue()); if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { ADDC |= Mask; if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { SDLoc DL(N0); SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); CombineTo(N0.getNode(), NewAdd); // Return N so it doesn't get rechecked! return SDValue(LocReference, 0); } } } } } } return SDValue(); } bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, bool &NarrowLoad) { uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) return false; ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); LoadedVT = LoadN->getMemoryVT(); if (ExtVT == LoadedVT && (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { // ZEXTLOAD will match without needing to change the size of the value being // loaded. NarrowLoad = false; return true; } // Do not change the width of a volatile load. if (LoadN->isVolatile()) return false; // Do not generate loads of non-round integer types since these can // be expensive (and would be wrong if the type is not byte sized). if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) return false; if (LegalOperations && !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) return false; if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) return false; NarrowLoad = true; return true; } SDValue DAGCombiner::visitAND(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N1.getValueType(); // fold vector ops if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (and x, 0) -> 0, vector edition if (ISD::isBuildVectorAllZeros(N0.getNode())) // do not return N0, because undef node may exist in N0 return DAG.getConstant( APInt::getNullValue( N0.getValueType().getScalarType().getSizeInBits()), SDLoc(N), N0.getValueType()); if (ISD::isBuildVectorAllZeros(N1.getNode())) // do not return N1, because undef node may exist in N1 return DAG.getConstant( APInt::getNullValue( N1.getValueType().getScalarType().getSizeInBits()), SDLoc(N), N1.getValueType()); // fold (and x, -1) -> x, vector edition if (ISD::isBuildVectorAllOnes(N0.getNode())) return N1; if (ISD::isBuildVectorAllOnes(N1.getNode())) return N0; } // fold (and c1, c2) -> c1&c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); ConstantSDNode *N1C = dyn_cast
(N1); if (N0C && N1C && !N1C->isOpaque()) return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); // canonicalize constant to RHS if (isConstantIntBuildVectorOrConstantInt(N0) && !isConstantIntBuildVectorOrConstantInt(N1)) return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); // fold (and x, -1) -> x if (isAllOnesConstant(N1)) return N0; // if (and x, c) is known to be zero, return 0 unsigned BitWidth = VT.getScalarType().getSizeInBits(); if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnesValue(BitWidth))) return DAG.getConstant(0, SDLoc(N), VT); // reassociate and if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) return RAND; // fold (and (or x, C), D) -> D if (C & D) == D if (N1C && N0.getOpcode() == ISD::OR) if (ConstantSDNode *ORI = dyn_cast
(N0.getOperand(1))) if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) return N1; // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { SDValue N0Op0 = N0.getOperand(0); APInt Mask = ~N1C->getAPIntValue(); Mask = Mask.trunc(N0Op0.getValueSizeInBits()); if (DAG.MaskedValueIsZero(N0Op0, Mask)) { SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N0.getValueType(), N0Op0); // Replace uses of the AND with uses of the Zero extend node. CombineTo(N, Zext); // We actually want to replace all uses of the any_extend with the // zero_extend, to avoid duplicating things. This will later cause this // AND to be folded. CombineTo(N0.getNode(), Zext); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must // already be zero by virtue of the width of the base type of the load. // // the 'X' node here can either be nothing or an extract_vector_elt to catch // more cases. if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && N0.getOperand(0).getOpcode() == ISD::LOAD) || N0.getOpcode() == ISD::LOAD) { LoadSDNode *Load = cast
( (N0.getOpcode() == ISD::LOAD) ? N0 : N0.getOperand(0) ); // Get the constant (if applicable) the zero'th operand is being ANDed with. // This can be a pure constant or a vector splat, in which case we treat the // vector as a scalar and use the splat value. APInt Constant = APInt::getNullValue(1); if (const ConstantSDNode *C = dyn_cast
(N1)) { Constant = C->getAPIntValue(); } else if (BuildVectorSDNode *Vector = dyn_cast
(N1)) { APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs); if (IsSplat) { // Undef bits can contribute to a possible optimisation if set, so // set them. SplatValue |= SplatUndef; // The splat value may be something like "0x00FFFFFF", which means 0 for // the first vector value and FF for the rest, repeating. We need a mask // that will apply equally to all members of the vector, so AND all the // lanes of the constant together. EVT VT = Vector->getValueType(0); unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); // If the splat value has been compressed to a bitlength lower // than the size of the vector lane, we need to re-expand it to // the lane size. if (BitWidth > SplatBitSize) for (SplatValue = SplatValue.zextOrTrunc(BitWidth); SplatBitSize < BitWidth; SplatBitSize = SplatBitSize * 2) SplatValue |= SplatValue.shl(SplatBitSize); // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. if (SplatBitSize % BitWidth == 0) { Constant = APInt::getAllOnesValue(BitWidth); for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); } } } // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is // actually legal and isn't going to get expanded, else this is a false // optimisation. bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, Load->getValueType(0), Load->getMemoryVT()); // Resize the constant to the same size as the original memory access before // extension. If it is still the AllOnesValue then this AND is completely // unneeded. Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); bool B; switch (Load->getExtensionType()) { default: B = false; break; case ISD::EXTLOAD: B = CanZextLoadProfitably; break; case ISD::ZEXTLOAD: case ISD::NON_EXTLOAD: B = true; break; } if (B && Constant.isAllOnesValue()) { // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to // preserve semantics once we get rid of the AND. SDValue NewLoad(Load, 0); if (Load->getExtensionType() == ISD::EXTLOAD) { NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, Load->getValueType(0), SDLoc(Load), Load->getChain(), Load->getBasePtr(), Load->getOffset(), Load->getMemoryVT(), Load->getMemOperand()); // Replace uses of the EXTLOAD with the new ZEXTLOAD. if (Load->getNumValues() == 3) { // PRE/POST_INC loads have 3 values. SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), NewLoad.getValue(2) }; CombineTo(Load, To, 3, true); } else { CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); } } // Fold the AND away, taking care not to fold to the old load node if we // replaced it. CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (and (load x), 255) -> (zextload x, i8) // fold (and (extload x, i16), 255) -> (zextload x, i8) // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) if (N1C && (N0.getOpcode() == ISD::LOAD || (N0.getOpcode() == ISD::ANY_EXTEND && N0.getOperand(0).getOpcode() == ISD::LOAD))) { bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; LoadSDNode *LN0 = HasAnyExt ? cast
(N0.getOperand(0)) : cast
(N0); if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { auto NarrowLoad = false; EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; EVT ExtVT, LoadedVT; if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, NarrowLoad)) { if (!NarrowLoad) { SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, LN0->getChain(), LN0->getBasePtr(), ExtVT, LN0->getMemOperand()); AddToWorklist(N); CombineTo(LN0, NewLoad, NewLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } else { EVT PtrType = LN0->getOperand(1).getValueType(); unsigned Alignment = LN0->getAlignment(); SDValue NewPtr = LN0->getBasePtr(); // For big endian targets, we need to add an offset to the pointer // to load the correct bytes. For little endian systems, we merely // need to read fewer bytes from the same pointer. if (DAG.getDataLayout().isBigEndian()) { unsigned LVTStoreBytes = LoadedVT.getStoreSize(); unsigned EVTStoreBytes = ExtVT.getStoreSize(); unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; SDLoc DL(LN0); NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); Alignment = MinAlign(Alignment, PtrOff); } AddToWorklist(NewPtr.getNode()); SDValue Load = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, LN0->getChain(), NewPtr, LN0->getPointerInfo(), ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), Alignment, LN0->getAAInfo()); AddToWorklist(N); CombineTo(LN0, Load, Load.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } } if (SDValue Combined = visitANDLike(N0, N1, N)) return Combined; // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) if (N0.getOpcode() == N1.getOpcode()) if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) return Tmp; // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) // fold (and (sra)) -> (and (srl)) when possible. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (zext_inreg (extload x)) -> (zextload x) if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, BitWidth - MemVT.getScalarType().getSizeInBits())) && ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), LN0->getBasePtr(), MemVT, LN0->getMemOperand()); AddToWorklist(N); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, BitWidth - MemVT.getScalarType().getSizeInBits())) && ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), LN0->getBasePtr(), MemVT, LN0->getMemOperand()); AddToWorklist(N); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), N0.getOperand(1), false); if (BSwap.getNode()) return BSwap; } return SDValue(); } /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, bool DemandHighBits) { if (!LegalOperations) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) return SDValue(); if (!TLI.isOperationLegal(ISD::BSWAP, VT)) return SDValue(); // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) bool LookPassAnd0 = false; bool LookPassAnd1 = false; if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) std::swap(N0, N1); if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() == ISD::AND) { if (!N0.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N01C = dyn_cast
(N0.getOperand(1)); if (!N01C || N01C->getZExtValue() != 0xFF00) return SDValue(); N0 = N0.getOperand(0); LookPassAnd0 = true; } if (N1.getOpcode() == ISD::AND) { if (!N1.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N11C = dyn_cast
(N1.getOperand(1)); if (!N11C || N11C->getZExtValue() != 0xFF) return SDValue(); N1 = N1.getOperand(0); LookPassAnd1 = true; } if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) return SDValue(); if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N01C = dyn_cast
(N0.getOperand(1)); ConstantSDNode *N11C = dyn_cast
(N1.getOperand(1)); if (!N01C || !N11C) return SDValue(); if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) return SDValue(); // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) SDValue N00 = N0->getOperand(0); if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { if (!N00.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N001C = dyn_cast
(N00.getOperand(1)); if (!N001C || N001C->getZExtValue() != 0xFF) return SDValue(); N00 = N00.getOperand(0); LookPassAnd0 = true; } SDValue N10 = N1->getOperand(0); if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { if (!N10.getNode()->hasOneUse()) return SDValue(); ConstantSDNode *N101C = dyn_cast
(N10.getOperand(1)); if (!N101C || N101C->getZExtValue() != 0xFF00) return SDValue(); N10 = N10.getOperand(0); LookPassAnd1 = true; } if (N00 != N10) return SDValue(); // Make sure everything beyond the low halfword gets set to zero since the SRL // 16 will clear the top bits. unsigned OpSizeInBits = VT.getSizeInBits(); if (DemandHighBits && OpSizeInBits > 16) { // If the left-shift isn't masked out then the only way this is a bswap is // if all bits beyond the low 8 are 0. In that case the entire pattern // reduces to a left shift anyway: leave it for other parts of the combiner. if (!LookPassAnd0) return SDValue(); // However, if the right shift isn't masked out then it might be because // it's not needed. See if we can spot that too. if (!LookPassAnd1 && !DAG.MaskedValueIsZero( N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) return SDValue(); } SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); if (OpSizeInBits > 16) { SDLoc DL(N); Res = DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(OpSizeInBits - 16, DL, getShiftAmountTy(VT))); } return Res; } /// Return true if the specified node is an element that makes up a 32-bit /// packed halfword byteswap. /// ((x & 0x000000ff) << 8) | /// ((x & 0x0000ff00) >> 8) | /// ((x & 0x00ff0000) << 8) | /// ((x & 0xff000000) >> 8) static bool isBSwapHWordElement(SDValue N, MutableArrayRef
Parts) { if (!N.getNode()->hasOneUse()) return false; unsigned Opc = N.getOpcode(); if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) return false; ConstantSDNode *N1C = dyn_cast
(N.getOperand(1)); if (!N1C) return false; unsigned Num; switch (N1C->getZExtValue()) { default: return false; case 0xFF: Num = 0; break; case 0xFF00: Num = 1; break; case 0xFF0000: Num = 2; break; case 0xFF000000: Num = 3; break; } // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). SDValue N0 = N.getOperand(0); if (Opc == ISD::AND) { if (Num == 0 || Num == 2) { // (x >> 8) & 0xff // (x >> 8) & 0xff0000 if (N0.getOpcode() != ISD::SRL) return false; ConstantSDNode *C = dyn_cast
(N0.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } else { // (x << 8) & 0xff00 // (x << 8) & 0xff000000 if (N0.getOpcode() != ISD::SHL) return false; ConstantSDNode *C = dyn_cast
(N0.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } } else if (Opc == ISD::SHL) { // (x & 0xff) << 8 // (x & 0xff0000) << 8 if (Num != 0 && Num != 2) return false; ConstantSDNode *C = dyn_cast
(N.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } else { // Opc == ISD::SRL // (x & 0xff00) >> 8 // (x & 0xff000000) >> 8 if (Num != 1 && Num != 3) return false; ConstantSDNode *C = dyn_cast
(N.getOperand(1)); if (!C || C->getZExtValue() != 8) return false; } if (Parts[Num]) return false; Parts[Num] = N0.getOperand(0).getNode(); return true; } /// Match a 32-bit packed halfword bswap. That is /// ((x & 0x000000ff) << 8) | /// ((x & 0x0000ff00) >> 8) | /// ((x & 0x00ff0000) << 8) | /// ((x & 0xff000000) >> 8) /// => (rotl (bswap x), 16) SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { if (!LegalOperations) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); if (!TLI.isOperationLegal(ISD::BSWAP, VT)) return SDValue(); // Look for either // (or (or (and), (and)), (or (and), (and))) // (or (or (or (and), (and)), (and)), (and)) if (N0.getOpcode() != ISD::OR) return SDValue(); SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); SDNode *Parts[4] = {}; if (N1.getOpcode() == ISD::OR && N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { // (or (or (and), (and)), (or (and), (and))) SDValue N000 = N00.getOperand(0); if (!isBSwapHWordElement(N000, Parts)) return SDValue(); SDValue N001 = N00.getOperand(1); if (!isBSwapHWordElement(N001, Parts)) return SDValue(); SDValue N010 = N01.getOperand(0); if (!isBSwapHWordElement(N010, Parts)) return SDValue(); SDValue N011 = N01.getOperand(1); if (!isBSwapHWordElement(N011, Parts)) return SDValue(); } else { // (or (or (or (and), (and)), (and)), (and)) if (!isBSwapHWordElement(N1, Parts)) return SDValue(); if (!isBSwapHWordElement(N01, Parts)) return SDValue(); if (N00.getOpcode() != ISD::OR) return SDValue(); SDValue N000 = N00.getOperand(0); if (!isBSwapHWordElement(N000, Parts)) return SDValue(); SDValue N001 = N00.getOperand(1); if (!isBSwapHWordElement(N001, Parts)) return SDValue(); } // Make sure the parts are all coming from the same node. if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) return SDValue(); SDLoc DL(N); SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, SDValue(Parts[0], 0)); // Result of the bswap should be rotated by 16. If it's not legal, then // do (x << 16) | (x >> 16). SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); return DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); } /// This contains all DAGCombine rules which reduce two values combined by /// an Or operation to a single value \see visitANDLike(). SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { EVT VT = N1.getValueType(); // fold (or x, undef) -> -1 if (!LegalOperations && (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), SDLoc(LocReference), VT); } // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) SDValue LL, LR, RL, RR, CC0, CC1; if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast
(CC0)->get(); ISD::CondCode Op1 = cast
(CC1)->get(); if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), LR.getValueType(), LL, RL); AddToWorklist(ORNode.getNode()); return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); } // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), LR.getValueType(), LL, RL); AddToWorklist(ANDNode.getNode()); return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = LL.getValueType().isInteger(); ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID && (!LegalOperations || (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { EVT CCVT = getSetCCResultType(LL.getValueType()); if (N0.getValueType() == CCVT || (!LegalOperations && N0.getValueType() == MVT::i1)) return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), LL, LR, Result); } } } // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && // Don't increase # computations. (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { // We can only do this xform if we know that bits from X that are set in C2 // but not in C1 are already zero. Likewise for Y. if (const ConstantSDNode *N0O1C = getAsNonOpaqueConstant(N0.getOperand(1))) { if (const ConstantSDNode *N1O1C = getAsNonOpaqueConstant(N1.getOperand(1))) { // We can only do this xform if we know that bits from X that are set in // C2 but not in C1 are already zero. Likewise for Y. const APInt &LHSMask = N0O1C->getAPIntValue(); const APInt &RHSMask = N1O1C->getAPIntValue(); if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1.getOperand(0)); SDLoc DL(LocReference); return DAG.getNode(ISD::AND, DL, VT, X, DAG.getConstant(LHSMask | RHSMask, DL, VT)); } } } } // (or (and X, M), (and X, N)) -> (and X, (or M, N)) if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && N0.getOperand(0) == N1.getOperand(0) && // Don't increase # computations. (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(1), N1.getOperand(1)); return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); } return SDValue(); } SDValue DAGCombiner::visitOR(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N1.getValueType(); // fold vector ops if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (or x, 0) -> x, vector edition if (ISD::isBuildVectorAllZeros(N0.getNode())) return N1; if (ISD::isBuildVectorAllZeros(N1.getNode())) return N0; // fold (or x, -1) -> -1, vector edition if (ISD::isBuildVectorAllOnes(N0.getNode())) // do not return N0, because undef node may exist in N0 return DAG.getConstant( APInt::getAllOnesValue( N0.getValueType().getScalarType().getSizeInBits()), SDLoc(N), N0.getValueType()); if (ISD::isBuildVectorAllOnes(N1.getNode())) // do not return N1, because undef node may exist in N1 return DAG.getConstant( APInt::getAllOnesValue( N1.getValueType().getScalarType().getSizeInBits()), SDLoc(N), N1.getValueType()); // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) // Do this only if the resulting shuffle is legal. if (isa
(N0) && isa
(N1) && // Avoid folding a node with illegal type. TLI.isTypeLegal(VT) && N0->getOperand(1) == N1->getOperand(1) && ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { bool CanFold = true; unsigned NumElts = VT.getVectorNumElements(); const ShuffleVectorSDNode *SV0 = cast
(N0); const ShuffleVectorSDNode *SV1 = cast
(N1); // We construct two shuffle masks: // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand // and N1 as the second operand. // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand // and N0 as the second operand. // We do this because OR is commutable and therefore there might be // two ways to fold this node into a shuffle. SmallVector
Mask1; SmallVector
Mask2; for (unsigned i = 0; i != NumElts && CanFold; ++i) { int M0 = SV0->getMaskElt(i); int M1 = SV1->getMaskElt(i); // Both shuffle indexes are undef. Propagate Undef. if (M0 < 0 && M1 < 0) { Mask1.push_back(M0); Mask2.push_back(M0); continue; } if (M0 < 0 || M1 < 0 || (M0 < (int)NumElts && M1 < (int)NumElts) || (M0 >= (int)NumElts && M1 >= (int)NumElts)) { CanFold = false; break; } Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); } if (CanFold) { // Fold this sequence only if the resulting shuffle is 'legal'. if (TLI.isShuffleMaskLegal(Mask1, VT)) return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), N1->getOperand(0), &Mask1[0]); if (TLI.isShuffleMaskLegal(Mask2, VT)) return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), N0->getOperand(0), &Mask2[0]); } } } // fold (or c1, c2) -> c1|c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); ConstantSDNode *N1C = dyn_cast
(N1); if (N0C && N1C && !N1C->isOpaque()) return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); // canonicalize constant to RHS if (isConstantIntBuildVectorOrConstantInt(N0) && !isConstantIntBuildVectorOrConstantInt(N1)) return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); // fold (or x, 0) -> x if (isNullConstant(N1)) return N0; // fold (or x, -1) -> -1 if (isAllOnesConstant(N1)) return N1; // fold (or x, c) -> c iff (x & ~c) == 0 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) return N1; if (SDValue Combined = visitORLike(N0, N1, N)) return Combined; // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) return BSwap; if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) return BSwap; // reassociate or if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) return ROR; // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) // iff (c1 & c2) == 0. if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && isa
(N0.getOperand(1))) { ConstantSDNode *C1 = cast
(N0.getOperand(1)); if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, N1C, C1)) return DAG.getNode( ISD::AND, SDLoc(N), VT, DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); return SDValue(); } } // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) if (N0.getOpcode() == N1.getOpcode()) if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) return Tmp; // See if this is some rotate idiom. if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) return SDValue(Rot, 0); // Simplify the operands using demanded-bits information. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); return SDValue(); } /// Match "(X shl/srl V1) & V2" where V2 may not be present. static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { if (Op.getOpcode() == ISD::AND) { if (isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { Mask = Op.getOperand(1); Op = Op.getOperand(0); } else { return false; } } if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { Shift = Op; return true; } return false; } // Return true if we can prove that, whenever Neg and Pos are both in the // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: // // (or (shift1 X, Neg), (shift2 X, Pos)) // // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate // in direction shift1 by Neg. The range [0, EltSize) means that we only need // to consider shift amounts with defined behavior. static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { // If EltSize is a power of 2 then: // // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). // // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check // for the stronger condition: // // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] // // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) // we can just replace Neg with Neg' for the rest of the function. // // In other cases we check for the even stronger condition: // // Neg == EltSize - Pos [B] // // for all Neg and Pos. Note that the (or ...) then invokes undefined // behavior if Pos == 0 (and consequently Neg == EltSize). // // We could actually use [A] whenever EltSize is a power of 2, but the // only extra cases that it would match are those uninteresting ones // where Neg and Pos are never in range at the same time. E.g. for // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) // as well as (sub 32, Pos), but: // // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) // // always invokes undefined behavior for 32-bit X. // // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. unsigned MaskLoBits = 0; if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { if (NegC->getAPIntValue() == EltSize - 1) { Neg = Neg.getOperand(0); MaskLoBits = Log2_64(EltSize); } } } // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. if (Neg.getOpcode() != ISD::SUB) return false; ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); if (!NegC) return false; SDValue NegOp1 = Neg.getOperand(1); // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with // Pos'. The truncation is redundant for the purpose of the equality. if (MaskLoBits && Pos.getOpcode() == ISD::AND) if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) if (PosC->getAPIntValue() == EltSize - 1) Pos = Pos.getOperand(0); // The condition we need is now: // // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask // // If NegOp1 == Pos then we need: // // EltSize & Mask == NegC & Mask // // (because "x & Mask" is a truncation and distributes through subtraction). APInt Width; if (Pos == NegOp1) Width = NegC->getAPIntValue(); // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. // Then the condition we want to prove becomes: // // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask // // which, again because "x & Mask" is a truncation, becomes: // // NegC & Mask == (EltSize - PosC) & Mask // EltSize & Mask == (NegC + PosC) & Mask else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) Width = PosC->getAPIntValue() + NegC->getAPIntValue(); else return false; } else return false; // Now we just need to check that EltSize & Mask == Width & Mask. if (MaskLoBits) // EltSize & Mask is 0 since Mask is EltSize - 1. return Width.getLoBits(MaskLoBits) == 0; return Width == EltSize; } // A subroutine of MatchRotate used once we have found an OR of two opposite // shifts of Shifted. If Neg ==
- Pos then the OR reduces // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the // former being preferred if supported. InnerPos and InnerNeg are Pos and // Neg with outer conversions stripped away. SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, SDValue InnerPos, SDValue InnerNeg, unsigned PosOpcode, unsigned NegOpcode, SDLoc DL) { // fold (or (shl x, (*ext y)), // (srl x, (*ext (sub 32, y)))) -> // (rotl x, y) or (rotr x, (sub 32, y)) // // fold (or (shl x, (*ext (sub 32, y))), // (srl x, (*ext y))) -> // (rotr x, y) or (rotl x, (sub 32, y)) EVT VT = Shifted.getValueType(); if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, HasPos ? Pos : Neg).getNode(); } return nullptr; } // MatchRotate - Handle an 'or' of two operands. If this is one of the many // idioms for rotate, and if the target supports rotation instructions, generate // a rot[lr]. SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { // Must be a legal type. Expanded 'n promoted things won't work with rotates. EVT VT = LHS.getValueType(); if (!TLI.isTypeLegal(VT)) return nullptr; // The target must have at least one rotate flavor. bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); if (!HasROTL && !HasROTR) return nullptr; // Match "(X shl/srl V1) & V2" where V2 may not be present. SDValue LHSShift; // The shift. SDValue LHSMask; // AND value if any. if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) return nullptr; // Not part of a rotate. SDValue RHSShift; // The shift. SDValue RHSMask; // AND value if any. if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) return nullptr; // Not part of a rotate. if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) return nullptr; // Not shifting the same value. if (LHSShift.getOpcode() == RHSShift.getOpcode()) return nullptr; // Shifts must disagree. // Canonicalize shl to left side in a shl/srl pair. if (RHSShift.getOpcode() == ISD::SHL) { std::swap(LHS, RHS); std::swap(LHSShift, RHSShift); std::swap(LHSMask, RHSMask); } unsigned EltSizeInBits = VT.getScalarSizeInBits(); SDValue LHSShiftArg = LHSShift.getOperand(0); SDValue LHSShiftAmt = LHSShift.getOperand(1); SDValue RHSShiftArg = RHSShift.getOperand(0); SDValue RHSShiftAmt = RHSShift.getOperand(1); // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); if ((LShVal + RShVal) != EltSizeInBits) return nullptr; SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); // If there is an AND of either shifted operand, apply it to the result. if (LHSMask.getNode() || RHSMask.getNode()) { APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); SDValue Mask = DAG.getConstant(AllBits, DL, VT); if (LHSMask.getNode()) { APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); Mask = DAG.getNode(ISD::AND, DL, VT, Mask, DAG.getNode(ISD::OR, DL, VT, LHSMask, DAG.getConstant(RHSBits, DL, VT))); } if (RHSMask.getNode()) { APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); Mask = DAG.getNode(ISD::AND, DL, VT, Mask, DAG.getNode(ISD::OR, DL, VT, RHSMask, DAG.getConstant(LHSBits, DL, VT))); } Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); } return Rot.getNode(); } // If there is a mask here, and we have a variable shift, we can't be sure // that we're masking out the right stuff. if (LHSMask.getNode() || RHSMask.getNode()) return nullptr; // If the shift amount is sign/zext/any-extended just peel it off. SDValue LExtOp0 = LHSShiftAmt; SDValue RExtOp0 = RHSShiftAmt; if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { LExtOp0 = LHSShiftAmt.getOperand(0); RExtOp0 = RHSShiftAmt.getOperand(0); } SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); if (TryL) return TryL; SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); if (TryR) return TryR; return nullptr; } SDValue DAGCombiner::visitXOR(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (xor x, 0) -> x, vector edition if (ISD::isBuildVectorAllZeros(N0.getNode())) return N1; if (ISD::isBuildVectorAllZeros(N1.getNode())) return N0; } // fold (xor undef, undef) -> 0. This is a common idiom (misuse). if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, SDLoc(N), VT); // fold (xor x, undef) -> undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // fold (xor c1, c2) -> c1^c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); if (N0C && N1C) return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); // canonicalize constant to RHS if (isConstantIntBuildVectorOrConstantInt(N0) && !isConstantIntBuildVectorOrConstantInt(N1)) return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); // fold (xor x, 0) -> x if (isNullConstant(N1)) return N0; // reassociate xor if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) return RXOR; // fold !(x cc y) -> (x !cc y) SDValue LHS, RHS, CC; if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { bool isInt = LHS.getValueType().isInteger(); ISD::CondCode NotCC = ISD::getSetCCInverse(cast
(CC)->get(), isInt); if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { switch (N0.getOpcode()) { default: llvm_unreachable("Unhandled SetCC Equivalent!"); case ISD::SETCC: return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); case ISD::SELECT_CC: return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), N0.getOperand(3), NotCC); } } } // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && N0.getNode()->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ SDValue V = N0.getOperand(0); SDLoc DL(N0); V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, DAG.getConstant(1, DL, V.getValueType())); AddToWorklist(V.getNode()); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); } // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc if (isOneConstant(N1) && VT == MVT::i1 && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); } } // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants if (isAllOnesConstant(N1) && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isa
(RHS) || isa
(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); } } // fold (xor (and x, y), y) -> (and (not x), y) if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && N0->getOperand(1) == N1) { SDValue X = N0->getOperand(0); SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); AddToWorklist(NotX.getNode()); return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); } // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) if (N1C && N0.getOpcode() == ISD::XOR) { if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { SDLoc DL(N); return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), DAG.getConstant(N1C->getAPIntValue() ^ N00C->getAPIntValue(), DL, VT)); } if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { SDLoc DL(N); return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), DAG.getConstant(N1C->getAPIntValue() ^ N01C->getAPIntValue(), DL, VT)); } } // fold (xor x, x) -> 0 if (N0 == N1) return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); // fold (xor (shl 1, x), -1) -> (rotl ~1, x) // Here is a concrete example of this equivalence: // i16 x == 14 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 // // => // // i16 ~1 == 0b1111111111111110 // i16 rol(~1, 14) == 0b1011111111111111 // // Some additional tips to help conceptualize this transform: // - Try to see the operation as placing a single zero in a value of all ones. // - There exists no value for x which would allow the result to contain zero. // - Values of x larger than the bitwidth are undefined and do not require a // consistent result. // - Pushing the zero left requires shifting one bits in from the right. // A rotate left of ~1 is a nice way of achieving the desired result. if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { SDLoc DL(N); return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), N0.getOperand(1)); } // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) if (N0.getOpcode() == N1.getOpcode()) if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) return Tmp; // Simplify the expression using non-local knowledge. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); return SDValue(); } /// Handle transforms common to the three shifts, when the shift amount is a /// constant. SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { SDNode *LHS = N->getOperand(0).getNode(); if (!LHS->hasOneUse()) return SDValue(); // We want to pull some binops through shifts, so that we have (and (shift)) // instead of (shift (and)), likewise for add, or, xor, etc. This sort of // thing happens with address calculations, so it's important to canonicalize // it. bool HighBitSet = false; // Can we transform this if the high bit is set? switch (LHS->getOpcode()) { default: return SDValue(); case ISD::OR: case ISD::XOR: HighBitSet = false; // We can only transform sra if the high bit is clear. break; case ISD::AND: HighBitSet = true; // We can only transform sra if the high bit is set. break; case ISD::ADD: if (N->getOpcode() != ISD::SHL) return SDValue(); // only shl(add) not sr[al](add). HighBitSet = false; // We can only transform sra if the high bit is clear. break; } // We require the RHS of the binop to be a constant and not opaque as well. ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); if (!BinOpCst) return SDValue(); // FIXME: disable this unless the input to the binop is a shift by a constant. // If it is not a shift, it pessimizes some common cases like: // // void foo(int *X, int i) { X[i & 1235] = 1; } // int bar(int *X, int i) { return X[i & 255]; } SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); if ((BinOpLHSVal->getOpcode() != ISD::SHL && BinOpLHSVal->getOpcode() != ISD::SRA && BinOpLHSVal->getOpcode() != ISD::SRL) || !isa
(BinOpLHSVal->getOperand(1))) return SDValue(); EVT VT = N->getValueType(0); // If this is a signed shift right, and the high bit is modified by the // logical operation, do not perform the transformation. The highBitSet // boolean indicates the value of the high bit of the constant which would // cause it to be modified for this operation. if (N->getOpcode() == ISD::SRA) { bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); if (BinOpRHSSignSet != HighBitSet) return SDValue(); } if (!TLI.isDesirableToCommuteWithShift(LHS)) return SDValue(); // Fold the constants, shifting the binop RHS by the shift amount. SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), N->getValueType(0), LHS->getOperand(1), N->getOperand(1)); assert(isa
(NewRHS) && "Folding was not successful!"); // Create the new shift. SDValue NewShift = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(0)), VT, LHS->getOperand(0), N->getOperand(1)); // Create the new binop. return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); } SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { assert(N->getOpcode() == ISD::TRUNCATE); assert(N->getOperand(0).getOpcode() == ISD::AND); // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { SDValue N01 = N->getOperand(0).getOperand(1); if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { if (!N01C->isOpaque()) { EVT TruncVT = N->getValueType(0); SDValue N00 = N->getOperand(0).getOperand(0); APInt TruncC = N01C->getAPIntValue(); TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); SDLoc DL(N); return DAG.getNode(ISD::AND, DL, TruncVT, DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), DAG.getConstant(TruncC, DL, TruncVT)); } } } return SDValue(); } SDValue DAGCombiner::visitRotate(SDNode *N) { // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode()); if (NewOp1.getNode()) return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), N->getOperand(0), NewOp1); } return SDValue(); } SDValue DAGCombiner::visitSHL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarSizeInBits(); // fold vector ops ConstantSDNode *N1C = dyn_cast
(N1); if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; BuildVectorSDNode *N1CV = dyn_cast
(N1); // If setcc produces all-one true value then: // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<
isConstant()) { if (N0.getOpcode() == ISD::AND) { SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); BuildVectorSDNode *N01CV = dyn_cast
(N01); if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && TLI.getBooleanContents(N00.getOperand(0).getValueType()) == TargetLowering::ZeroOrNegativeOneBooleanContent) { if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N01CV, N1CV)) return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); } } else { N1C = isConstOrConstSplat(N1); } } } // fold (shl c1, c2) -> c1<
isOpaque()) return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); // fold (shl 0, x) -> 0 if (isNullConstant(N0)) return N0; // fold (shl x, c >= size(x)) -> undef if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) return DAG.getUNDEF(VT); // fold (shl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (shl undef, x) -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, SDLoc(N), VT); // if (shl x, c) is known to be zero, return 0 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnesValue(OpSizeInBits))) return DAG.getConstant(0, SDLoc(N), VT); // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). if (N1.getOpcode() == ISD::TRUNCATE && N1.getOperand(0).getOpcode() == ISD::AND) { SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); if (NewOp1.getNode()) return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); } if (N1C && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) if (N1C && N0.getOpcode() == ISD::SHL) { if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { uint64_t c1 = N0C1->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); SDLoc DL(N); if (c1 + c2 >= OpSizeInBits) return DAG.getConstant(0, DL, VT); return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, DL, N1.getValueType())); } } // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) // For this to be valid, the second form must not preserve any of the bits // that are shifted out by the inner shift in the first form. This means // the outer shift size must be >= the number of bits added by the ext. // As a corollary, we don't care what kind of ext it is. if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND) && N0.getOperand(0).getOpcode() == ISD::SHL) { SDValue N0Op0 = N0.getOperand(0); if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { uint64_t c1 = N0Op0C1->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); EVT InnerShiftVT = N0Op0.getValueType(); uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); if (c2 >= OpSizeInBits - InnerShiftSize) { SDLoc DL(N0); if (c1 + c2 >= OpSizeInBits) return DAG.getConstant(0, DL, VT); return DAG.getNode(ISD::SHL, DL, VT, DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), DAG.getConstant(c1 + c2, DL, N1.getValueType())); } } } // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) // Only fold this if the inner zext has no other uses to avoid increasing // the total number of instructions. if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && N0.getOperand(0).getOpcode() == ISD::SRL) { SDValue N0Op0 = N0.getOperand(0); if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { uint64_t c1 = N0Op0C1->getZExtValue(); if (c1 < VT.getScalarSizeInBits()) { uint64_t c2 = N1C->getZExtValue(); if (c1 == c2) { SDValue NewOp0 = N0.getOperand(0); EVT CountVT = NewOp0.getOperand(1).getValueType(); SDLoc DL(N); SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), NewOp0, DAG.getConstant(c2, DL, CountVT)); AddToWorklist(NewSHL.getNode()); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); } } } } // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && cast
(N0)->Flags.hasExact()) { if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { uint64_t C1 = N0C1->getZExtValue(); uint64_t C2 = N1C->getZExtValue(); SDLoc DL(N); if (C1 <= C2) return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), DAG.getConstant(C2 - C1, DL, N1.getValueType())); return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), DAG.getConstant(C1 - C2, DL, N1.getValueType())); } } // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or // (and (srl x, (sub c1, c2), MASK) // Only fold this if the inner shift has no other uses -- if it does, folding // this will increase the total number of instructions. if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { uint64_t c1 = N0C1->getZExtValue(); if (c1 < OpSizeInBits) { uint64_t c2 = N1C->getZExtValue(); APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); SDValue Shift; if (c2 > c1) { Mask = Mask.shl(c2 - c1); SDLoc DL(N); Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), DAG.getConstant(c2 - c1, DL, N1.getValueType())); } else { Mask = Mask.lshr(c1 - c2); SDLoc DL(N); Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), DAG.getConstant(c1 - c2, DL, N1.getValueType())); } SDLoc DL(N0); return DAG.getNode(ISD::AND, DL, VT, Shift, DAG.getConstant(Mask, DL, VT)); } } } // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { unsigned BitSize = VT.getScalarSizeInBits(); SDLoc DL(N); SDValue HiBitsMask = DAG.getConstant(APInt::getHighBitsSet(BitSize, BitSize - N1C->getZExtValue()), DL, VT); return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); } // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) // Variant of version done on multiply, except mul by a power of 2 is turned // into a shift. APInt Val; if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && (isa
(N0.getOperand(1)) || isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); } // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); } } if (N1C && !N1C->isOpaque()) if (SDValue NewSHL = visitShiftByConstant(N, N1C)) return NewSHL; return SDValue(); } SDValue DAGCombiner::visitSRA(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); // fold vector ops ConstantSDNode *N1C = dyn_cast
(N1); if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; N1C = isConstOrConstSplat(N1); } // fold (sra c1, c2) -> (sra c1, c2) ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); if (N0C && N1C && !N1C->isOpaque()) return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); // fold (sra 0, x) -> 0 if (isNullConstant(N0)) return N0; // fold (sra -1, x) -> -1 if (isAllOnesConstant(N0)) return N0; // fold (sra x, (setge c, size(x))) -> undef if (N1C && N1C->getZExtValue() >= OpSizeInBits) return DAG.getUNDEF(VT); // fold (sra x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports // sext_inreg. if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); if (VT.isVector()) ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, VT.getVectorNumElements()); if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), DAG.getValueType(ExtVT)); } // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) if (N1C && N0.getOpcode() == ISD::SRA) { if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); if (Sum >= OpSizeInBits) Sum = OpSizeInBits - 1; SDLoc DL(N); return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), DAG.getConstant(Sum, DL, N1.getValueType())); } } // fold (sra (shl X, m), (sub result_size, n)) // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for // result_size - n != m. // If truncate is free for the target sext(shl) is likely to result in better // code. if (N0.getOpcode() == ISD::SHL && N1C) { // Get the two constanst of the shifts, CN0 = m, CN = n. const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); if (N01C) { LLVMContext &Ctx = *DAG.getContext(); // Determine what the truncate's result bitsize and type would be. EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); if (VT.isVector()) TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); // Determine the residual right-shift amount. signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); // If the shift is not a no-op (in which case this should be just a sign // extend already), the truncated to type is legal, sign_extend is legal // on that type, and the truncate to that type is both legal and free, // perform the transform. if ((ShiftAmt > 0) && TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && TLI.isTruncateFree(VT, TruncVT)) { SDLoc DL(N); SDValue Amt = DAG.getConstant(ShiftAmt, DL, getShiftAmountTy(N0.getOperand(0).getValueType())); SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Amt); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Shift); return DAG.getNode(ISD::SIGN_EXTEND, DL, N->getValueType(0), Trunc); } } } // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). if (N1.getOpcode() == ISD::TRUNCATE && N1.getOperand(0).getOpcode() == ISD::AND) { SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); if (NewOp1.getNode()) return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); } // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) // if c1 is equal to the number of bits the trunc removes if (N0.getOpcode() == ISD::TRUNCATE && (N0.getOperand(0).getOpcode() == ISD::SRL || N0.getOperand(0).getOpcode() == ISD::SRA) && N0.getOperand(0).hasOneUse() && N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { SDValue N0Op0 = N0.getOperand(0); if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { unsigned LargeShiftVal = LargeShift->getZExtValue(); EVT LargeVT = N0Op0.getValueType(); if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { SDLoc DL(N); SDValue Amt = DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, getShiftAmountTy(N0Op0.getOperand(0).getValueType())); SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); } } } // Simplify, based on bits shifted out of the LHS. if (N1C && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // If the sign bit is known to be zero, switch this to a SRL. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); if (N1C && !N1C->isOpaque()) if (SDValue NewSRA = visitShiftByConstant(N, N1C)) return NewSRA; return SDValue(); } SDValue DAGCombiner::visitSRL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); // fold vector ops ConstantSDNode *N1C = dyn_cast
(N1); if (VT.isVector()) { if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; N1C = isConstOrConstSplat(N1); } // fold (srl c1, c2) -> c1 >>u c2 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); if (N0C && N1C && !N1C->isOpaque()) return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); // fold (srl 0, x) -> 0 if (isNullConstant(N0)) return N0; // fold (srl x, c >= size(x)) -> undef if (N1C && N1C->getZExtValue() >= OpSizeInBits) return DAG.getUNDEF(VT); // fold (srl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (srl x, c) is known to be zero, return 0 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnesValue(OpSizeInBits))) return DAG.getConstant(0, SDLoc(N), VT); // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) if (N1C && N0.getOpcode() == ISD::SRL) { if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { uint64_t c1 = N01C->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); SDLoc DL(N); if (c1 + c2 >= OpSizeInBits) return DAG.getConstant(0, DL, VT); return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, DL, N1.getValueType())); } } // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) if (N1C && N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getOpcode() == ISD::SRL && isa
(N0.getOperand(0)->getOperand(1))) { uint64_t c1 = cast
(N0.getOperand(0)->getOperand(1))->getZExtValue(); uint64_t c2 = N1C->getZExtValue(); EVT InnerShiftVT = N0.getOperand(0).getValueType(); EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); // This is only valid if the OpSizeInBits + c1 = size of inner shift. if (c1 + OpSizeInBits == InnerShiftSize) { SDLoc DL(N0); if (c1 + c2 >= InnerShiftSize) return DAG.getConstant(0, DL, VT); return DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(ISD::SRL, DL, InnerShiftVT, N0.getOperand(0)->getOperand(0), DAG.getConstant(c1 + c2, DL, ShiftCountVT))); } } // fold (srl (shl x, c), c) -> (and x, cst2) if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { unsigned BitSize = N0.getScalarValueSizeInBits(); if (BitSize <= 64) { uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; SDLoc DL(N); return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), DAG.getConstant(~0ULL >> ShAmt, DL, VT)); } } // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { // Shifting in all undef bits? EVT SmallVT = N0.getOperand(0).getValueType(); unsigned BitSize = SmallVT.getScalarSizeInBits(); if (N1C->getZExtValue() >= BitSize) return DAG.getUNDEF(VT); if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { uint64_t ShiftAmt = N1C->getZExtValue(); SDLoc DL0(N0); SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, N0.getOperand(0), DAG.getConstant(ShiftAmt, DL0, getShiftAmountTy(SmallVT))); AddToWorklist(SmallShift.getNode()); APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); SDLoc DL(N); return DAG.getNode(ISD::AND, DL, VT, DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), DAG.getConstant(Mask, DL, VT)); } } // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign // bit, which is unmodified by sra. if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { if (N0.getOpcode() == ISD::SRA) return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); } // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). if (N1C && N0.getOpcode() == ISD::CTLZ && N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { APInt KnownZero, KnownOne; DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); // If any of the input bits are KnownOne, then the input couldn't be all // zeros, thus the result of the srl will always be zero. if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); // If all of the bits input the to ctlz node are known to be zero, then // the result of the ctlz is "32" and the result of the shift is one. APInt UnknownBits = ~KnownZero; if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); // Otherwise, check to see if there is exactly one bit input to the ctlz. if ((UnknownBits & (UnknownBits - 1)) == 0) { // Okay, we know that only that the single bit specified by UnknownBits // could be set on input to the CTLZ node. If this bit is set, the SRL // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair // to an SRL/XOR pair, which is likely to simplify more. unsigned ShAmt = UnknownBits.countTrailingZeros(); SDValue Op = N0.getOperand(0); if (ShAmt) { SDLoc DL(N0); Op = DAG.getNode(ISD::SRL, DL, VT, Op, DAG.getConstant(ShAmt, DL, getShiftAmountTy(Op.getValueType()))); AddToWorklist(Op.getNode()); } SDLoc DL(N); return DAG.getNode(ISD::XOR, DL, VT, Op, DAG.getConstant(1, DL, VT)); } } // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). if (N1.getOpcode() == ISD::TRUNCATE && N1.getOperand(0).getOpcode() == ISD::AND) { if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); } // fold operands of srl based on knowledge that the low bits are not // demanded. if (N1C && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); if (N1C && !N1C->isOpaque()) if (SDValue NewSRL = visitShiftByConstant(N, N1C)) return NewSRL; // Attempt to convert a srl of a load into a narrower zero-extending load. if (SDValue NarrowLoad = ReduceLoadWidth(N)) return NarrowLoad; // Here is a common situation. We want to optimize: // // %a = ... // %b = and i32 %a, 2 // %c = srl i32 %b, 1 // brcond i32 %c ... // // into // // %a = ... // %b = and %a, 2 // %c = setcc eq %b, 0 // brcond %c ... // // However when after the source operand of SRL is optimized into AND, the SRL // itself may not be optimized further. Look for it and add the BRCOND into // the worklist. if (N->hasOneUse()) { SDNode *Use = *N->use_begin(); if (Use->getOpcode() == ISD::BRCOND) AddToWorklist(Use); else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { // Also look pass the truncate. Use = *Use->use_begin(); if (Use->getOpcode() == ISD::BRCOND) AddToWorklist(Use); } } return SDValue(); } SDValue DAGCombiner::visitBSWAP(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (bswap c1) -> c2 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); // fold (bswap (bswap x)) -> x if (N0.getOpcode() == ISD::BSWAP) return N0->getOperand(0); return SDValue(); } SDValue DAGCombiner::visitCTLZ(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ctlz c1) -> c2 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); return SDValue(); } SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ctlz_zero_undef c1) -> c2 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); return SDValue(); } SDValue DAGCombiner::visitCTTZ(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (cttz c1) -> c2 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); return SDValue(); } SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (cttz_zero_undef c1) -> c2 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); return SDValue(); } SDValue DAGCombiner::visitCTPOP(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ctpop c1) -> c2 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); return SDValue(); } /// \brief Generate Min/Max node static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode CC, const TargetLowering &TLI, SelectionDAG &DAG) { if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) return SDValue(); switch (CC) { case ISD::SETOLT: case ISD::SETOLE: case ISD::SETLT: case ISD::SETLE: case ISD::SETULT: case ISD::SETULE: { unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; if (TLI.isOperationLegal(Opcode, VT)) return DAG.getNode(Opcode, DL, VT, LHS, RHS); return SDValue(); } case ISD::SETOGT: case ISD::SETOGE: case ISD::SETGT: case ISD::SETGE: case ISD::SETUGT: case ISD::SETUGE: { unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; if (TLI.isOperationLegal(Opcode, VT)) return DAG.getNode(Opcode, DL, VT, LHS, RHS); return SDValue(); } default: return SDValue(); } } SDValue DAGCombiner::visitSELECT(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); EVT VT = N->getValueType(0); EVT VT0 = N0.getValueType(); // fold (select C, X, X) -> X if (N1 == N2) return N1; if (const ConstantSDNode *N0C = dyn_cast
(N0)) { // fold (select true, X, Y) -> X // fold (select false, X, Y) -> Y return !N0C->isNullValue() ? N1 : N2; } // fold (select C, 1, X) -> (or C, X) if (VT == MVT::i1 && isOneConstant(N1)) return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); // fold (select C, 0, 1) -> (xor C, 1) // We can't do this reliably if integer based booleans have different contents // to floating point based booleans. This is because we can't tell whether we // have an integer-based boolean or a floating-point-based boolean unless we // can find the SETCC that produced it and inspect its operands. This is // fairly easy if C is the SETCC node, but it can potentially be // undiscoverable (or not reasonably discoverable). For example, it could be // in another basic block or it could require searching a complicated // expression. if (VT.isInteger() && (VT0 == MVT::i1 || (VT0.isInteger() && TLI.getBooleanContents(false, false) == TLI.getBooleanContents(false, true) && TLI.getBooleanContents(false, false) == TargetLowering::ZeroOrOneBooleanContent)) && isNullConstant(N1) && isOneConstant(N2)) { SDValue XORNode; if (VT == VT0) { SDLoc DL(N); return DAG.getNode(ISD::XOR, DL, VT0, N0, DAG.getConstant(1, DL, VT0)); } SDLoc DL0(N0); XORNode = DAG.getNode(ISD::XOR, DL0, VT0, N0, DAG.getConstant(1, DL0, VT0)); AddToWorklist(XORNode.getNode()); if (VT.bitsGT(VT0)) return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); } // fold (select C, 0, X) -> (and (not C), X) if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); AddToWorklist(NOTNode.getNode()); return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); } // fold (select C, X, 1) -> (or (not C), X) if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); AddToWorklist(NOTNode.getNode()); return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); } // fold (select C, X, 0) -> (and C, X) if (VT == MVT::i1 && isNullConstant(N2)) return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); // fold (select X, X, Y) -> (or X, Y) // fold (select X, 1, Y) -> (or X, Y) if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); // fold (select X, Y, X) -> (and X, Y) // fold (select X, Y, 0) -> (and X, Y) if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N1, N2)) return SDValue(N, 0); // Don't revisit N. if (VT0 == MVT::i1) { // The code in this block deals with the following 2 equivalences: // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) // The target can specify its prefered form with the // shouldNormalizeToSelectSequence() callback. However we always transform // to the right anyway if we find the inner select exists in the DAG anyway // and we always transform to the left side if we know that we can further // optimize the combination of the conditions. bool normalizeToSequence = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); // select (and Cond0, Cond1), X, Y // -> select Cond0, (select Cond1, X, Y), Y if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { SDValue Cond0 = N0->getOperand(0); SDValue Cond1 = N0->getOperand(1); SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond1, N1, N2); if (normalizeToSequence || !InnerSelect.use_empty()) return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, InnerSelect, N2); } // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { SDValue Cond0 = N0->getOperand(0); SDValue Cond1 = N0->getOperand(1); SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond1, N1, N2); if (normalizeToSequence || !InnerSelect.use_empty()) return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, InnerSelect); } // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { SDValue N1_0 = N1->getOperand(0); SDValue N1_1 = N1->getOperand(1); SDValue N1_2 = N1->getOperand(2); if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { // Create the actual and node if we can generate good code for it. if (!normalizeToSequence) { SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), N0, N1_0); return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, N1_1, N2); } // Otherwise see if we can optimize the "and" to a better pattern. if (SDValue Combined = visitANDLike(N0, N1_0, N)) return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, N1_1, N2); } } // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { SDValue N2_0 = N2->getOperand(0); SDValue N2_1 = N2->getOperand(1); SDValue N2_2 = N2->getOperand(2); if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { // Create the actual or node if we can generate good code for it. if (!normalizeToSequence) { SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), N0, N2_0); return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, N1, N2_2); } // Otherwise see if we can optimize to a better pattern. if (SDValue Combined = visitORLike(N0, N2_0, N)) return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, N1, N2_2); } } } // fold selects based on a setcc into other things, such as min/max/abs if (N0.getOpcode() == ISD::SETCC) { // select x, y (fcmp lt x, y) -> fminnum x, y // select x, y (fcmp gt x, y) -> fmaxnum x, y // // This is OK if we don't care about what happens if either operand is a // NaN. // // FIXME: Instead of testing for UnsafeFPMath, this should be checking for // no signed zeros as well as no nans. const TargetOptions &Options = DAG.getTarget().Options; if (Options.UnsafeFPMath && VT.isFloatingPoint() && N0.hasOneUse() && DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { ISD::CondCode CC = cast
(N0.getOperand(2))->get(); if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG)) return FMinMax; } if ((!LegalOperations && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || TLI.isOperationLegal(ISD::SELECT_CC, VT)) return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1), N1, N2, N0.getOperand(2)); return SimplifySelect(SDLoc(N), N0, N1, N2); } return SDValue(); } static std::pair
SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); // Split the inputs. SDValue Lo, Hi, LL, LH, RL, RH; std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); return std::make_pair(Lo, Hi); } // This function assumes all the vselect's arguments are CONCAT_VECTOR // nodes and that the condition is a BV of ConstantSDNodes (or undefs). static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); SDValue Cond = N->getOperand(0); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); EVT VT = N->getValueType(0); int NumElems = VT.getVectorNumElements(); assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::BUILD_VECTOR); // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about // binary ones here. if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) return SDValue(); // We're sure we have an even number of elements due to the // concat_vectors we have as arguments to vselect. // Skip BV elements until we find one that's not an UNDEF // After we find an UNDEF element, keep looping until we get to half the // length of the BV and see if all the non-undef nodes are the same. ConstantSDNode *BottomHalf = nullptr; for (int i = 0; i < NumElems / 2; ++i) { if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) continue; if (BottomHalf == nullptr) BottomHalf = cast
(Cond.getOperand(i)); else if (Cond->getOperand(i).getNode() != BottomHalf) return SDValue(); } // Do the same for the second half of the BuildVector ConstantSDNode *TopHalf = nullptr; for (int i = NumElems / 2; i < NumElems; ++i) { if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) continue; if (TopHalf == nullptr) TopHalf = cast
(Cond.getOperand(i)); else if (Cond->getOperand(i).getNode() != TopHalf) return SDValue(); } assert(TopHalf && BottomHalf && "One half of the selector was all UNDEFs and the other was all the " "same value. This should have been addressed before this function."); return DAG.getNode( ISD::CONCAT_VECTORS, dl, VT, BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); } SDValue DAGCombiner::visitMSCATTER(SDNode *N) { if (Level >= AfterLegalizeTypes) return SDValue(); MaskedScatterSDNode *MSC = cast
(N); SDValue Mask = MSC->getMask(); SDValue Data = MSC->getValue(); SDLoc DL(N); // If the MSCATTER data type requires splitting and the mask is provided by a // SETCC, then split both nodes and its operands before legalization. This // prevents the type legalizer from unrolling SETCC into scalar comparisons // and enables future optimizations (e.g. min/max pattern matching on X86). if (Mask.getOpcode() != ISD::SETCC) return SDValue(); // Check if any splitting is required. if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != TargetLowering::TypeSplitVector) return SDValue(); SDValue MaskLo, MaskHi, Lo, Hi; std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); SDValue Chain = MSC->getChain(); EVT MemoryVT = MSC->getMemoryVT(); unsigned Alignment = MSC->getOriginalAlignment(); EVT LoMemVT, HiMemVT; std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); SDValue DataLo, DataHi; std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); SDValue BasePtr = MSC->getBasePtr(); SDValue IndexLo, IndexHi; std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); MachineMemOperand *MMO = DAG.getMachineFunction(). getMachineMemOperand(MSC->getPointerInfo(), MachineMemOperand::MOStore, LoMemVT.getStoreSize(), Alignment, MSC->getAAInfo(), MSC->getRanges()); SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), DL, OpsLo, MMO); SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), DL, OpsHi, MMO); AddToWorklist(Lo.getNode()); AddToWorklist(Hi.getNode()); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); } SDValue DAGCombiner::visitMSTORE(SDNode *N) { if (Level >= AfterLegalizeTypes) return SDValue(); MaskedStoreSDNode *MST = dyn_cast
(N); SDValue Mask = MST->getMask(); SDValue Data = MST->getValue(); SDLoc DL(N); // If the MSTORE data type requires splitting and the mask is provided by a // SETCC, then split both nodes and its operands before legalization. This // prevents the type legalizer from unrolling SETCC into scalar comparisons // and enables future optimizations (e.g. min/max pattern matching on X86). if (Mask.getOpcode() == ISD::SETCC) { // Check if any splitting is required. if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != TargetLowering::TypeSplitVector) return SDValue(); SDValue MaskLo, MaskHi, Lo, Hi; std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); SDValue Chain = MST->getChain(); SDValue Ptr = MST->getBasePtr(); EVT MemoryVT = MST->getMemoryVT(); unsigned Alignment = MST->getOriginalAlignment(); // if Alignment is equal to the vector size, // take the half of it for the second part unsigned SecondHalfAlignment = (Alignment == Data->getValueType(0).getSizeInBits()/8) ? Alignment/2 : Alignment; EVT LoMemVT, HiMemVT; std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); SDValue DataLo, DataHi; std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); MachineMemOperand *MMO = DAG.getMachineFunction(). getMachineMemOperand(MST->getPointerInfo(), MachineMemOperand::MOStore, LoMemVT.getStoreSize(), Alignment, MST->getAAInfo(), MST->getRanges()); Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, MST->isTruncatingStore()); unsigned IncrementSize = LoMemVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); MMO = DAG.getMachineFunction(). getMachineMemOperand(MST->getPointerInfo(), MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment, MST->getAAInfo(), MST->getRanges()); Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, MST->isTruncatingStore()); AddToWorklist(Lo.getNode()); AddToWorklist(Hi.getNode()); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); } return SDValue(); } SDValue DAGCombiner::visitMGATHER(SDNode *N) { if (Level >= AfterLegalizeTypes) return SDValue(); MaskedGatherSDNode *MGT = dyn_cast
(N); SDValue Mask = MGT->getMask(); SDLoc DL(N); // If the MGATHER result requires splitting and the mask is provided by a // SETCC, then split both nodes and its operands before legalization. This // prevents the type legalizer from unrolling SETCC into scalar comparisons // and enables future optimizations (e.g. min/max pattern matching on X86). if (Mask.getOpcode() != ISD::SETCC) return SDValue(); EVT VT = N->getValueType(0); // Check if any splitting is required. if (TLI.getTypeAction(*DAG.getContext(), VT) != TargetLowering::TypeSplitVector) return SDValue(); SDValue MaskLo, MaskHi, Lo, Hi; std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); SDValue Src0 = MGT->getValue(); SDValue Src0Lo, Src0Hi; std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); SDValue Chain = MGT->getChain(); EVT MemoryVT = MGT->getMemoryVT(); unsigned Alignment = MGT->getOriginalAlignment(); EVT LoMemVT, HiMemVT; std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); SDValue BasePtr = MGT->getBasePtr(); SDValue Index = MGT->getIndex(); SDValue IndexLo, IndexHi; std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); MachineMemOperand *MMO = DAG.getMachineFunction(). getMachineMemOperand(MGT->getPointerInfo(), MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), Alignment, MGT->getAAInfo(), MGT->getRanges()); SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, MMO); SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, MMO); AddToWorklist(Lo.getNode()); AddToWorklist(Hi.getNode()); // Build a factor node to remember that this load is independent of the // other one. Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Legalized the chain result - switch anything that used the old chain to // use the new one. DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); SDValue RetOps[] = { GatherRes, Chain }; return DAG.getMergeValues(RetOps, DL); } SDValue DAGCombiner::visitMLOAD(SDNode *N) { if (Level >= AfterLegalizeTypes) return SDValue(); MaskedLoadSDNode *MLD = dyn_cast
(N); SDValue Mask = MLD->getMask(); SDLoc DL(N); // If the MLOAD result requires splitting and the mask is provided by a // SETCC, then split both nodes and its operands before legalization. This // prevents the type legalizer from unrolling SETCC into scalar comparisons // and enables future optimizations (e.g. min/max pattern matching on X86). if (Mask.getOpcode() == ISD::SETCC) { EVT VT = N->getValueType(0); // Check if any splitting is required. if (TLI.getTypeAction(*DAG.getContext(), VT) != TargetLowering::TypeSplitVector) return SDValue(); SDValue MaskLo, MaskHi, Lo, Hi; std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); SDValue Src0 = MLD->getSrc0(); SDValue Src0Lo, Src0Hi; std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); SDValue Chain = MLD->getChain(); SDValue Ptr = MLD->getBasePtr(); EVT MemoryVT = MLD->getMemoryVT(); unsigned Alignment = MLD->getOriginalAlignment(); // if Alignment is equal to the vector size, // take the half of it for the second part unsigned SecondHalfAlignment = (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? Alignment/2 : Alignment; EVT LoMemVT, HiMemVT; std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); MachineMemOperand *MMO = DAG.getMachineFunction(). getMachineMemOperand(MLD->getPointerInfo(), MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), Alignment, MLD->getAAInfo(), MLD->getRanges()); Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, ISD::NON_EXTLOAD); unsigned IncrementSize = LoMemVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); MMO = DAG.getMachineFunction(). getMachineMemOperand(MLD->getPointerInfo(), MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, ISD::NON_EXTLOAD); AddToWorklist(Lo.getNode()); AddToWorklist(Hi.getNode()); // Build a factor node to remember that this load is independent of the // other one. Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Legalized the chain result - switch anything that used the old chain to // use the new one. DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); SDValue RetOps[] = { LoadRes, Chain }; return DAG.getMergeValues(RetOps, DL); } return SDValue(); } SDValue DAGCombiner::visitVSELECT(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDLoc DL(N); // Canonicalize integer abs. // vselect (setg[te] X, 0), X, -X -> // vselect (setgt X, -1), X, -X -> // vselect (setl[te] X, 0), -X, X -> // Y = sra (X, size(X)-1); xor (add (X, Y), Y) if (N0.getOpcode() == ISD::SETCC) { SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); ISD::CondCode CC = cast
(N0.getOperand(2))->get(); bool isAbs = false; bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); if (isAbs) { EVT VT = LHS.getValueType(); SDValue Shift = DAG.getNode( ISD::SRA, DL, VT, LHS, DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); AddToWorklist(Shift.getNode()); AddToWorklist(Add.getNode()); return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); } } if (SimplifySelectOps(N, N1, N2)) return SDValue(N, 0); // Don't revisit N. // If the VSELECT result requires splitting and the mask is provided by a // SETCC, then split both nodes and its operands before legalization. This // prevents the type legalizer from unrolling SETCC into scalar comparisons // and enables future optimizations (e.g. min/max pattern matching on X86). if (N0.getOpcode() == ISD::SETCC) { EVT VT = N->getValueType(0); // Check if any splitting is required. if (TLI.getTypeAction(*DAG.getContext(), VT) != TargetLowering::TypeSplitVector) return SDValue(); SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); // Add the new VSELECT nodes to the work list in case they need to be split // again. AddToWorklist(Lo.getNode()); AddToWorklist(Hi.getNode()); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); } // Fold (vselect (build_vector all_ones), N1, N2) -> N1 if (ISD::isBuildVectorAllOnes(N0.getNode())) return N1; // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 if (ISD::isBuildVectorAllZeros(N0.getNode())) return N2; // The ConvertSelectToConcatVector function is assuming both the above // checks for (vselect (build_vector all{ones,zeros) ...) have been made // and addressed. if (N1.getOpcode() == ISD::CONCAT_VECTORS && N2.getOpcode() == ISD::CONCAT_VECTORS && ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) return CV; } return SDValue(); } SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); SDValue N4 = N->getOperand(4); ISD::CondCode CC = cast
(N4)->get(); // fold select_cc lhs, rhs, x, x, cc -> x if (N2 == N3) return N2; // Determine if the condition we're dealing with is constant SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, CC, SDLoc(N), false); if (SCC.getNode()) { AddToWorklist(SCC.getNode()); if (ConstantSDNode *SCCC = dyn_cast
(SCC.getNode())) { if (!SCCC->isNullValue()) return N2; // cond always true -> true val else return N3; // cond always false -> false val } else if (SCC->getOpcode() == ISD::UNDEF) { // When the condition is UNDEF, just return the first operand. This is // coherent the DAG creation, no setcc node is created in this case return N2; } else if (SCC.getOpcode() == ISD::SETCC) { // Fold to a simpler select_cc return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), SCC.getOperand(1), N2, N3, SCC.getOperand(2)); } } // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N2, N3)) return SDValue(N, 0); // Don't revisit N. // fold select_cc into other things, such as min/max/abs return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); } SDValue DAGCombiner::visitSETCC(SDNode *N) { return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), cast
(N->getOperand(2))->get(), SDLoc(N)); } SDValue DAGCombiner::visitSETCCE(SDNode *N) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue Carry = N->getOperand(2); SDValue Cond = N->getOperand(3); // If Carry is false, fold to a regular SETCC. if (Carry.getOpcode() == ISD::CARRY_FALSE) return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); return SDValue(); } /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or /// a build_vector of constants. /// This function is called by the DAGCombiner when visiting sext/zext/aext /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). /// Vector extends are not folded if operations are legal; this is to /// avoid introducing illegal build_vector dag nodes. static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, SelectionDAG &DAG, bool LegalTypes, bool LegalOperations) { unsigned Opcode = N->getOpcode(); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) && "Expected EXTEND dag node in input!"); // fold (sext c1) -> c1 // fold (zext c1) -> c1 // fold (aext c1) -> c1 if (isa
(N0)) return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) EVT SVT = VT.getScalarType(); if (!(VT.isVector() && (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) return nullptr; // We can fold this node into a build_vector. unsigned VTBits = SVT.getSizeInBits(); unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); SmallVector
Elts; unsigned NumElts = VT.getVectorNumElements(); SDLoc DL(N); for (unsigned i=0; i != NumElts; ++i) { SDValue Op = N0->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) { Elts.push_back(DAG.getUNDEF(SVT)); continue; } SDLoc DL(Op); // Get the constant value and if needed trunc it to the size of the type. // Nodes like build_vector might have constants wider than the scalar type. APInt C = cast
(Op)->getAPIntValue().zextOrTrunc(EVTBits); if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); else Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); } return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode(); } // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" // transformation. Returns true if extension are possible and the above // mentioned transformation is profitable. static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, unsigned ExtOpc, SmallVectorImpl
&ExtendNodes, const TargetLowering &TLI) { bool HasCopyToRegUses = false; bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); for (SDNode::use_iterator UI = N0.getNode()->use_begin(), UE = N0.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == N) continue; if (UI.getUse().getResNo() != N0.getResNo()) continue; // FIXME: Only extend SETCC N, N and SETCC N, c for now. if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { ISD::CondCode CC = cast
(User->getOperand(2))->get(); if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) // Sign bits will be lost after a zext. return false; bool Add = false; for (unsigned i = 0; i != 2; ++i) { SDValue UseOp = User->getOperand(i); if (UseOp == N0) continue; if (!isa
(UseOp)) return false; Add = true; } if (Add) ExtendNodes.push_back(User); continue; } // If truncates aren't free and there are users we can't // extend, it isn't worthwhile. if (!isTruncFree) return false; // Remember if this value is live-out. if (User->getOpcode() == ISD::CopyToReg) HasCopyToRegUses = true; } if (HasCopyToRegUses) { bool BothLiveOut = false; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDUse &Use = UI.getUse(); if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { BothLiveOut = true; break; } } if (BothLiveOut) // Both unextended and extended values are live out. There had better be // a good reason for the transformation. return ExtendNodes.size(); } return true; } void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
&SetCCs, SDValue Trunc, SDValue ExtLoad, SDLoc DL, ISD::NodeType ExtType) { // Extend SetCC uses if necessary. for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { SDNode *SetCC = SetCCs[i]; SmallVector
Ops; for (unsigned j = 0; j != 2; ++j) { SDValue SOp = SetCC->getOperand(j); if (SOp == Trunc) Ops.push_back(ExtLoad); else Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); } Ops.push_back(SetCC->getOperand(2)); CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); } } // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). SDValue DAGCombiner::CombineExtLoad(SDNode *N) { SDValue N0 = N->getOperand(0); EVT DstVT = N->getValueType(0); EVT SrcVT = N0.getValueType(); assert((N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) && "Unexpected node type (not an extend)!"); // fold (sext (load x)) to multiple smaller sextloads; same for zext. // For example, on a target with legal v4i32, but illegal v8i32, turn: // (v8i32 (sext (v8i16 (load x)))) // into: // (v8i32 (concat_vectors (v4i32 (sextload x)), // (v4i32 (sextload (x + 16))))) // Where uses of the original load, i.e.: // (v8i16 (load x)) // are replaced with: // (v8i16 (truncate // (v8i32 (concat_vectors (v4i32 (sextload x)), // (v4i32 (sextload (x + 16))))))) // // This combine is only applicable to illegal, but splittable, vectors. // All legal types, and illegal non-vector types, are handled elsewhere. // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. // if (N0->getOpcode() != ISD::LOAD) return SDValue(); LoadSDNode *LN0 = cast
(N0); if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) return SDValue(); SmallVector
SetCCs; if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) return SDValue(); ISD::LoadExtType ExtType = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; // Try to split the vector types to get down to legal types. EVT SplitSrcVT = SrcVT; EVT SplitDstVT = DstVT; while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && SplitSrcVT.getVectorNumElements() > 1) { SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; } if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) return SDValue(); SDLoc DL(N); const unsigned NumSplits = DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); const unsigned Stride = SplitSrcVT.getStoreSize(); SmallVector
Loads; SmallVector
Chains; SDValue BasePtr = LN0->getBasePtr(); for (unsigned Idx = 0; Idx < NumSplits; Idx++) { const unsigned Offset = Idx * Stride; const unsigned Align = MinAlign(LN0->getAlignment(), Offset); SDValue SplitLoad = DAG.getExtLoad( ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), Align, LN0->getAAInfo()); BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, DAG.getConstant(Stride, DL, BasePtr.getValueType())); Loads.push_back(SplitLoad.getValue(0)); Chains.push_back(SplitLoad.getValue(1)); } SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); CombineTo(N, NewValue); // Replace uses of the original load (before extension) // with a truncate of the concatenated sextloaded vectors. SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); CombineTo(N0.getNode(), Trunc, NewChain); ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, (ISD::NodeType)N->getOpcode()); return SDValue(N, 0); // Return N so it doesn't get rechecked! } SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, LegalOperations)) return SDValue(Res, 0); // fold (sext (sext x)) -> (sext x) // fold (sext (aext x)) -> (sext x) if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0.getOperand(0)); if (N0.getOpcode() == ISD::TRUNCATE) { // fold (sext (truncate (load x))) -> (sext (smaller load x)) // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorklist(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } // See if the value being truncated is already sign extended. If so, just // eliminate the trunc/sext pair. SDValue Op = N0.getOperand(0); unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); unsigned DestBits = VT.getScalarType().getSizeInBits(); unsigned NumSignBits = DAG.ComputeNumSignBits(Op); if (OpBits == DestBits) { // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign // bits, it is already ready. if (NumSignBits > DestBits-MidBits) return Op; } else if (OpBits < DestBits) { // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign // bits, just sext from i32. if (NumSignBits > OpBits-MidBits) return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); } else { // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign // bits, just truncate to i32. if (NumSignBits > OpBits-MidBits) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); } // fold (sext (truncate x)) -> (sextinreg x). if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())) { if (OpBits < DestBits) Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); else if (OpBits > DestBits) Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, DAG.getValueType(N0.getValueType())); } } // fold (sext (load x)) -> (sext (truncate (sextload x))) // Only generate vector extloads when 1) they're legal, and 2) they are // deemed desirable by the target. if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && ((!LegalOperations && !VT.isVector() && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); if (VT.isVector()) DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); if (DoXform) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), N0.getValueType(), LN0->getMemOperand()); CombineTo(N, ExtLoad); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), ISD::SIGN_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (sext (load x)) to multiple smaller sextloads. // Only on illegal but splittable vectors. if (SDValue ExtLoad = CombineExtLoad(N)) return ExtLoad; // fold (sext (sextload x)) -> (sext (truncate (sextload x))) // fold (sext ( extload x)) -> (sext (truncate (sextload x))) if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); if ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), MemVT, LN0->getMemOperand()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (sext (and/or/xor (load x), cst)) -> // (and/or/xor (sextload x), (sext cst)) if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::XOR) && isa
(N0.getOperand(0)) && N0.getOperand(1).getOpcode() == ISD::Constant && TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { LoadSDNode *LN0 = cast
(N0.getOperand(0)); if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, SetCCs, TLI); if (DoXform) { SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getMemoryVT(), LN0->getMemOperand()); APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.sext(VT.getSizeInBits()); SDLoc DL(N); SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, ExtLoad, DAG.getConstant(Mask, DL, VT)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0.getOperand(0)), N0.getOperand(0).getValueType(), ExtLoad); CombineTo(N, And); CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, ISD::SIGN_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } if (N0.getOpcode() == ISD::SETCC) { EVT N0VT = N0.getOperand(0).getValueType(); // sext(setcc) -> sext_in_reg(vsetcc) for vectors. // Only do this before legalize for now. if (VT.isVector() && !LegalOperations && TLI.getBooleanContents(N0VT) == TargetLowering::ZeroOrNegativeOneBooleanContent) { // On some architectures (such as SSE/NEON/etc) the SETCC result type is // of the same size as the compared operands. Only optimize sext(setcc()) // if this is the case. EVT SVT = getSetCCResultType(N0VT); // We know that the # elements of the results is the same as the // # elements of the compare (and the # elements of the compare result // for that matter). Check to see that they are the same size. If so, // we know that the element size of the sext'd result matches the // element size of the compare operands. if (VT.getSizeInBits() == SVT.getSizeInBits()) return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); // If the desired elements are smaller or larger than the source // elements we can use a matching integer vector type and then // truncate/sign extend EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); if (SVT == MatchingVectorType) { SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); } } // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) unsigned ElementWidth = VT.getScalarType().getSizeInBits(); SDLoc DL(N); SDValue NegOne = DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), NegOne, DAG.getConstant(0, DL, VT), cast
(N0.getOperand(2))->get(), true); if (SCC.getNode()) return SCC; if (!VT.isVector()) { EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); if (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { SDLoc DL(N); ISD::CondCode CC = cast
(N0.getOperand(2))->get(); SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N0.getOperand(0), N0.getOperand(1), CC); return DAG.getSelect(DL, VT, SetCC, NegOne, DAG.getConstant(0, DL, VT)); } } } // fold (sext x) -> (zext x) if the sign bit is known zero. if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); return SDValue(); } // isTruncateOf - If N is a truncate of some other value, return true, record // the value being truncated in Op and which of Op's bits are zero in KnownZero. // This function computes KnownZero to avoid a duplicated call to // computeKnownBits in the caller. static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, APInt &KnownZero) { APInt KnownOne; if (N->getOpcode() == ISD::TRUNCATE) { Op = N->getOperand(0); DAG.computeKnownBits(Op, KnownZero, KnownOne); return true; } if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || cast
(N->getOperand(2))->get() != ISD::SETNE) return false; SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); assert(Op0.getValueType() == Op1.getValueType()); if (isNullConstant(Op0)) Op = Op1; else if (isNullConstant(Op1)) Op = Op0; else return false; DAG.computeKnownBits(Op, KnownZero, KnownOne); if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) return false; return true; } SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, LegalOperations)) return SDValue(Res, 0); // fold (zext (zext x)) -> (zext x) // fold (zext (aext x)) -> (zext x) if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); // fold (zext (truncate x)) -> (zext x) or // (zext (truncate x)) -> (truncate x) // This is valid when the truncated bits of x are already zero. // FIXME: We should extend this to work for vectors too. SDValue Op; APInt KnownZero; if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { APInt TruncatedBits = (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? APInt(Op.getValueSizeInBits(), 0) : APInt::getBitsSet(Op.getValueSizeInBits(), N0.getValueSizeInBits(), std::min(Op.getValueSizeInBits(), VT.getSizeInBits())); if (TruncatedBits == (KnownZero & TruncatedBits)) { if (VT.bitsGT(Op.getValueType())) return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); if (VT.bitsLT(Op.getValueType())) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); return Op; } } // fold (zext (truncate (load x))) -> (zext (smaller load x)) // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) if (N0.getOpcode() == ISD::TRUNCATE) { if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorklist(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext (truncate x)) -> (and x, mask) if (N0.getOpcode() == ISD::TRUNCATE) { // fold (zext (truncate (load x))) -> (zext (smaller load x)) // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { SDNode *oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorklist(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } EVT SrcVT = N0.getOperand(0).getValueType(); EVT MinVT = N0.getValueType(); // Try to mask before the extension to avoid having to generate a larger mask, // possibly over several sub-vectors. if (SrcVT.bitsLT(VT)) { if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { SDValue Op = N0.getOperand(0); Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); AddToWorklist(Op.getNode()); return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); } } if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { SDValue Op = N0.getOperand(0); if (SrcVT.bitsLT(VT)) { Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); AddToWorklist(Op.getNode()); } else if (SrcVT.bitsGT(VT)) { Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); AddToWorklist(Op.getNode()); } return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); } } // Fold (zext (and (trunc x), cst)) -> (and x, cst), // if either of the casts is not free. if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::TRUNCATE && N0.getOperand(1).getOpcode() == ISD::Constant && (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), N0.getValueType()) || !TLI.isZExtFree(N0.getValueType(), VT))) { SDValue X = N0.getOperand(0).getOperand(0); if (X.getValueType().bitsLT(VT)) { X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); } else if (X.getValueType().bitsGT(VT)) { X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); } APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.zext(VT.getSizeInBits()); SDLoc DL(N); return DAG.getNode(ISD::AND, DL, VT, X, DAG.getConstant(Mask, DL, VT)); } // fold (zext (load x)) -> (zext (truncate (zextload x))) // Only generate vector extloads when 1) they're legal, and 2) they are // deemed desirable by the target. if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && ((!LegalOperations && !VT.isVector() && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); if (VT.isVector()) DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); if (DoXform) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), N0.getValueType(), LN0->getMemOperand()); CombineTo(N, ExtLoad); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), ISD::ZERO_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext (load x)) to multiple smaller zextloads. // Only on illegal but splittable vectors. if (SDValue ExtLoad = CombineExtLoad(N)) return ExtLoad; // fold (zext (and/or/xor (load x), cst)) -> // (and/or/xor (zextload x), (zext cst)) // Unless (and (load x) cst) will match as a zextload already and has // additional users. if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::XOR) && isa
(N0.getOperand(0)) && N0.getOperand(1).getOpcode() == ISD::Constant && TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { LoadSDNode *LN0 = cast
(N0.getOperand(0)); if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) { if (N0.getOpcode() == ISD::AND) { auto *AndC = cast
(N0.getOperand(1)); auto NarrowLoad = false; EVT LoadResultTy = AndC->getValueType(0); EVT ExtVT, LoadedVT; if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, NarrowLoad)) DoXform = false; } if (DoXform) DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND, SetCCs, TLI); } if (DoXform) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getMemoryVT(), LN0->getMemOperand()); APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.zext(VT.getSizeInBits()); SDLoc DL(N); SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, ExtLoad, DAG.getConstant(Mask, DL, VT)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0.getOperand(0)), N0.getOperand(0).getValueType(), ExtLoad); CombineTo(N, And); CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, ISD::ZERO_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } // fold (zext (zextload x)) -> (zext (truncate (zextload x))) // fold (zext ( extload x)) -> (zext (truncate (zextload x))) if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); EVT MemVT = LN0->getMemoryVT(); if ((!LegalOperations && !LN0->isVolatile()) || TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), MemVT, LN0->getMemOperand()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } if (N0.getOpcode() == ISD::SETCC) { if (!LegalOperations && VT.isVector() && N0.getValueType().getVectorElementType() == MVT::i1) { EVT N0VT = N0.getOperand(0).getValueType(); if (getSetCCResultType(N0VT) == N0.getValueType()) return SDValue(); // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. // Only do this before legalize for now. EVT EltVT = VT.getVectorElementType(); SDLoc DL(N); SmallVector
OneOps(VT.getVectorNumElements(), DAG.getConstant(1, DL, EltVT)); if (VT.getSizeInBits() == N0VT.getSizeInBits()) // We know that the # elements of the results is the same as the // # elements of the compare (and the # elements of the compare result // for that matter). Check to see that they are the same size. If so, // we know that the element size of the sext'd result matches the // element size of the compare operands. return DAG.getNode(ISD::AND, DL, VT, DAG.getSetCC(DL, VT, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()), DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps)); // If the desired elements are smaller or larger than the source // elements we can use a matching integer vector type and then // truncate/sign extend EVT MatchingElementType = EVT::getIntegerVT(*DAG.getContext(), N0VT.getScalarType().getSizeInBits()); EVT MatchingVectorType = EVT::getVectorVT(*DAG.getContext(), MatchingElementType, N0VT.getVectorNumElements()); SDValue VsetCC = DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps)); } // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc SDLoc DL(N); SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), cast
(N0.getOperand(2))->get(), true); if (SCC.getNode()) return SCC; } // (zext (shl (zext x), cst)) -> (shl (zext x), cst) if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && isa
(N0.getOperand(1)) && N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse()) { SDValue ShAmt = N0.getOperand(1); unsigned ShAmtVal = cast
(ShAmt)->getZExtValue(); if (N0.getOpcode() == ISD::SHL) { SDValue InnerZExt = N0.getOperand(0); // If the original shl may be shifting out bits, do not perform this // transformation. unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - InnerZExt.getOperand(0).getValueType().getSizeInBits(); if (ShAmtVal > KnownZeroBits) return SDValue(); } SDLoc DL(N); // Ensure that the shift amount is wide enough for the shifted value. if (VT.getSizeInBits() >= 256) ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); return DAG.getNode(N0.getOpcode(), DL, VT, DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), ShAmt); } return SDValue(); } SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, LegalOperations)) return SDValue(Res, 0); // fold (aext (aext x)) -> (aext x) // fold (aext (zext x)) -> (zext x) // fold (aext (sext x)) -> (sext x) if (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); // fold (aext (truncate (load x))) -> (aext (smaller load x)) // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) if (N0.getOpcode() == ISD::TRUNCATE) { if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { SDNode* oye = N0.getNode()->getOperand(0).getNode(); if (NarrowLoad.getNode() != N0.getNode()) { CombineTo(N0.getNode(), NarrowLoad); // CombineTo deleted the truncate, if needed, but not what's under it. AddToWorklist(oye); } return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (aext (truncate x)) if (N0.getOpcode() == ISD::TRUNCATE) { SDValue TruncOp = N0.getOperand(0); if (TruncOp.getValueType() == VT) return TruncOp; // x iff x size == zext size. if (TruncOp.getValueType().bitsGT(VT)) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); } // Fold (aext (and (trunc x), cst)) -> (and x, cst) // if the trunc is not free. if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::TRUNCATE && N0.getOperand(1).getOpcode() == ISD::Constant && !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), N0.getValueType())) { SDValue X = N0.getOperand(0).getOperand(0); if (X.getValueType().bitsLT(VT)) { X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); } else if (X.getValueType().bitsGT(VT)) { X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); } APInt Mask = cast
(N0.getOperand(1))->getAPIntValue(); Mask = Mask.zext(VT.getSizeInBits()); SDLoc DL(N); return DAG.getNode(ISD::AND, DL, VT, X, DAG.getConstant(Mask, DL, VT)); } // fold (aext (load x)) -> (aext (truncate (extload x))) // None of the supported targets knows how to perform load and any_ext // on vectors in one instruction. We only perform this transformation on // scalars. if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && ISD::isUNINDEXEDLoad(N0.getNode()) && TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { bool DoXform = true; SmallVector
SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); if (DoXform) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), N0.getValueType(), LN0->getMemOperand()); CombineTo(N, ExtLoad); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), ISD::ANY_EXTEND); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } // fold (aext (zextload x)) -> (aext (truncate (zextload x))) // fold (aext (sextload x)) -> (aext (truncate (sextload x))) // fold (aext ( extload x)) -> (aext (truncate (extload x))) if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast
(N0); ISD::LoadExtType ExtType = LN0->getExtensionType(); EVT MemVT = LN0->getMemoryVT(); if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), MemVT, LN0->getMemOperand()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } if (N0.getOpcode() == ISD::SETCC) { // For vectors: // aext(setcc) -> vsetcc // aext(setcc) -> truncate(vsetcc) // aext(setcc) -> aext(vsetcc) // Only do this before legalize for now. if (VT.isVector() && !LegalOperations) { EVT N0VT = N0.getOperand(0).getValueType(); // We know that the # elements of the results is the same as the // # elements of the compare (and the # elements of the compare result // for that matter). Check to see that they are the same size. If so, // we know that the element size of the sext'd result matches the // element size of the compare operands. if (VT.getSizeInBits() == N0VT.getSizeInBits()) return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); // If the desired elements are smaller or larger than the source // elements we can use a matching integer vector type and then // truncate/any extend else { EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), N0.getOperand(1), cast
(N0.getOperand(2))->get()); return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); } } // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc SDLoc DL(N); SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT), cast
(N0.getOperand(2))->get(), true); if (SCC.getNode()) return SCC; } return SDValue(); } /// See if the specified operand can be simplified with the knowledge that only /// the bits specified by Mask are used. If so, return the simpler operand, /// otherwise return a null SDValue. SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { switch (V.getOpcode()) { default: break; case ISD::Constant: { const ConstantSDNode *CV = cast
(V.getNode()); assert(CV && "Const value should be ConstSDNode."); const APInt &CVal = CV->getAPIntValue(); APInt NewVal = CVal & Mask; if (NewVal != CVal) return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); break; } case ISD::OR: case ISD::XOR: // If the LHS or RHS don't contribute bits to the or, drop them. if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) return V.getOperand(1); if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) return V.getOperand(0); break; case ISD::SRL: // Only look at single-use SRLs. if (!V.getNode()->hasOneUse()) break; if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { // See if we can recursively simplify the LHS. unsigned Amt = RHSC->getZExtValue(); // Watch out for shift count overflow though. if (Amt >= Mask.getBitWidth()) break; APInt NewMask = Mask << Amt; if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, V.getOperand(1)); } } return SDValue(); } /// If the result of a wider load is shifted to right of N bits and then /// truncated to a narrower type and where N is a multiple of number of bits of /// the narrower type, transform it to a narrower load from address + N / num of /// bits of new type. If the result is to be extended, also fold the extension /// to form a extending load. SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { unsigned Opc = N->getOpcode(); ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT ExtVT = VT; // This transformation isn't valid for vector loads. if (VT.isVector()) return SDValue(); // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then // extended to VT. if (Opc == ISD::SIGN_EXTEND_INREG) { ExtType = ISD::SEXTLOAD; ExtVT = cast
(N->getOperand(1))->getVT(); } else if (Opc == ISD::SRL) { // Another special-case: SRL is basically zero-extending a narrower value. ExtType = ISD::ZEXTLOAD; N0 = SDValue(N, 0); ConstantSDNode *N01 = dyn_cast
(N0.getOperand(1)); if (!N01) return SDValue(); ExtVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() - N01->getZExtValue()); } if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) return SDValue(); unsigned EVTBits = ExtVT.getSizeInBits(); // Do not generate loads of non-round integer types since these can // be expensive (and would be wrong if the type is not byte sized). if (!ExtVT.isRound()) return SDValue(); unsigned ShAmt = 0; if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { if (ConstantSDNode *N01 = dyn_cast
(N0.getOperand(1))) { ShAmt = N01->getZExtValue(); // Is the shift amount a multiple of size of VT? if ((ShAmt & (EVTBits-1)) == 0) { N0 = N0.getOperand(0); // Is the load width a multiple of size of VT? if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) return SDValue(); } // At this point, we must have a load or else we can't do the transform. if (!isa
(N0)) return SDValue(); // Because a SRL must be assumed to *need* to zero-extend the high bits // (as opposed to anyext the high bits), we can't combine the zextload // lowering of SRL and an sextload. if (cast
(N0)->getExtensionType() == ISD::SEXTLOAD) return SDValue(); // If the shift amount is larger than the input type then we're not // accessing any of the loaded bytes. If the load was a zextload/extload // then the result of the shift+trunc is zero/undef (handled elsewhere). if (ShAmt >= cast
(N0)->getMemoryVT().getSizeInBits()) return SDValue(); } } // If the load is shifted left (and the result isn't shifted back right), // we can fold the truncate through the shift. unsigned ShLeftAmt = 0; if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { if (ConstantSDNode *N01 = dyn_cast
(N0.getOperand(1))) { ShLeftAmt = N01->getZExtValue(); N0 = N0.getOperand(0); } } // If we haven't found a load, we can't narrow it. Don't transform one with // multiple uses, this would require adding a new load. if (!isa
(N0) || !N0.hasOneUse()) return SDValue(); // Don't change the width of a volatile load. LoadSDNode *LN0 = cast
(N0); if (LN0->isVolatile()) return SDValue(); // Verify that we are actually reducing a load width here. if (LN0->getMemoryVT().getSizeInBits() < EVTBits) return SDValue(); // For the transform to be legal, the load must produce only two values // (the value loaded and the chain). Don't transform a pre-increment // load, for example, which produces an extra value. Otherwise the // transformation is not equivalent, and the downstream logic to replace // uses gets things wrong. if (LN0->getNumValues() > 2) return SDValue(); // If the load that we're shrinking is an extload and we're not just // discarding the extension we can't simply shrink the load. Bail. // TODO: It would be possible to merge the extensions in some cases. if (LN0->getExtensionType() != ISD::NON_EXTLOAD && LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) return SDValue(); if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) return SDValue(); EVT PtrType = N0.getOperand(1).getValueType(); if (PtrType == MVT::Untyped || PtrType.isExtended()) // It's not possible to generate a constant of extended or untyped type. return SDValue(); // For big endian targets, we need to adjust the offset to the pointer to // load the correct bytes. if (DAG.getDataLayout().isBigEndian()) { unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; } uint64_t PtrOff = ShAmt / 8; unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); SDLoc DL(LN0); SDValue NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, LN0->getBasePtr(), DAG.getConstant(PtrOff, DL, PtrType)); AddToWorklist(NewPtr.getNode()); SDValue Load; if (ExtType == ISD::NON_EXTLOAD) Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff), LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), NewAlign, LN0->getAAInfo()); else Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), NewAlign, LN0->getAAInfo()); // Replace the old load's chain with the new load's chain. WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); // Shift the result left, if we've swallowed a left shift. SDValue Result = Load; if (ShLeftAmt != 0) { EVT ShImmTy = getShiftAmountTy(Result.getValueType()); if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) ShImmTy = VT; // If the shift amount is as large as the result size (but, presumably, // no larger than the source) then the useful bits of the result are // zero; we can't simply return the shortened shift, because the result // of that operation is undefined. SDLoc DL(N0); if (ShLeftAmt >= VT.getSizeInBits()) Result = DAG.getConstant(0, DL, VT); else Result = DAG.getNode(ISD::SHL, DL, VT, Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); } // Return the new loaded value. return Result; } SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); EVT EVT = cast
(N1)->getVT(); unsigned VTBits = VT.getScalarType().getSizeInBits(); unsigned EVTBits = EVT.getScalarType().getSizeInBits(); if (N0.isUndef()) return DAG.getUNDEF(VT); // fold (sext_in_reg c1) -> c1 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); // If the input is already sign extended, just drop the extension. if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) return N0; // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && EVT.bitsLT(cast
(N0.getOperand(1))->getVT())) return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), N1); // fold (sext_in_reg (sext x)) -> (sext x) // fold (sext_in_reg (aext x)) -> (sext x) // if x is small enough. if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); } // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); // fold operands of sext_in_reg based on knowledge that the top bits are not // demanded. if (SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); // fold (sext_in_reg (load x)) -> (smaller sextload x) // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) if (SDValue NarrowLoad = ReduceLoadWidth(N)) return NarrowLoad; // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. if (N0.getOpcode() == ISD::SRL) { if (ConstantSDNode *ShAmt = dyn_cast
(N0.getOperand(1))) if (ShAmt->getZExtValue()+EVTBits <= VTBits) { // We can turn this into an SRA iff the input to the SRL is already sign // extended enough. unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1)); } } // fold (sext_inreg (extload x)) -> (sextload x) if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && EVT == cast
(N0)->getMemoryVT() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), EVT, LN0->getMemOperand()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); AddToWorklist(ExtLoad.getNode()); return SDValue(N, 0); // Return N so it doesn't get rechecked! } // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse() && EVT == cast
(N0)->getMemoryVT() && ((!LegalOperations && !cast
(N0)->isVolatile()) || TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), EVT, LN0->getMemOperand()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), N0.getOperand(1), false); if (BSwap.getNode()) return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); } return SDValue(); } SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.getOpcode() == ISD::UNDEF) return DAG.getUNDEF(VT); if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, LegalOperations)) return SDValue(Res, 0); return SDValue(); } SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); bool isLE = DAG.getDataLayout().isLittleEndian(); // noop truncate if (N0.getValueType() == N->getValueType(0)) return N0; // fold (truncate c1) -> c1 if (isConstantIntBuildVectorOrConstantInt(N0)) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); // fold (truncate (truncate x)) -> (truncate x) if (N0.getOpcode() == ISD::TRUNCATE) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); // fold (truncate (ext x)) -> (ext x) or (truncate x) or x if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { if (N0.getOperand(0).getValueType().bitsLT(VT)) // if the source is smaller than the dest, we still need an extend return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); if (N0.getOperand(0).getValueType().bitsGT(VT)) // if the source is larger than the dest, than we just need the truncate return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); // if the source and dest are the same type, we can drop both the extend // and the truncate. return N0.getOperand(0); } // Fold extract-and-trunc into a narrow extract. For example: // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) // i32 y = TRUNCATE(i64 x) // -- becomes -- // v16i8 b = BITCAST (v2i64 val) // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) // // Note: We only run this optimization after type legalization (which often // creates this pattern) and before operation legalization after which // we need to be more careful about the vector instructions that we generate. if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { EVT VecTy = N0.getOperand(0).getValueType(); EVT ExTy = N0.getValueType(); EVT TrTy = N->getValueType(0); unsigned NumElem = VecTy.getVectorNumElements(); unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); SDValue EltNo = N0->getOperand(1); if (isa
(EltNo) && isTypeLegal(NVT)) { int Elt = cast
(EltNo)->getZExtValue(); EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, N0.getOperand(0)); SDLoc DL(N); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, V, DAG.getConstant(Index, DL, IndexTy)); } } // trunc (select c, a, b) -> select c, (trunc a), (trunc b) if (N0.getOpcode() == ISD::SELECT) { EVT SrcVT = N0.getValueType(); if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && TLI.isTruncateFree(SrcVT, VT)) { SDLoc SL(N0); SDValue Cond = N0.getOperand(0); SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); } } // Fold a series of buildvector, bitcast, and truncate if possible. // For example fold // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to // (2xi32 (buildvector x, y)). if (Level == AfterLegalizeVectorOps && VT.isVector() && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && N0.getOperand(0).hasOneUse()) { SDValue BuildVect = N0.getOperand(0); EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); EVT TruncVecEltTy = VT.getVectorElementType(); // Check that the element types match. if (BuildVectEltTy == TruncVecEltTy) { // Now we only need to compute the offset of the truncated elements. unsigned BuildVecNumElts = BuildVect.getNumOperands(); unsigned TruncVecNumElts = VT.getVectorNumElements(); unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; assert((BuildVecNumElts % TruncVecNumElts) == 0 && "Invalid number of elements"); SmallVector
Opnds; for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) Opnds.push_back(BuildVect.getOperand(i)); return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); } } // See if we can simplify the input to this truncate through knowledge that // only the low bits are being used. // For example "trunc (or (shl x, 8), y)" // -> trunc y // Currently we only perform this optimization on scalars because vectors // may have different active low bits. if (!VT.isVector()) { SDValue Shorter = GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits())); if (Shorter.getNode()) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); } // fold (truncate (load x)) -> (smaller load x) // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { if (SDValue Reduced = ReduceLoadWidth(N)) return Reduced; // Handle the case where the load remains an extending load even // after truncation. if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { LoadSDNode *LN0 = cast
(N0); if (!LN0->isVolatile() && LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getMemoryVT(), LN0->getMemOperand()); DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); return NewLoad; } } } // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), // where ... are all 'undef'. if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { SmallVector
VTs; SDValue V; unsigned Idx = 0; unsigned NumDefs = 0; for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { SDValue X = N0.getOperand(i); if (X.getOpcode() != ISD::UNDEF) { V = X; Idx = i; NumDefs++; } // Stop if more than one members are non-undef. if (NumDefs > 1) break; VTs.push_back(EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), X.getValueType().getVectorNumElements())); } if (NumDefs == 0) return DAG.getUNDEF(VT); if (NumDefs == 1) { assert(V.getNode() && "The single defined operand is empty!"); SmallVector
Opnds; for (unsigned i = 0, e = VTs.size(); i != e; ++i) { if (i != Idx) { Opnds.push_back(DAG.getUNDEF(VTs[i])); continue; } SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); AddToWorklist(NV.getNode()); Opnds.push_back(NV); } return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); } } // Simplify the operands using demanded-bits information. if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); return SDValue(); } static SDNode *getBuildPairElt(SDNode *N, unsigned i) { SDValue Elt = N->getOperand(i); if (Elt.getOpcode() != ISD::MERGE_VALUES) return Elt.getNode(); return Elt.getOperand(Elt.getResNo()).getNode(); } /// build_pair (load, load) -> load /// if load locations are consecutive. SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { assert(N->getOpcode() == ISD::BUILD_PAIR); LoadSDNode *LD1 = dyn_cast
(getBuildPairElt(N, 0)); LoadSDNode *LD2 = dyn_cast
(getBuildPairElt(N, 1)); if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || LD1->getAddressSpace() != LD2->getAddressSpace()) return SDValue(); EVT LD1VT = LD1->getValueType(0); if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && // If both are volatile this would reduce the number of volatile loads. // If one is volatile it might be ok, but play conservative and bail out. !LD1->isVolatile() && !LD2->isVolatile() && DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { unsigned Align = LD1->getAlignment(); unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( VT.getTypeForEVT(*DAG.getContext())); if (NewAlign <= Align && (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), LD1->getPointerInfo(), false, false, false, Align); } return SDValue(); } static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi // and Lo parts; on big-endian machines it doesn't. return DAG.getDataLayout().isBigEndian() ? 1 : 0; } SDValue DAGCombiner::visitBITCAST(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // If the input is a BUILD_VECTOR with all constant elements, fold this now. // Only do this before legalize, since afterward the target may be depending // on the bitconvert. // First check to see if this is all constant. if (!LegalTypes && N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && VT.isVector()) { bool isSimple = cast
(N0)->isConstant(); EVT DestEltVT = N->getValueType(0).getVectorElementType(); assert(!DestEltVT.isVector() && "Element type of vector ValueType must not be vector!"); if (isSimple) return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); } // If the input is a constant, let getNode fold it. if (isa
(N0) || isa
(N0)) { // If we can't allow illegal operations, we need to check that this is just // a fp -> int or int -> conversion and that the resulting operation will // be legal. if (!LegalOperations || (isa
(N0) && VT.isFloatingPoint() && !VT.isVector() && TLI.isOperationLegal(ISD::ConstantFP, VT)) || (isa
(N0) && VT.isInteger() && !VT.isVector() && TLI.isOperationLegal(ISD::Constant, VT))) return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); } // (conv (conv x, t1), t2) -> (conv x, t2) if (N0.getOpcode() == ISD::BITCAST) return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0.getOperand(0)); // fold (conv (load x)) -> (load (conv*)x) // If the resultant load doesn't need a higher alignment than the original! if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && // Do not change the width of a volatile load. !cast
(N0)->isVolatile() && // Do not remove the cast if the types differ in endian layout. TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { LoadSDNode *LN0 = cast
(N0); unsigned Align = DAG.getDataLayout().getABITypeAlignment( VT.getTypeForEVT(*DAG.getContext())); unsigned OrigAlign = LN0->getAlignment(); if (Align <= OrigAlign) { SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), OrigAlign, LN0->getAAInfo()); DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); return Load; } } // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) // // For ppc_fp128: // fold (bitcast (fneg x)) -> // flipbit = signbit // (xor (bitcast x) (build_pair flipbit, flipbit)) // fold (bitcast (fabs x)) -> // flipbit = (and (extract_element (bitcast x), 0), signbit) // (xor (bitcast x) (build_pair flipbit, flipbit)) // This often reduces constant pool loads. if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector() && !N0.getValueType().isVector()) { SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, N0.getOperand(0)); AddToWorklist(NewConv.getNode()); SDLoc DL(N); if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { assert(VT.getSizeInBits() == 128); SDValue SignBit = DAG.getConstant( APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); SDValue FlipBit; if (N0.getOpcode() == ISD::FNEG) { FlipBit = SignBit; AddToWorklist(FlipBit.getNode()); } else { assert(N0.getOpcode() == ISD::FABS); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), SDLoc(NewConv))); AddToWorklist(Hi.getNode()); FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); AddToWorklist(FlipBit.getNode()); } SDValue FlipBits = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); AddToWorklist(FlipBits.getNode()); return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); } APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); if (N0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::XOR, DL, VT, NewConv, DAG.getConstant(SignBit, DL, VT)); assert(N0.getOpcode() == ISD::FABS); return DAG.getNode(ISD::AND, DL, VT, NewConv, DAG.getConstant(~SignBit, DL, VT)); } // fold (bitconvert (fcopysign cst, x)) -> // (or (and (bitconvert x), sign), (and cst, (not sign))) // Note that we don't handle (copysign x, cst) because this can always be // folded to an fneg or fabs. // // For ppc_fp128: // fold (bitcast (fcopysign cst, x)) -> // flipbit = (and (extract_element // (xor (bitcast cst), (bitcast x)), 0), // signbit) // (xor (bitcast cst) (build_pair flipbit, flipbit)) if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && isa
(N0.getOperand(0)) && VT.isInteger() && !VT.isVector()) { unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); if (isTypeLegal(IntXVT)) { SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), IntXVT, N0.getOperand(1)); AddToWorklist(X.getNode()); // If X has a different width than the result/lhs, sext it or truncate it. unsigned VTWidth = VT.getSizeInBits(); if (OrigXWidth < VTWidth) { X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); AddToWorklist(X.getNode()); } else if (OrigXWidth > VTWidth) { // To get the sign bit in the right place, we have to shift it right // before truncating. SDLoc DL(X); X = DAG.getNode(ISD::SRL, DL, X.getValueType(), X, DAG.getConstant(OrigXWidth-VTWidth, DL, X.getValueType())); AddToWorklist(X.getNode()); X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); AddToWorklist(X.getNode()); } if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0.getOperand(0)), VT, N0.getOperand(0)); AddToWorklist(Cst.getNode()); SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0.getOperand(1)), VT, N0.getOperand(1)); AddToWorklist(X.getNode()); SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); AddToWorklist(XorResult.getNode()); SDValue XorResult64 = DAG.getNode( ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), SDLoc(XorResult))); AddToWorklist(XorResult64.getNode()); SDValue FlipBit = DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); AddToWorklist(FlipBit.getNode()); SDValue FlipBits = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); AddToWorklist(FlipBits.getNode()); return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); } APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); X = DAG.getNode(ISD::AND, SDLoc(X), VT, X, DAG.getConstant(SignBit, SDLoc(X), VT)); AddToWorklist(X.getNode()); SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, N0.getOperand(0)); Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); AddToWorklist(Cst.getNode()); return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); } } // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. if (N0.getOpcode() == ISD::BUILD_PAIR) if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) return CombineLD; // Remove double bitcasts from shuffles - this is often a legacy of // XformToShuffleWithZero being used to combine bitmaskings (of // float vectors bitcast to integer vectors) into shuffles. // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && N0->getOpcode() == ISD::VECTOR_SHUFFLE && VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { ShuffleVectorSDNode *SVN = cast
(N0); // If operands are a bitcast, peek through if it casts the original VT. // If operands are a constant, just bitcast back to original VT. auto PeekThroughBitcast = [&](SDValue Op) { if (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).getValueType() == VT) return SDValue(Op.getOperand(0)); if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); return SDValue(); }; SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); if (!(SV0 && SV1)) return SDValue(); int MaskScale = VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); SmallVector
NewMask; for (int M : SVN->getMask()) for (int i = 0; i != MaskScale; ++i) NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); if (!LegalMask) { std::swap(SV0, SV1); ShuffleVectorSDNode::commuteMask(NewMask); LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); } if (LegalMask) return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); } return SDValue(); } SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { EVT VT = N->getValueType(0); return CombineConsecutiveLoads(N, VT); } /// We know that BV is a build_vector node with Constant, ConstantFP or Undef /// operands. DstEltVT indicates the destination element value type. SDValue DAGCombiner:: ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); // If this is already the right type, we're done. if (SrcEltVT == DstEltVT) return SDValue(BV, 0); unsigned SrcBitSize = SrcEltVT.getSizeInBits(); unsigned DstBitSize = DstEltVT.getSizeInBits(); // If this is a conversion of N elements of one type to N elements of another // type, convert each element. This handles FP<->INT cases. if (SrcBitSize == DstBitSize) { EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, BV->getValueType(0).getVectorNumElements()); // Due to the FP element handling below calling this routine recursively, // we can end up with a scalar-to-vector node here. if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, DAG.getNode(ISD::BITCAST, SDLoc(BV), DstEltVT, BV->getOperand(0))); SmallVector
Ops; for (SDValue Op : BV->op_values()) { // If the vector element type is not legal, the BUILD_VECTOR operands // are promoted and implicitly truncated. Make that explicit here. if (Op.getValueType() != SrcEltVT) Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), DstEltVT, Op)); AddToWorklist(Ops.back().getNode()); } return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); } // Otherwise, we're growing or shrinking the elements. To avoid having to // handle annoying details of growing/shrinking FP values, we convert them to // int first. if (SrcEltVT.isFloatingPoint()) { // Convert the input float vector to a int vector where the elements are the // same sizes. EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); SrcEltVT = IntVT; } // Now we know the input is an integer vector. If the output is a FP type, // convert to integer first, then to FP of the right size. if (DstEltVT.isFloatingPoint()) { EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); // Next, convert to FP elements of the same size. return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); } SDLoc DL(BV); // Okay, we know the src/dst types are both integers of differing types. // Handling growing first. assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); if (SrcBitSize < DstBitSize) { unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; SmallVector
Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; i += NumInputsPerOutput) { bool isLE = DAG.getDataLayout().isLittleEndian(); APInt NewBits = APInt(DstBitSize, 0); bool EltIsUndef = true; for (unsigned j = 0; j != NumInputsPerOutput; ++j) { // Shift the previously computed bits over. NewBits <<= SrcBitSize; SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); if (Op.getOpcode() == ISD::UNDEF) continue; EltIsUndef = false; NewBits |= cast
(Op)->getAPIntValue(). zextOrTrunc(SrcBitSize).zext(DstBitSize); } if (EltIsUndef) Ops.push_back(DAG.getUNDEF(DstEltVT)); else Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); } EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); } // Finally, this must be the case where we are shrinking elements: each input // turns into multiple outputs. unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, NumOutputsPerInput*BV->getNumOperands()); SmallVector
Ops; for (const SDValue &Op : BV->op_values()) { if (Op.getOpcode() == ISD::UNDEF) { Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); continue; } APInt OpVal = cast
(Op)-> getAPIntValue().zextOrTrunc(SrcBitSize); for (unsigned j = 0; j != NumOutputsPerInput; ++j) { APInt ThisVal = OpVal.trunc(DstBitSize); Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); OpVal = OpVal.lshr(DstBitSize); } // For big endian targets, swap the order of the pieces of each element. if (DAG.getDataLayout().isBigEndian()) std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); } return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); } /// Try to perform FMA combining on a given FADD node. SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc SL(N); const TargetOptions &Options = DAG.getTarget().Options; bool AllowFusion = (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); // Floating-point multiply-add with intermediate rounding. bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); // Floating-point multiply-add without intermediate rounding. bool HasFMA = AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); // No valid opcode, do not combine. if (!HasFMAD && !HasFMA) return SDValue(); // Always prefer FMAD to FMA for precision. unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; bool Aggressive = TLI.enableAggressiveFMAFusion(VT); bool LookThroughFPExt = TLI.isFPExtFree(VT); // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), // prefer to fold the multiply with fewer uses. if (Aggressive && N0.getOpcode() == ISD::FMUL && N1.getOpcode() == ISD::FMUL) { if (N0.getNode()->use_size() > N1.getNode()->use_size()) std::swap(N0, N1); } // fold (fadd (fmul x, y), z) -> (fma x, y, z) if (N0.getOpcode() == ISD::FMUL && (Aggressive || N0->hasOneUse())) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), N1); } // fold (fadd x, (fmul y, z)) -> (fma y, z, x) // Note: Commutes FADD operands. if (N1.getOpcode() == ISD::FMUL && (Aggressive || N1->hasOneUse())) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), N1.getOperand(1), N0); } // Look through FP_EXTEND nodes to do more combining. if (AllowFusion && LookThroughFPExt) { // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) if (N0.getOpcode() == ISD::FP_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == ISD::FMUL) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), N1); } // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) // Note: Commutes FADD operands. if (N1.getOpcode() == ISD::FP_EXTEND) { SDValue N10 = N1.getOperand(0); if (N10.getOpcode() == ISD::FMUL) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); } } // More folding opportunities when target permits. if ((AllowFusion || HasFMAD) && Aggressive) { // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) if (N0.getOpcode() == PreferredFusedOpcode && N0.getOperand(2).getOpcode() == ISD::FMUL) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(2).getOperand(0), N0.getOperand(2).getOperand(1), N1)); } // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) if (N1->getOpcode() == PreferredFusedOpcode && N1.getOperand(2).getOpcode() == ISD::FMUL) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), N1.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(2).getOperand(0), N1.getOperand(2).getOperand(1), N0)); } if (AllowFusion && LookThroughFPExt) { // fold (fadd (fma x, y, (fpext (fmul u, v))), z) // -> (fma x, y, (fma (fpext u), (fpext v), z)) auto FoldFAddFMAFPExtFMul = [&] ( SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, U), DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); }; if (N0.getOpcode() == PreferredFusedOpcode) { SDValue N02 = N0.getOperand(2); if (N02.getOpcode() == ISD::FP_EXTEND) { SDValue N020 = N02.getOperand(0); if (N020.getOpcode() == ISD::FMUL) return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), N020.getOperand(0), N020.getOperand(1), N1); } } // fold (fadd (fpext (fma x, y, (fmul u, v))), z) // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) // FIXME: This turns two single-precision and one double-precision // operation into two double-precision operations, which might not be // interesting for all targets, especially GPUs. auto FoldFAddFPExtFMAFMul = [&] ( SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X), DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, U), DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); }; if (N0.getOpcode() == ISD::FP_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == PreferredFusedOpcode) { SDValue N002 = N00.getOperand(2); if (N002.getOpcode() == ISD::FMUL) return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), N002.getOperand(0), N002.getOperand(1), N1); } } // fold (fadd x, (fma y, z, (fpext (fmul u, v))) // -> (fma y, z, (fma (fpext u), (fpext v), x)) if (N1.getOpcode() == PreferredFusedOpcode) { SDValue N12 = N1.getOperand(2); if (N12.getOpcode() == ISD::FP_EXTEND) { SDValue N120 = N12.getOperand(0); if (N120.getOpcode() == ISD::FMUL) return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), N120.getOperand(0), N120.getOperand(1), N0); } } // fold (fadd x, (fpext (fma y, z, (fmul u, v))) // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) // FIXME: This turns two single-precision and one double-precision // operation into two double-precision operations, which might not be // interesting for all targets, especially GPUs. if (N1.getOpcode() == ISD::FP_EXTEND) { SDValue N10 = N1.getOperand(0); if (N10.getOpcode() == PreferredFusedOpcode) { SDValue N102 = N10.getOperand(2); if (N102.getOpcode() == ISD::FMUL) return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), N102.getOperand(0), N102.getOperand(1), N0); } } } } return SDValue(); } /// Try to perform FMA combining on a given FSUB node. SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc SL(N); const TargetOptions &Options = DAG.getTarget().Options; bool AllowFusion = (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); // Floating-point multiply-add with intermediate rounding. bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); // Floating-point multiply-add without intermediate rounding. bool HasFMA = AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); // No valid opcode, do not combine. if (!HasFMAD && !HasFMA) return SDValue(); // Always prefer FMAD to FMA for precision. unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; bool Aggressive = TLI.enableAggressiveFMAFusion(VT); bool LookThroughFPExt = TLI.isFPExtFree(VT); // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) if (N0.getOpcode() == ISD::FMUL && (Aggressive || N0->hasOneUse())) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, N1)); } // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) // Note: Commutes FSUB operands. if (N1.getOpcode() == ISD::FMUL && (Aggressive || N1->hasOneUse())) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), N0); // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0).getOpcode() == ISD::FMUL && (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { SDValue N00 = N0.getOperand(0).getOperand(0); SDValue N01 = N0.getOperand(0).getOperand(1); return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N00), N01, DAG.getNode(ISD::FNEG, SL, VT, N1)); } // Look through FP_EXTEND nodes to do more combining. if (AllowFusion && LookThroughFPExt) { // fold (fsub (fpext (fmul x, y)), z) // -> (fma (fpext x), (fpext y), (fneg z)) if (N0.getOpcode() == ISD::FP_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == ISD::FMUL) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), DAG.getNode(ISD::FNEG, SL, VT, N1)); } // fold (fsub x, (fpext (fmul y, z))) // -> (fma (fneg (fpext y)), (fpext z), x) // Note: Commutes FSUB operands. if (N1.getOpcode() == ISD::FP_EXTEND) { SDValue N10 = N1.getOperand(0); if (N10.getOpcode() == ISD::FMUL) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); } // fold (fsub (fpext (fneg (fmul, x, y))), z) // -> (fneg (fma (fpext x), (fpext y), z)) // Note: This could be removed with appropriate canonicalization of the // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent // from implementing the canonicalization in visitFSUB. if (N0.getOpcode() == ISD::FP_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == ISD::FNEG) { SDValue N000 = N00.getOperand(0); if (N000.getOpcode() == ISD::FMUL) { return DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), N1)); } } } // fold (fsub (fneg (fpext (fmul, x, y))), z) // -> (fneg (fma (fpext x)), (fpext y), z) // Note: This could be removed with appropriate canonicalization of the // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent // from implementing the canonicalization in visitFSUB. if (N0.getOpcode() == ISD::FNEG) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == ISD::FP_EXTEND) { SDValue N000 = N00.getOperand(0); if (N000.getOpcode() == ISD::FMUL) { return DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), N1)); } } } } // More folding opportunities when target permits. if ((AllowFusion || HasFMAD) && Aggressive) { // fold (fsub (fma x, y, (fmul u, v)), z) // -> (fma x, y (fma u, v, (fneg z))) if (N0.getOpcode() == PreferredFusedOpcode && N0.getOperand(2).getOpcode() == ISD::FMUL) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(2).getOperand(0), N0.getOperand(2).getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, N1))); } // fold (fsub x, (fma y, z, (fmul u, v))) // -> (fma (fneg y), z, (fma (fneg u), v, x)) if (N1.getOpcode() == PreferredFusedOpcode && N1.getOperand(2).getOpcode() == ISD::FMUL) { SDValue N20 = N1.getOperand(2).getOperand(0); SDValue N21 = N1.getOperand(2).getOperand(1); return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); } if (AllowFusion && LookThroughFPExt) { // fold (fsub (fma x, y, (fpext (fmul u, v))), z) // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) if (N0.getOpcode() == PreferredFusedOpcode) { SDValue N02 = N0.getOperand(2); if (N02.getOpcode() == ISD::FP_EXTEND) { SDValue N020 = N02.getOperand(0); if (N020.getOpcode() == ISD::FMUL) return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), DAG.getNode(ISD::FNEG, SL, VT, N1))); } } // fold (fsub (fpext (fma x, y, (fmul u, v))), z) // -> (fma (fpext x), (fpext y), // (fma (fpext u), (fpext v), (fneg z))) // FIXME: This turns two single-precision and one double-precision // operation into two double-precision operations, which might not be // interesting for all targets, especially GPUs. if (N0.getOpcode() == ISD::FP_EXTEND) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == PreferredFusedOpcode) { SDValue N002 = N00.getOperand(2); if (N002.getOpcode() == ISD::FMUL) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), DAG.getNode(ISD::FNEG, SL, VT, N1))); } } // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) if (N1.getOpcode() == PreferredFusedOpcode && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { SDValue N120 = N1.getOperand(2).getOperand(0); if (N120.getOpcode() == ISD::FMUL) { SDValue N1200 = N120.getOperand(0); SDValue N1201 = N120.getOperand(1); return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); } } // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) // -> (fma (fneg (fpext y)), (fpext z), // (fma (fneg (fpext u)), (fpext v), x)) // FIXME: This turns two single-precision and one double-precision // operation into two double-precision operations, which might not be // interesting for all targets, especially GPUs. if (N1.getOpcode() == ISD::FP_EXTEND && N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { SDValue N100 = N1.getOperand(0).getOperand(0); SDValue N101 = N1.getOperand(0).getOperand(1); SDValue N102 = N1.getOperand(0).getOperand(2); if (N102.getOpcode() == ISD::FMUL) { SDValue N1020 = N102.getOperand(0); SDValue N1021 = N102.getOperand(1); return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); } } } } return SDValue(); } /// Try to perform FMA combining on a given FMUL node. SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc SL(N); assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); const TargetOptions &Options = DAG.getTarget().Options; bool AllowFusion = (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); // Floating-point multiply-add with intermediate rounding. bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); // Floating-point multiply-add without intermediate rounding. bool HasFMA = AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); // No valid opcode, do not combine. if (!HasFMAD && !HasFMA) return SDValue(); // Always prefer FMAD to FMA for precision. unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; bool Aggressive = TLI.enableAggressiveFMAFusion(VT); // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) auto FuseFADD = [&](SDValue X, SDValue Y) { if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); if (XC1 && XC1->isExactlyValue(+1.0)) return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); if (XC1 && XC1->isExactlyValue(-1.0)) return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, DAG.getNode(ISD::FNEG, SL, VT, Y)); } return SDValue(); }; if (SDValue FMA = FuseFADD(N0, N1)) return FMA; if (SDValue FMA = FuseFADD(N1, N0)) return FMA; // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) auto FuseFSUB = [&](SDValue X, SDValue Y) { if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); if (XC0 && XC0->isExactlyValue(+1.0)) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, Y); if (XC0 && XC0->isExactlyValue(-1.0)) return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, DAG.getNode(ISD::FNEG, SL, VT, Y)); auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); if (XC1 && XC1->isExactlyValue(+1.0)) return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, DAG.getNode(ISD::FNEG, SL, VT, Y)); if (XC1 && XC1->isExactlyValue(-1.0)) return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); } return SDValue(); }; if (SDValue FMA = FuseFSUB(N0, N1)) return FMA; if (SDValue FMA = FuseFSUB(N1, N0)) return FMA; return SDValue(); } SDValue DAGCombiner::visitFADD(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); EVT VT = N->getValueType(0); SDLoc DL(N); const TargetOptions &Options = DAG.getTarget().Options; const SDNodeFlags *Flags = &cast
(N)->Flags; // fold vector ops if (VT.isVector()) if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (fadd c1, c2) -> c1 + c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); // fold (fadd A, (fneg B)) -> (fsub A, B) if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) return DAG.getNode(ISD::FSUB, DL, VT, N0, GetNegatedExpression(N1, DAG, LegalOperations), Flags); // fold (fadd (fneg A), B) -> (fsub B, A) if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) return DAG.getNode(ISD::FSUB, DL, VT, N1, GetNegatedExpression(N0, DAG, LegalOperations), Flags); // If 'unsafe math' is enabled, fold lots of things. if (Options.UnsafeFPMath) { // No FP constant should be created after legalization as Instruction // Selection pass has a hard time dealing with FP constants. bool AllowNewConst = (Level < AfterLegalizeDAG); // fold (fadd A, 0) -> A if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) if (N1C->isZero()) return N0; // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags), Flags); // If allowed, fold (fadd (fneg x), x) -> 0.0 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) return DAG.getConstantFP(0.0, DL, VT); // If allowed, fold (fadd x, (fneg x)) -> 0.0 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) return DAG.getConstantFP(0.0, DL, VT); // We can fold chains of FADD's of the same value into multiplications. // This transform is not safe in general because we are reducing the number // of rounding steps. if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { if (N0.getOpcode() == ISD::FMUL) { bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); // (fadd (fmul x, c), x) -> (fmul x, c+1) if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), DAG.getConstantFP(1.0, DL, VT), Flags); return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); } // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && N1.getOperand(0) == N1.getOperand(1) && N0.getOperand(0) == N1.getOperand(0)) { SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), DAG.getConstantFP(2.0, DL, VT), Flags); return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); } } if (N1.getOpcode() == ISD::FMUL) { bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); // (fadd x, (fmul x, c)) -> (fmul x, c+1) if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), DAG.getConstantFP(1.0, DL, VT), Flags); return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); } // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && N0.getOperand(0) == N0.getOperand(1) && N1.getOperand(0) == N0.getOperand(0)) { SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), DAG.getConstantFP(2.0, DL, VT), Flags); return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); } } if (N0.getOpcode() == ISD::FADD && AllowNewConst) { bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); // (fadd (fadd x, x), x) -> (fmul x, 3.0) if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && (N0.getOperand(0) == N1)) { return DAG.getNode(ISD::FMUL, DL, VT, N1, DAG.getConstantFP(3.0, DL, VT), Flags); } } if (N1.getOpcode() == ISD::FADD && AllowNewConst) { bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); // (fadd x, (fadd x, x)) -> (fmul x, 3.0) if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && N1.getOperand(0) == N0) { return DAG.getNode(ISD::FMUL, DL, VT, N0, DAG.getConstantFP(3.0, DL, VT), Flags); } } // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) if (AllowNewConst && N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && N0.getOperand(0) == N0.getOperand(1) && N1.getOperand(0) == N1.getOperand(1) && N0.getOperand(0) == N1.getOperand(0)) { return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), DAG.getConstantFP(4.0, DL, VT), Flags); } } } // enable-unsafe-fp-math // FADD -> FMA combines: if (SDValue Fused = visitFADDForFMACombine(N)) { AddToWorklist(Fused.getNode()); return Fused; } return SDValue(); } SDValue DAGCombiner::visitFSUB(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); EVT VT = N->getValueType(0); SDLoc dl(N); const TargetOptions &Options = DAG.getTarget().Options; const SDNodeFlags *Flags = &cast
(N)->Flags; // fold vector ops if (VT.isVector()) if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (fsub c1, c2) -> c1-c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); // fold (fsub A, (fneg B)) -> (fadd A, B) if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) return DAG.getNode(ISD::FADD, dl, VT, N0, GetNegatedExpression(N1, DAG, LegalOperations), Flags); // If 'unsafe math' is enabled, fold lots of things. if (Options.UnsafeFPMath) { // (fsub A, 0) -> A if (N1CFP && N1CFP->isZero()) return N0; // (fsub 0, B) -> -B if (N0CFP && N0CFP->isZero()) { if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) return GetNegatedExpression(N1, DAG, LegalOperations); if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, dl, VT, N1); } // (fsub x, x) -> 0.0 if (N0 == N1) return DAG.getConstantFP(0.0f, dl, VT); // (fsub x, (fadd x, y)) -> (fneg y) // (fsub x, (fadd y, x)) -> (fneg y) if (N1.getOpcode() == ISD::FADD) { SDValue N10 = N1->getOperand(0); SDValue N11 = N1->getOperand(1); if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) return GetNegatedExpression(N11, DAG, LegalOperations); if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) return GetNegatedExpression(N10, DAG, LegalOperations); } } // FSUB -> FMA combines: if (SDValue Fused = visitFSUBForFMACombine(N)) { AddToWorklist(Fused.getNode()); return Fused; } return SDValue(); } SDValue DAGCombiner::visitFMUL(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); EVT VT = N->getValueType(0); SDLoc DL(N); const TargetOptions &Options = DAG.getTarget().Options; const SDNodeFlags *Flags = &cast
(N)->Flags; // fold vector ops if (VT.isVector()) { // This just handles C1 * C2 for vectors. Other vector folds are below. if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; } // fold (fmul c1, c2) -> c1*c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); // canonicalize constant to RHS if (isConstantFPBuildVectorOrConstantFP(N0) && !isConstantFPBuildVectorOrConstantFP(N1)) return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); // fold (fmul A, 1.0) -> A if (N1CFP && N1CFP->isExactlyValue(1.0)) return N0; if (Options.UnsafeFPMath) { // fold (fmul A, 0) -> 0 if (N1CFP && N1CFP->isZero()) return N1; // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) if (N0.getOpcode() == ISD::FMUL) { // Fold scalars or any vector constants (not just splats). // This fold is done in general by InstCombine, but extra fmul insts // may have been generated during lowering. SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); auto *BV1 = dyn_cast
(N1); auto *BV00 = dyn_cast
(N00); auto *BV01 = dyn_cast
(N01); // Check 1: Make sure that the first operand of the inner multiply is NOT // a constant. Otherwise, we may induce infinite looping. if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { // Check 2: Make sure that the second operand of the inner multiply and // the second operand of the outer multiply are constants. if ((N1CFP && isConstOrConstSplatFP(N01)) || (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); } } } // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs // during an early run of DAGCombiner can prevent folding with fmuls // inserted during lowering. if (N0.getOpcode() == ISD::FADD && (N0.getOperand(0) == N0.getOperand(1)) && N0.hasOneUse()) { const SDValue Two = DAG.getConstantFP(2.0, DL, VT); SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); } } // fold (fmul X, 2.0) -> (fadd X, X) if (N1CFP && N1CFP->isExactlyValue(+2.0)) return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); // fold (fmul X, -1.0) -> (fneg X) if (N1CFP && N1CFP->isExactlyValue(-1.0)) if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, DL, VT, N0); // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { // Both can be negated for free, check to see if at least one is cheaper // negated. if (LHSNeg == 2 || RHSNeg == 2) return DAG.getNode(ISD::FMUL, DL, VT, GetNegatedExpression(N0, DAG, LegalOperations), GetNegatedExpression(N1, DAG, LegalOperations), Flags); } } // FMUL -> FMA combines: if (SDValue Fused = visitFMULForFMACombine(N)) { AddToWorklist(Fused.getNode()); return Fused; } return SDValue(); } SDValue DAGCombiner::visitFMA(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); SDLoc dl(N); const TargetOptions &Options = DAG.getTarget().Options; // Constant fold FMA. if (isa
(N0) && isa
(N1) && isa
(N2)) { return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); } if (Options.UnsafeFPMath) { if (N0CFP && N0CFP->isZero()) return N2; if (N1CFP && N1CFP->isZero()) return N2; } // TODO: The FMA node should have flags that propagate to these nodes. if (N0CFP && N0CFP->isExactlyValue(1.0)) return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); if (N1CFP && N1CFP->isExactlyValue(1.0)) return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); // Canonicalize (fma c, x, y) -> (fma x, c, y) if (isConstantFPBuildVectorOrConstantFP(N0) && !isConstantFPBuildVectorOrConstantFP(N1)) return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); // TODO: FMA nodes should have flags that propagate to the created nodes. // For now, create a Flags object for use with all unsafe math transforms. SDNodeFlags Flags; Flags.setUnsafeAlgebra(true); if (Options.UnsafeFPMath) { // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && isConstantFPBuildVectorOrConstantFP(N1) && isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { return DAG.getNode(ISD::FMUL, dl, VT, N0, DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), &Flags), &Flags); } // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) if (N0.getOpcode() == ISD::FMUL && isConstantFPBuildVectorOrConstantFP(N1) && isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { return DAG.getNode(ISD::FMA, dl, VT, N0.getOperand(0), DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), &Flags), N2); } } // (fma x, 1, y) -> (fadd x, y) // (fma x, -1, y) -> (fadd (fneg x), y) if (N1CFP) { if (N1CFP->isExactlyValue(1.0)) // TODO: The FMA node should have flags that propagate to this node. return DAG.getNode(ISD::FADD, dl, VT, N0, N2); if (N1CFP->isExactlyValue(-1.0) && (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); AddToWorklist(RHSNeg.getNode()); // TODO: The FMA node should have flags that propagate to this node. return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); } } if (Options.UnsafeFPMath) { // (fma x, c, x) -> (fmul x, (c+1)) if (N1CFP && N0 == N2) { return DAG.getNode(ISD::FMUL, dl, VT, N0, DAG.getNode(ISD::FADD, dl, VT, N1, DAG.getConstantFP(1.0, dl, VT), &Flags), &Flags); } // (fma x, c, (fneg x)) -> (fmul x, (c-1)) if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { return DAG.getNode(ISD::FMUL, dl, VT, N0, DAG.getNode(ISD::FADD, dl, VT, N1, DAG.getConstantFP(-1.0, dl, VT), &Flags), &Flags); } } return SDValue(); } // Combine multiple FDIVs with the same divisor into multiple FMULs by the // reciprocal. // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) // Notice that this is not always beneficial. One reason is different target // may have different costs for FDIV and FMUL, so sometimes the cost of two // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; const SDNodeFlags *Flags = N->getFlags(); if (!UnsafeMath && !Flags->hasAllowReciprocal()) return SDValue(); // Skip if current node is a reciprocal. SDValue N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast
(N0); if (N0CFP && N0CFP->isExactlyValue(1.0)) return SDValue(); // Exit early if the target does not want this transform or if there can't // possibly be enough uses of the divisor to make the transform worthwhile. SDValue N1 = N->getOperand(1); unsigned MinUses = TLI.combineRepeatedFPDivisors(); if (!MinUses || N1->use_size() < MinUses) return SDValue(); // Find all FDIV users of the same divisor. // Use a set because duplicates may be present in the user list. SetVector
Users; for (auto *U : N1->uses()) { if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { // This division is eligible for optimization only if global unsafe math // is enabled or if this division allows reciprocal formation. if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) Users.insert(U); } } // Now that we have the actual number of divisor uses, make sure it meets // the minimum threshold specified by the target. if (Users.size() < MinUses) return SDValue(); EVT VT = N->getValueType(0); SDLoc DL(N); SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); // Dividend / Divisor -> Dividend * Reciprocal for (auto *U : Users) { SDValue Dividend = U->getOperand(0); if (Dividend != FPOne) { SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, Reciprocal, Flags); CombineTo(U, NewNode); } else if (U != Reciprocal.getNode()) { // In the absence of fast-math-flags, this user node is always the // same node as Reciprocal, but with FMF they may be different nodes. CombineTo(U, Reciprocal); } } return SDValue(N, 0); // N was replaced. } SDValue DAGCombiner::visitFDIV(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); SDLoc DL(N); const TargetOptions &Options = DAG.getTarget().Options; SDNodeFlags *Flags = &cast
(N)->Flags; // fold vector ops if (VT.isVector()) if (SDValue FoldedVOp = SimplifyVBinOp(N)) return FoldedVOp; // fold (fdiv c1, c2) -> c1/c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); if (Options.UnsafeFPMath) { // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. if (N1CFP) { // Compute the reciprocal 1.0 / c2. APFloat N1APF = N1CFP->getValueAPF(); APFloat Recip(N1APF.getSemantics(), 1); // 1.0 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); // Only do the transform if the reciprocal is a legal fp immediate that // isn't too nasty (eg NaN, denormal, ...). if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty (!LegalOperations || // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM // backend)... we should handle this gracefully after Legalize. // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || TLI.isFPImmLegal(Recip, VT))) return DAG.getNode(ISD::FMUL, DL, VT, N0, DAG.getConstantFP(Recip, DL, VT), Flags); } // If this FDIV is part of a reciprocal square root, it may be folded // into a target-specific square root estimate instruction. if (N1.getOpcode() == ISD::FSQRT) { if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) { return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); } } else if (N1.getOpcode() == ISD::FP_EXTEND && N1.getOperand(0).getOpcode() == ISD::FSQRT) { if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); } } else if (N1.getOpcode() == ISD::FP_ROUND && N1.getOperand(0).getOpcode() == ISD::FSQRT) { if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); } } else if (N1.getOpcode() == ISD::FMUL) { // Look through an FMUL. Even though this won't remove the FDIV directly, // it's still worthwhile to get rid of the FSQRT if possible. SDValue SqrtOp; SDValue OtherOp; if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { SqrtOp = N1.getOperand(0); OtherOp = N1.getOperand(1); } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { SqrtOp = N1.getOperand(1); OtherOp = N1.getOperand(0); } if (SqrtOp.getNode()) { // We found a FSQRT, so try to make this fold: // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); } } } // Fold into a reciprocal estimate and multiply instead of a real divide. if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); } } // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { // Both can be negated for free, check to see if at least one is cheaper // negated. if (LHSNeg == 2 || RHSNeg == 2) return DAG.getNode(ISD::FDIV, SDLoc(N), VT, GetNegatedExpression(N0, DAG, LegalOperations), GetNegatedExpression(N1, DAG, LegalOperations), Flags); } } if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) return CombineRepeatedDivisors; return SDValue(); } SDValue DAGCombiner::visitFREM(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); // fold (frem c1, c2) -> fmod(c1,c2) if (N0CFP && N1CFP) return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, &cast
(N)->Flags); return SDValue(); } SDValue DAGCombiner::visitFSQRT(SDNode *N) { if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) return SDValue(); // TODO: FSQRT nodes should have flags that propagate to the created nodes. // For now, create a Flags object for use with all unsafe math transforms. SDNodeFlags Flags; Flags.setUnsafeAlgebra(true); // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5) SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags); if (!RV) return SDValue(); EVT VT = RV.getValueType(); SDLoc DL(N); RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags); AddToWorklist(RV.getNode()); // Unfortunately, RV is now NaN if the input was exactly 0. // Select out this case and force the answer to 0. SDValue Zero = DAG.getConstantFP(0.0, DL, VT); EVT CCVT = getSetCCResultType(VT); SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ); AddToWorklist(ZeroCmp.getNode()); AddToWorklist(RV.getNode()); return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, ZeroCmp, Zero, RV); } static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { // copysign(x, fp_extend(y)) -> copysign(x, y) // copysign(x, fp_round(y)) -> copysign(x, y) // Do not optimize out type conversion of f128 type yet. // For some target like x86_64, configuration is changed // to keep one f128 value in one SSE register, but // instruction selection cannot handle FCOPYSIGN on // SSE registers yet. SDValue N1 = N->getOperand(1); EVT N1VT = N1->getValueType(0); EVT N1Op0VT = N1->getOperand(0)->getValueType(0); return (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) && (N1VT == N1Op0VT || N1Op0VT != MVT::f128); } SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); ConstantFPSDNode *N1CFP = dyn_cast
(N1); EVT VT = N->getValueType(0); if (N0CFP && N1CFP) // Constant fold return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); if (N1CFP) { const APFloat& V = N1CFP->getValueAPF(); // copysign(x, c1) -> fabs(x) iff ispos(c1) // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) if (!V.isNegative()) { if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); } else { if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, SDLoc(N), VT, DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); } } // copysign(fabs(x), y) -> copysign(x, y) // copysign(fneg(x), y) -> copysign(x, y) // copysign(copysign(x,z), y) -> copysign(x, y) if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); // copysign(x, abs(y)) -> abs(x) if (N1.getOpcode() == ISD::FABS) return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); // copysign(x, copysign(y,z)) -> copysign(x, z) if (N1.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); // copysign(x, fp_extend(y)) -> copysign(x, y) // copysign(x, fp_round(y)) -> copysign(x, y) if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); return SDValue(); } SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT OpVT = N0.getValueType(); // fold (sint_to_fp c1) -> c1fp if (isConstantIntBuildVectorOrConstantInt(N0) && // ...but only if the target supports immediate floating-point values (!LegalOperations || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); // If the input is a legal type, and SINT_TO_FP is not legal on this target, // but UINT_TO_FP is legal on this target, try to convert. if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { // If the sign bit is known to be zero, we can change this to UINT_TO_FP. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); } // The next optimizations are desirable only if SELECT_CC can be lowered. if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && !VT.isVector() && (!LegalOperations || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { SDLoc DL(N); SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), N0.getOperand(2) }; return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); } // fold (sint_to_fp (zext (setcc x, y, cc))) -> // (select_cc x, y, 1.0, 0.0,, cc) if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && (!LegalOperations || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { SDLoc DL(N); SDValue Ops[] = { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), N0.getOperand(0).getOperand(2) }; return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); } } return SDValue(); } SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT OpVT = N0.getValueType(); // fold (uint_to_fp c1) -> c1fp if (isConstantIntBuildVectorOrConstantInt(N0) && // ...but only if the target supports immediate floating-point values (!LegalOperations || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); // If the input is a legal type, and UINT_TO_FP is not legal on this target, // but SINT_TO_FP is legal on this target, try to convert. if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { // If the sign bit is known to be zero, we can change this to SINT_TO_FP. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); } // The next optimizations are desirable only if SELECT_CC can be lowered. if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && (!LegalOperations || TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { SDLoc DL(N); SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), N0.getOperand(2) }; return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); } } return SDValue(); } // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) return SDValue(); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; // We can safely assume the conversion won't overflow the output range, // because (for example) (uint8_t)18293.f is undefined behavior. // Since we can assume the conversion won't overflow, our decision as to // whether the input will fit in the float should depend on the minimum // of the input range and output range. // This means this is also safe for a signed input and unsigned output, since // a negative input would lead to undefined behavior. unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; unsigned ActualSize = std::min(InputSize, OutputSize); const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); // We can only fold away the float conversion if the input range can be // represented exactly in the float range. if (APFloat::semanticsPrecision(sem) >= ActualSize) { if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; return DAG.getNode(ExtOp, SDLoc(N), VT, Src); } if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); if (SrcVT == VT) return Src; return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src); } return SDValue(); } SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (fp_to_sint c1fp) -> c1 if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); return FoldIntToFPToInt(N, DAG); } SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (fp_to_uint c1fp) -> c1 if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); return FoldIntToFPToInt(N, DAG); } SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast
(N0); EVT VT = N->getValueType(0); // fold (fp_round c1fp) -> c1fp if (N0CFP) return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); // fold (fp_round (fp_extend x)) -> x if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) return N0.getOperand(0); // fold (fp_round (fp_round x)) -> (fp_round x) if (N0.getOpcode() == ISD::FP_ROUND) { const bool NIsTrunc = N->getConstantOperandVal(1) == 1; const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; // Skip this folding if it results in an fp_round from f80 to f16. // // f80 to f16 always generates an expensive (and as yet, unimplemented) // libcall to __truncxfhf2 instead of selecting native f16 conversion // instructions from f32 or f64. Moreover, the first (value-preserving) // fp_round from f80 to either f32 or f64 may become a NOP in platforms like // x86. if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) return SDValue(); // If the first fp_round isn't a value preserving truncation, it might // introduce a tie in the second fp_round, that wouldn't occur in the // single-step fp_round we want to fold to. // In other words, double rounding isn't the same as rounding. // Also, this is a value preserving truncation iff both fp_round's are. if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { SDLoc DL(N); return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); } } // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, N0.getOperand(0), N1); AddToWorklist(Tmp.getNode()); return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, Tmp, N0.getOperand(1)); } return SDValue(); } SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT EVT = cast
(N->getOperand(1))->getVT(); ConstantFPSDNode *N0CFP = dyn_cast
(N0); // fold (fp_round_inreg c1fp) -> c1fp if (N0CFP && isTypeLegal(EVT)) { SDLoc DL(N); SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); } return SDValue(); } SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::FP_ROUND) return SDValue(); // fold (fp_extend c1fp) -> c1fp if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) if (N0.getOpcode() == ISD::FP16_TO_FP && TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the // value of X. if (N0.getOpcode() == ISD::FP_ROUND && N0.getNode()->getConstantOperandVal(1) == 1) { SDValue In = N0.getOperand(0); if (In.getValueType() == VT) return In; if (VT.bitsLT(In.getValueType())) return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, In, N0.getOperand(1)); return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); } // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { LoadSDNode *LN0 = cast
(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), N0.getValueType(), LN0->getMemOperand()); CombineTo(N, ExtLoad); CombineTo(N0.getNode(), DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1, SDLoc(N0))), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } return SDValue(); } SDValue DAGCombiner::visitFCEIL(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (fceil c1) -> fceil(c1) if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); return SDValue(); } SDValue DAGCombiner::visitFTRUNC(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ftrunc c1) -> ftrunc(c1) if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); return SDValue(); } SDValue DAGCombiner::visitFFLOOR(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (ffloor c1) -> ffloor(c1) if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); return SDValue(); } // FIXME: FNEG and FABS have a lot in common; refactor. SDValue DAGCombiner::visitFNEG(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // Constant fold FNEG. if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), &DAG.getTarget().Options)) return GetNegatedExpression(N0, DAG, LegalOperations); // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading // constant pool values. if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse()) { SDValue Int = N0.getOperand(0); EVT IntVT = Int.getValueType(); if (IntVT.isInteger() && !IntVT.isVector()) { APInt SignMask; if (N0.getValueType().isVector()) { // For a vector, get a mask such as 0x80... per scalar element // and splat it. SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); } else { // For a scalar, just generate 0x80... SignMask = APInt::getSignBit(IntVT.getSizeInBits()); } SDLoc DL0(N0); Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, DAG.getConstant(SignMask, DL0, IntVT)); AddToWorklist(Int.getNode()); return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); } } // (fneg (fmul c, x)) -> (fmul -c, x) if (N0.getOpcode() == ISD::FMUL && (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { ConstantFPSDNode *CFP1 = dyn_cast
(N0.getOperand(1)); if (CFP1) { APFloat CVal = CFP1->getValueAPF(); CVal.changeSign(); if (Level >= AfterLegalizeDAG && (TLI.isFPImmLegal(CVal, VT) || TLI.isOperationLegal(ISD::ConstantFP, VT))) return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), &cast
(N0)->Flags); } } return SDValue(); } SDValue DAGCombiner::visitFMINNUM(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); if (N0CFP && N1CFP) { const APFloat &C0 = N0CFP->getValueAPF(); const APFloat &C1 = N1CFP->getValueAPF(); return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); } // Canonicalize to constant on RHS. if (isConstantFPBuildVectorOrConstantFP(N0) && !isConstantFPBuildVectorOrConstantFP(N1)) return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); return SDValue(); } SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); if (N0CFP && N1CFP) { const APFloat &C0 = N0CFP->getValueAPF(); const APFloat &C1 = N1CFP->getValueAPF(); return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); } // Canonicalize to constant on RHS. if (isConstantFPBuildVectorOrConstantFP(N0) && !isConstantFPBuildVectorOrConstantFP(N1)) return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); return SDValue(); } SDValue DAGCombiner::visitFABS(SDNode *N) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (fabs c1) -> fabs(c1) if (isConstantFPBuildVectorOrConstantFP(N0)) return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); // fold (fabs (fabs x)) -> (fabs x) if (N0.getOpcode() == ISD::FABS) return N->getOperand(0); // fold (fabs (fneg x)) -> (fabs x) // fold (fabs (fcopysign x, y)) -> (fabs x) if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading // constant pool values. if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse()) { SDValue Int = N0.getOperand(0); EVT IntVT = Int.getValueType(); if (IntVT.isInteger() && !IntVT.isVector()) { APInt SignMask; if (N0.getValueType().isVector()) { // For a vector, get a mask such as 0x7f... per scalar element // and splat it. SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); } else { // For a scalar, just generate 0x7f... SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); } SDLoc DL(N0); Int = DAG.getNode(ISD::AND, DL, IntVT, Int, DAG.getConstant(SignMask, DL, IntVT)); AddToWorklist(Int.getNode()); return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); } } return SDValue(); } SDValue DAGCombiner::visitBRCOND(SDNode *N) { SDValue Chain = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); // If N is a constant we could fold this into a fallthrough or unconditional // branch. However that doesn't happen very often in normal code, because // Instcombine/SimplifyCFG should have handled the available opportunities. // If we did this folding here, it would be necessary to update the // MachineBasicBlock CFG, which is awkward. // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal // on the target. if (N1.getOpcode() == ISD::SETCC && TLI.isOperationLegalOrCustom(ISD::BR_CC, N1.getOperand(0).getValueType())) { return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, Chain, N1.getOperand(2), N1.getOperand(0), N1.getOperand(1), N2); } if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && (N1.getOperand(0).hasOneUse() && N1.getOperand(0).getOpcode() == ISD::SRL))) { SDNode *Trunc = nullptr; if (N1.getOpcode() == ISD::TRUNCATE) { // Look pass the truncate. Trunc = N1.getNode(); N1 = N1.getOperand(0); } // Match this pattern so that we can generate simpler code: // // %a = ... // %b = and i32 %a, 2 // %c = srl i32 %b, 1 // brcond i32 %c ... // // into // // %a = ... // %b = and i32 %a, 2 // %c = setcc eq %b, 0 // brcond %c ... // // This applies only when the AND constant value has one bit set and the // SRL constant is equal to the log2 of the AND constant. The back-end is // smart enough to convert the result into a TEST/JMP sequence. SDValue Op0 = N1.getOperand(0); SDValue Op1 = N1.getOperand(1); if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { SDValue AndOp1 = Op0.getOperand(1); if (AndOp1.getOpcode() == ISD::Constant) { const APInt &AndConst = cast
(AndOp1)->getAPIntValue(); if (AndConst.isPowerOf2() && cast
(Op1)->getAPIntValue()==AndConst.logBase2()) { SDLoc DL(N); SDValue SetCC = DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), Op0, DAG.getConstant(0, DL, Op0.getValueType()), ISD::SETNE); SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, Chain, SetCC, N2); // Don't add the new BRCond into the worklist or else SimplifySelectCC // will convert it back to (X & C1) >> C2. CombineTo(N, NewBRCond, false); // Truncate is dead. if (Trunc) deleteAndRecombine(Trunc); // Replace the uses of SRL with SETCC WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(N1, SetCC); deleteAndRecombine(N1.getNode()); return SDValue(N, 0); // Return N so it doesn't get rechecked! } } } if (Trunc) // Restore N1 if the above transformation doesn't match. N1 = N->getOperand(1); } // Transform br(xor(x, y)) -> br(x != y) // Transform br(xor(xor(x,y), 1)) -> br (x == y) if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { SDNode *TheXor = N1.getNode(); SDValue Op0 = TheXor->getOperand(0); SDValue Op1 = TheXor->getOperand(1); if (Op0.getOpcode() == Op1.getOpcode()) { // Avoid missing important xor optimizations. if (SDValue Tmp = visitXOR(TheXor)) { if (Tmp.getNode() != TheXor) { DEBUG(dbgs() << "\nReplacing.8 "; TheXor->dump(&DAG); dbgs() << "\nWith: "; Tmp.getNode()->dump(&DAG); dbgs() << '\n'); WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(N1, Tmp); deleteAndRecombine(TheXor); return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, Tmp, N2); } // visitXOR has changed XOR's operands or replaced the XOR completely, // bail out. return SDValue(N, 0); } } if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { bool Equal = false; if (isOneConstant(Op0) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR) { TheXor = Op0.getNode(); Equal = true; } EVT SetCCVT = N1.getValueType(); if (LegalTypes) SetCCVT = getSetCCResultType(SetCCVT); SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, Equal ? ISD::SETEQ : ISD::SETNE); // Replace the uses of XOR with SETCC WorklistRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(N1, SetCC); deleteAndRecombine(N1.getNode()); return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, SetCC, N2); } } return SDValue(); } // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. // SDValue DAGCombiner::visitBR_CC(SDNode *N) { CondCodeSDNode *CC = cast
(N->getOperand(1)); SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); // If N is a constant we could fold this into a fallthrough or unconditional // branch. However that doesn't happen very often in normal code, because // Instcombine/SimplifyCFG should have handled the available opportunities. // If we did this folding here, it would be necessary to update the // MachineBasicBlock CFG, which is awkward. // Use SimplifySetCC to simplify SETCC's. SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), CondLHS, CondRHS, CC->get(), SDLoc(N), false); if (Simp.getNode()) AddToWorklist(Simp.getNode()); // fold to a simpler setcc if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, N->getOperand(0), Simp.getOperand(2), Simp.getOperand(0), Simp.getOperand(1), N->getOperand(4)); return SDValue(); } /// Return true if 'Use' is a load or a store that uses N as its base pointer /// and that N may be folded in the load / store addressing mode. static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, const TargetLowering &TLI) { EVT VT; unsigned AS; if (LoadSDNode *LD = dyn_cast
(Use)) { if (LD->isIndexed() || LD->getBasePtr().getNode() != N) return false; VT = LD->getMemoryVT(); AS = LD->getAddressSpace(); } else if (StoreSDNode *ST = dyn_cast