//===--------------------------- Unwind-EHABI.cpp -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// Implements ARM zero-cost C++ exceptions
//
//===----------------------------------------------------------------------===//
#include "Unwind-EHABI.h"
#if _LIBUNWIND_ARM_EHABI
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <type_traits>
#include "config.h"
#include "libunwind.h"
#include "libunwind_ext.h"
#include "unwind.h"
namespace {
// Strange order: take words in order, but inside word, take from most to least
// signinficant byte.
uint8_t getByte(const uint32_t* data, size_t offset) {
const uint8_t* byteData = reinterpret_cast<const uint8_t*>(data);
return byteData[(offset & ~(size_t)0x03) + (3 - (offset & (size_t)0x03))];
}
const char* getNextWord(const char* data, uint32_t* out) {
*out = *reinterpret_cast<const uint32_t*>(data);
return data + 4;
}
const char* getNextNibble(const char* data, uint32_t* out) {
*out = *reinterpret_cast<const uint16_t*>(data);
return data + 2;
}
struct Descriptor {
// See # 9.2
typedef enum {
SU16 = 0, // Short descriptor, 16-bit entries
LU16 = 1, // Long descriptor, 16-bit entries
LU32 = 3, // Long descriptor, 32-bit entries
RESERVED0 = 4, RESERVED1 = 5, RESERVED2 = 6, RESERVED3 = 7,
RESERVED4 = 8, RESERVED5 = 9, RESERVED6 = 10, RESERVED7 = 11,
RESERVED8 = 12, RESERVED9 = 13, RESERVED10 = 14, RESERVED11 = 15
} Format;
// See # 9.2
typedef enum {
CLEANUP = 0x0,
FUNC = 0x1,
CATCH = 0x2,
INVALID = 0x4
} Kind;
};
_Unwind_Reason_Code ProcessDescriptors(
_Unwind_State state,
_Unwind_Control_Block* ucbp,
struct _Unwind_Context* context,
Descriptor::Format format,
const char* descriptorStart,
uint32_t flags) {
// EHT is inlined in the index using compact form. No descriptors. #5
if (flags & 0x1)
return _URC_CONTINUE_UNWIND;
// TODO: We should check the state here, and determine whether we need to
// perform phase1 or phase2 unwinding.
(void)state;
const char* descriptor = descriptorStart;
uint32_t descriptorWord;
getNextWord(descriptor, &descriptorWord);
while (descriptorWord) {
// Read descriptor based on # 9.2.
uint32_t length;
uint32_t offset;
switch (format) {
case Descriptor::LU32:
descriptor = getNextWord(descriptor, &length);
descriptor = getNextWord(descriptor, &offset);
case Descriptor::LU16:
descriptor = getNextNibble(descriptor, &length);
descriptor = getNextNibble(descriptor, &offset);
default:
assert(false);
return _URC_FAILURE;
}
// See # 9.2 table for decoding the kind of descriptor. It's a 2-bit value.
Descriptor::Kind kind =
static_cast<Descriptor::Kind>((length & 0x1) | ((offset & 0x1) << 1));
// Clear off flag from last bit.
length &= ~1u;
offset &= ~1u;
uintptr_t scopeStart = ucbp->pr_cache.fnstart + offset;
uintptr_t scopeEnd = scopeStart + length;
uintptr_t pc = _Unwind_GetIP(context);
bool isInScope = (scopeStart <= pc) && (pc < scopeEnd);
switch (kind) {
case Descriptor::CLEANUP: {
// TODO(ajwong): Handle cleanup descriptors.
break;
}
case Descriptor::FUNC: {
// TODO(ajwong): Handle function descriptors.
break;
}
case Descriptor::CATCH: {
// Catch descriptors require gobbling one more word.
uint32_t landing_pad;
descriptor = getNextWord(descriptor, &landing_pad);
if (isInScope) {
// TODO(ajwong): This is only phase1 compatible logic. Implement
// phase2.
landing_pad = signExtendPrel31(landing_pad & ~0x80000000);
if (landing_pad == 0xffffffff) {
return _URC_HANDLER_FOUND;
} else if (landing_pad == 0xfffffffe) {
return _URC_FAILURE;
} else {
/*
bool is_reference_type = landing_pad & 0x80000000;
void* matched_object;
if (__cxxabiv1::__cxa_type_match(
ucbp, reinterpret_cast<const std::type_info *>(landing_pad),
is_reference_type,
&matched_object) != __cxxabiv1::ctm_failed)
return _URC_HANDLER_FOUND;
*/
_LIBUNWIND_ABORT("Type matching not implemented");
}
}
break;
}
default:
_LIBUNWIND_ABORT("Invalid descriptor kind found.");
}
getNextWord(descriptor, &descriptorWord);
}
return _URC_CONTINUE_UNWIND;
}
static _Unwind_Reason_Code unwindOneFrame(_Unwind_State state,
_Unwind_Control_Block* ucbp,
struct _Unwind_Context* context) {
// Read the compact model EHT entry's header # 6.3
const uint32_t* unwindingData = ucbp->pr_cache.ehtp;
assert((*unwindingData & 0xf0000000) == 0x80000000 && "Must be a compact entry");
Descriptor::Format format =
static_cast<Descriptor::Format>((*unwindingData & 0x0f000000) >> 24);
const char *lsda =
reinterpret_cast<const char *>(_Unwind_GetLanguageSpecificData(context));
// Handle descriptors before unwinding so they are processed in the context
// of the correct stack frame.
_Unwind_Reason_Code result =
ProcessDescriptors(state, ucbp, context, format, lsda,
ucbp->pr_cache.additional);
if (result != _URC_CONTINUE_UNWIND)
return result;
if (unw_step(reinterpret_cast<unw_cursor_t*>(context)) != UNW_STEP_SUCCESS)
return _URC_FAILURE;
return _URC_CONTINUE_UNWIND;
}
// Generates mask discriminator for _Unwind_VRS_Pop, e.g. for _UVRSC_CORE /
// _UVRSD_UINT32.
uint32_t RegisterMask(uint8_t start, uint8_t count_minus_one) {
return ((1U << (count_minus_one + 1)) - 1) << start;
}
// Generates mask discriminator for _Unwind_VRS_Pop, e.g. for _UVRSC_VFP /
// _UVRSD_DOUBLE.
uint32_t RegisterRange(uint8_t start, uint8_t count_minus_one) {
return ((uint32_t)start << 16) | ((uint32_t)count_minus_one + 1);
}
} // end anonymous namespace
/**
* Decodes an EHT entry.
*
* @param data Pointer to EHT.
* @param[out] off Offset from return value (in bytes) to begin interpretation.
* @param[out] len Number of bytes in unwind code.
* @return Pointer to beginning of unwind code.
*/
extern "C" const uint32_t*
decode_eht_entry(const uint32_t* data, size_t* off, size_t* len) {
if ((*data & 0x80000000) == 0) {
// 6.2: Generic Model
//
// EHT entry is a prel31 pointing to the PR, followed by data understood
// only by the personality routine. Fortunately, all existing assembler
// implementations, including GNU assembler, LLVM integrated assembler,
// and ARM assembler, assume that the unwind opcodes come after the
// personality rountine address.
*off = 1; // First byte is size data.
*len = (((data[1] >> 24) & 0xff) + 1) * 4;
data++; // Skip the first word, which is the prel31 offset.
} else {
// 6.3: ARM Compact Model
//
// EHT entries here correspond to the __aeabi_unwind_cpp_pr[012] PRs indeded
// by format:
Descriptor::Format format =
static_cast<Descriptor::Format>((*data & 0x0f000000) >> 24);
switch (format) {
case Descriptor::SU16:
*len = 4;
*off = 1;
break;
case Descriptor::LU16:
case Descriptor::LU32:
*len = 4 + 4 * ((*data & 0x00ff0000) >> 16);
*off = 2;
break;
default:
return nullptr;
}
}
return data;
}
_Unwind_Reason_Code _Unwind_VRS_Interpret(
_Unwind_Context* context,
const uint32_t* data,
size_t offset,
size_t len) {
bool wrotePC = false;
bool finish = false;
while (offset < len && !finish) {
uint8_t byte = getByte(data, offset++);
if ((byte & 0x80) == 0) {
uint32_t sp;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp);
if (byte & 0x40)
sp -= (((uint32_t)byte & 0x3f) << 2) + 4;
else
sp += ((uint32_t)byte << 2) + 4;
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32, &sp);
} else {
switch (byte & 0xf0) {
case 0x80: {
if (offset >= len)
return _URC_FAILURE;
uint32_t registers =
(((uint32_t)byte & 0x0f) << 12) |
(((uint32_t)getByte(data, offset++)) << 4);
if (!registers)
return _URC_FAILURE;
if (registers & (1 << 15))
wrotePC = true;
_Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32);
break;
}
case 0x90: {
uint8_t reg = byte & 0x0f;
if (reg == 13 || reg == 15)
return _URC_FAILURE;
uint32_t sp;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_R0 + reg,
_UVRSD_UINT32, &sp);
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
break;
}
case 0xa0: {
uint32_t registers = RegisterMask(4, byte & 0x07);
if (byte & 0x08)
registers |= 1 << 14;
_Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32);
break;
}
case 0xb0: {
switch (byte) {
case 0xb0:
finish = true;
break;
case 0xb1: {
if (offset >= len)
return _URC_FAILURE;
uint8_t registers = getByte(data, offset++);
if (registers & 0xf0 || !registers)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_CORE, registers, _UVRSD_UINT32);
break;
}
case 0xb2: {
uint32_t addend = 0;
uint32_t shift = 0;
// This decodes a uleb128 value.
while (true) {
if (offset >= len)
return _URC_FAILURE;
uint32_t v = getByte(data, offset++);
addend |= (v & 0x7f) << shift;
if ((v & 0x80) == 0)
break;
shift += 7;
}
uint32_t sp;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
sp += 0x204 + (addend << 2);
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
break;
}
case 0xb3: {
uint8_t v = getByte(data, offset++);
_Unwind_VRS_Pop(context, _UVRSC_VFP,
RegisterRange(static_cast<uint8_t>(v >> 4),
v & 0x0f), _UVRSD_VFPX);
break;
}
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
return _URC_FAILURE;
default:
_Unwind_VRS_Pop(context, _UVRSC_VFP,
RegisterRange(8, byte & 0x07), _UVRSD_VFPX);
break;
}
break;
}
case 0xc0: {
switch (byte) {
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
_Unwind_VRS_Pop(context, _UVRSC_WMMXD,
RegisterRange(10, byte & 0x7), _UVRSD_DOUBLE);
break;
case 0xc6: {
uint8_t v = getByte(data, offset++);
uint8_t start = static_cast<uint8_t>(v >> 4);
uint8_t count_minus_one = v & 0xf;
if (start + count_minus_one >= 16)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_WMMXD,
RegisterRange(start, count_minus_one),
_UVRSD_DOUBLE);
break;
}
case 0xc7: {
uint8_t v = getByte(data, offset++);
if (!v || v & 0xf0)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_WMMXC, v, _UVRSD_DOUBLE);
break;
}
case 0xc8:
case 0xc9: {
uint8_t v = getByte(data, offset++);
uint8_t start =
static_cast<uint8_t>(((byte == 0xc8) ? 16 : 0) + (v >> 4));
uint8_t count_minus_one = v & 0xf;
if (start + count_minus_one >= 32)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_VFP,
RegisterRange(start, count_minus_one),
_UVRSD_DOUBLE);
break;
}
default:
return _URC_FAILURE;
}
break;
}
case 0xd0: {
if (byte & 0x08)
return _URC_FAILURE;
_Unwind_VRS_Pop(context, _UVRSC_VFP, RegisterRange(8, byte & 0x7),
_UVRSD_DOUBLE);
break;
}
default:
return _URC_FAILURE;
}
}
}
if (!wrotePC) {
uint32_t lr;
_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_LR, _UVRSD_UINT32, &lr);
_Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_IP, _UVRSD_UINT32, &lr);
}
return _URC_CONTINUE_UNWIND;
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr0(
_Unwind_State state,
_Unwind_Control_Block *ucbp,
_Unwind_Context *context) {
return unwindOneFrame(state, ucbp, context);
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr1(
_Unwind_State state,
_Unwind_Control_Block *ucbp,
_Unwind_Context *context) {
return unwindOneFrame(state, ucbp, context);
}
extern "C" _Unwind_Reason_Code __aeabi_unwind_cpp_pr2(
_Unwind_State state,
_Unwind_Control_Block *ucbp,
_Unwind_Context *context) {
return unwindOneFrame(state, ucbp, context);
}
static _Unwind_Reason_Code
unwind_phase1(unw_context_t *uc, _Unwind_Exception *exception_object) {
// EHABI #7.3 discusses preserving the VRS in a "temporary VRS" during
// phase 1 and then restoring it to the "primary VRS" for phase 2. The
// effect is phase 2 doesn't see any of the VRS manipulations from phase 1.
// In this implementation, the phases don't share the VRS backing store.
// Instead, they are passed the original |uc| and they create a new VRS
// from scratch thus achieving the same effect.
unw_cursor_t cursor1;
unw_init_local(&cursor1, uc);
// Walk each frame looking for a place to stop.
for (bool handlerNotFound = true; handlerNotFound;) {
#if !_LIBUNWIND_ARM_EHABI
// Ask libuwind to get next frame (skip over first which is
// _Unwind_RaiseException).
int stepResult = unw_step(&cursor1);
if (stepResult == 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_step() reached "
"bottom => _URC_END_OF_STACK\n",
static_cast<void *>(exception_object));
return _URC_END_OF_STACK;
} else if (stepResult < 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_step failed => "
"_URC_FATAL_PHASE1_ERROR\n",
static_cast<void *>(exception_object));
return _URC_FATAL_PHASE1_ERROR;
}
#endif
// See if frame has code to run (has personality routine).
unw_proc_info_t frameInfo;
if (unw_get_proc_info(&cursor1, &frameInfo) != UNW_ESUCCESS) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase1(ex_ojb=%p): unw_get_proc_info "
"failed => _URC_FATAL_PHASE1_ERROR\n",
static_cast<void *>(exception_object));
return _URC_FATAL_PHASE1_ERROR;
}
// When tracing, print state information.
if (_LIBUNWIND_TRACING_UNWINDING) {
char functionBuf[512];
const char *functionName = functionBuf;
unw_word_t offset;
if ((unw_get_proc_name(&cursor1, functionBuf, sizeof(functionBuf),
&offset) != UNW_ESUCCESS) ||
(frameInfo.start_ip + offset > frameInfo.end_ip))
functionName = ".anonymous.";
unw_word_t pc;
unw_get_reg(&cursor1, UNW_REG_IP, &pc);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): pc=0x%llX, start_ip=0x%llX, func=%s, "
"lsda=0x%llX, personality=0x%llX\n",
static_cast<void *>(exception_object), (long long)pc,
(long long)frameInfo.start_ip, functionName,
(long long)frameInfo.lsda, (long long)frameInfo.handler);
}
// If there is a personality routine, ask it if it will want to stop at
// this frame.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(long)(frameInfo.handler);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): calling personality function %p\n",
static_cast<void *>(exception_object),
reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(p)));
struct _Unwind_Context *context = (struct _Unwind_Context *)(&cursor1);
exception_object->pr_cache.fnstart = frameInfo.start_ip;
exception_object->pr_cache.ehtp =
(_Unwind_EHT_Header *)frameInfo.unwind_info;
exception_object->pr_cache.additional = frameInfo.flags;
_Unwind_Reason_Code personalityResult =
(*p)(_US_VIRTUAL_UNWIND_FRAME, exception_object, context);
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): personality result %d start_ip %x ehtp %p "
"additional %x\n",
static_cast<void *>(exception_object), personalityResult,
exception_object->pr_cache.fnstart,
static_cast<void *>(exception_object->pr_cache.ehtp),
exception_object->pr_cache.additional);
switch (personalityResult) {
case _URC_HANDLER_FOUND:
// found a catch clause or locals that need destructing in this frame
// stop search and remember stack pointer at the frame
handlerNotFound = false;
// p should have initialized barrier_cache. EHABI #7.3.5
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): _URC_HANDLER_FOUND \n",
static_cast<void *>(exception_object));
return _URC_NO_REASON;
case _URC_CONTINUE_UNWIND:
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): _URC_CONTINUE_UNWIND\n",
static_cast<void *>(exception_object));
// continue unwinding
break;
// EHABI #7.3.3
case _URC_FAILURE:
return _URC_FAILURE;
default:
// something went wrong
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase1(ex_ojb=%p): _URC_FATAL_PHASE1_ERROR\n",
static_cast<void *>(exception_object));
return _URC_FATAL_PHASE1_ERROR;
}
}
}
return _URC_NO_REASON;
}
static _Unwind_Reason_Code unwind_phase2(unw_context_t *uc,
_Unwind_Exception *exception_object,
bool resume) {
// See comment at the start of unwind_phase1 regarding VRS integrity.
unw_cursor_t cursor2;
unw_init_local(&cursor2, uc);
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p)\n",
static_cast<void *>(exception_object));
int frame_count = 0;
// Walk each frame until we reach where search phase said to stop.
while (true) {
// Ask libuwind to get next frame (skip over first which is
// _Unwind_RaiseException or _Unwind_Resume).
//
// Resume only ever makes sense for 1 frame.
_Unwind_State state =
resume ? _US_UNWIND_FRAME_RESUME : _US_UNWIND_FRAME_STARTING;
if (resume && frame_count == 1) {
// On a resume, first unwind the _Unwind_Resume() frame. The next frame
// is now the landing pad for the cleanup from a previous execution of
// phase2. To continue unwindingly correctly, replace VRS[15] with the
// IP of the frame that the previous run of phase2 installed the context
// for. After this, continue unwinding as if normal.
//
// See #7.4.6 for details.
unw_set_reg(&cursor2, UNW_REG_IP,
exception_object->unwinder_cache.reserved2);
resume = false;
}
#if !_LIBUNWIND_ARM_EHABI
int stepResult = unw_step(&cursor2);
if (stepResult == 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_step() reached "
"bottom => _URC_END_OF_STACK\n",
static_cast<void *>(exception_object));
return _URC_END_OF_STACK;
} else if (stepResult < 0) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_step failed => "
"_URC_FATAL_PHASE1_ERROR\n",
static_cast<void *>(exception_object));
return _URC_FATAL_PHASE2_ERROR;
}
#endif
// Get info about this frame.
unw_word_t sp;
unw_proc_info_t frameInfo;
unw_get_reg(&cursor2, UNW_REG_SP, &sp);
if (unw_get_proc_info(&cursor2, &frameInfo) != UNW_ESUCCESS) {
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): unw_get_proc_info "
"failed => _URC_FATAL_PHASE1_ERROR\n",
static_cast<void *>(exception_object));
return _URC_FATAL_PHASE2_ERROR;
}
// When tracing, print state information.
if (_LIBUNWIND_TRACING_UNWINDING) {
char functionBuf[512];
const char *functionName = functionBuf;
unw_word_t offset;
if ((unw_get_proc_name(&cursor2, functionBuf, sizeof(functionBuf),
&offset) != UNW_ESUCCESS) ||
(frameInfo.start_ip + offset > frameInfo.end_ip))
functionName = ".anonymous.";
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2(ex_ojb=%p): start_ip=0x%llX, func=%s, sp=0x%llX, "
"lsda=0x%llX, personality=0x%llX\n",
static_cast<void *>(exception_object), (long long)frameInfo.start_ip,
functionName, (long long)sp, (long long)frameInfo.lsda,
(long long)frameInfo.handler);
}
// If there is a personality routine, tell it we are unwinding.
if (frameInfo.handler != 0) {
__personality_routine p =
(__personality_routine)(long)(frameInfo.handler);
struct _Unwind_Context *context = (struct _Unwind_Context *)(&cursor2);
// EHABI #7.2
exception_object->pr_cache.fnstart = frameInfo.start_ip;
exception_object->pr_cache.ehtp =
(_Unwind_EHT_Header *)frameInfo.unwind_info;
exception_object->pr_cache.additional = frameInfo.flags;
_Unwind_Reason_Code personalityResult =
(*p)(state, exception_object, context);
switch (personalityResult) {
case _URC_CONTINUE_UNWIND:
// Continue unwinding
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2(ex_ojb=%p): _URC_CONTINUE_UNWIND\n",
static_cast<void *>(exception_object));
// EHABI #7.2
if (sp == exception_object->barrier_cache.sp) {
// Phase 1 said we would stop at this frame, but we did not...
_LIBUNWIND_ABORT("during phase1 personality function said it would "
"stop here, but now in phase2 it did not stop here");
}
break;
case _URC_INSTALL_CONTEXT:
_LIBUNWIND_TRACE_UNWINDING(
"unwind_phase2(ex_ojb=%p): _URC_INSTALL_CONTEXT\n",
static_cast<void *>(exception_object));
// Personality routine says to transfer control to landing pad.
// We may get control back if landing pad calls _Unwind_Resume().
if (_LIBUNWIND_TRACING_UNWINDING) {
unw_word_t pc;
unw_get_reg(&cursor2, UNW_REG_IP, &pc);
unw_get_reg(&cursor2, UNW_REG_SP, &sp);
_LIBUNWIND_TRACE_UNWINDING("unwind_phase2(ex_ojb=%p): re-entering "
"user code with ip=0x%llX, sp=0x%llX\n",
static_cast<void *>(exception_object),
(long long)pc, (long long)sp);
}
{
// EHABI #7.4.1 says we need to preserve pc for when _Unwind_Resume
// is called back, to find this same frame.
unw_word_t pc;
unw_get_reg(&cursor2, UNW_REG_IP, &pc);
exception_object->unwinder_cache.reserved2 = (uint32_t)pc;
}
unw_resume(&cursor2);
// unw_resume() only returns if there was an error.
return _URC_FATAL_PHASE2_ERROR;
// # EHABI #7.4.3
case _URC_FAILURE:
abort();
default:
// Personality routine returned an unknown result code.
_LIBUNWIND_DEBUG_LOG("personality function returned unknown result %d",
personalityResult);
return _URC_FATAL_PHASE2_ERROR;
}
}
frame_count++;
}
// Clean up phase did not resume at the frame that the search phase
// said it would...
return _URC_FATAL_PHASE2_ERROR;
}
/// Called by __cxa_throw. Only returns if there is a fatal error.
_LIBUNWIND_EXPORT _Unwind_Reason_Code
_Unwind_RaiseException(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_RaiseException(ex_obj=%p)\n",
static_cast<void *>(exception_object));
unw_context_t uc;
unw_getcontext(&uc);
// This field for is for compatibility with GCC to say this isn't a forced
// unwind. EHABI #7.2
exception_object->unwinder_cache.reserved1 = 0;
// phase 1: the search phase
_Unwind_Reason_Code phase1 = unwind_phase1(&uc, exception_object);
if (phase1 != _URC_NO_REASON)
return phase1;
// phase 2: the clean up phase
return unwind_phase2(&uc, exception_object, false);
}
_LIBUNWIND_EXPORT void _Unwind_Complete(_Unwind_Exception* exception_object) {
// This is to be called when exception handling completes to give us a chance
// to perform any housekeeping. EHABI #7.2. But we have nothing to do here.
(void)exception_object;
}
/// When _Unwind_RaiseException() is in phase2, it hands control
/// to the personality function at each frame. The personality
/// may force a jump to a landing pad in that function, the landing
/// pad code may then call _Unwind_Resume() to continue with the
/// unwinding. Note: the call to _Unwind_Resume() is from compiler
/// geneated user code. All other _Unwind_* routines are called
/// by the C++ runtime __cxa_* routines.
///
/// Note: re-throwing an exception (as opposed to continuing the unwind)
/// is implemented by having the code call __cxa_rethrow() which
/// in turn calls _Unwind_Resume_or_Rethrow().
_LIBUNWIND_EXPORT void
_Unwind_Resume(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_Resume(ex_obj=%p)\n",
static_cast<void *>(exception_object));
unw_context_t uc;
unw_getcontext(&uc);
// _Unwind_RaiseException on EHABI will always set the reserved1 field to 0,
// which is in the same position as private_1 below.
// TODO(ajwong): Who wronte the above? Why is it true?
unwind_phase2(&uc, exception_object, true);
// Clients assume _Unwind_Resume() does not return, so all we can do is abort.
_LIBUNWIND_ABORT("_Unwind_Resume() can't return");
}
/// Called by personality handler during phase 2 to get LSDA for current frame.
_LIBUNWIND_EXPORT uintptr_t
_Unwind_GetLanguageSpecificData(struct _Unwind_Context *context) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
unw_proc_info_t frameInfo;
uintptr_t result = 0;
if (unw_get_proc_info(cursor, &frameInfo) == UNW_ESUCCESS)
result = (uintptr_t)frameInfo.lsda;
_LIBUNWIND_TRACE_API(
"_Unwind_GetLanguageSpecificData(context=%p) => 0x%llx\n",
static_cast<void *>(context), (long long)result);
return result;
}
static uint64_t ValueAsBitPattern(_Unwind_VRS_DataRepresentation representation,
void* valuep) {
uint64_t value = 0;
switch (representation) {
case _UVRSD_UINT32:
case _UVRSD_FLOAT:
memcpy(&value, valuep, sizeof(uint32_t));
break;
case _UVRSD_VFPX:
case _UVRSD_UINT64:
case _UVRSD_DOUBLE:
memcpy(&value, valuep, sizeof(uint64_t));
break;
}
return value;
}
_Unwind_VRS_Result
_Unwind_VRS_Set(_Unwind_Context *context, _Unwind_VRS_RegClass regclass,
uint32_t regno, _Unwind_VRS_DataRepresentation representation,
void *valuep) {
_LIBUNWIND_TRACE_API("_Unwind_VRS_Set(context=%p, regclass=%d, reg=%d, "
"rep=%d, value=0x%llX)\n",
static_cast<void *>(context), regclass, regno,
representation,
ValueAsBitPattern(representation, valuep));
unw_cursor_t *cursor = (unw_cursor_t *)context;
switch (regclass) {
case _UVRSC_CORE:
if (representation != _UVRSD_UINT32 || regno > 15)
return _UVRSR_FAILED;
return unw_set_reg(cursor, (unw_regnum_t)(UNW_ARM_R0 + regno),
*(unw_word_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXC:
if (representation != _UVRSD_UINT32 || regno > 3)
return _UVRSR_FAILED;
return unw_set_reg(cursor, (unw_regnum_t)(UNW_ARM_WC0 + regno),
*(unw_word_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_VFP:
if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE)
return _UVRSR_FAILED;
if (representation == _UVRSD_VFPX) {
// Can only touch d0-15 with FSTMFDX.
if (regno > 15)
return _UVRSR_FAILED;
unw_save_vfp_as_X(cursor);
} else {
if (regno > 31)
return _UVRSR_FAILED;
}
return unw_set_fpreg(cursor, (unw_regnum_t)(UNW_ARM_D0 + regno),
*(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXD:
if (representation != _UVRSD_DOUBLE || regno > 31)
return _UVRSR_FAILED;
return unw_set_fpreg(cursor, (unw_regnum_t)(UNW_ARM_WR0 + regno),
*(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
}
_LIBUNWIND_ABORT("unsupported register class");
}
static _Unwind_VRS_Result
_Unwind_VRS_Get_Internal(_Unwind_Context *context,
_Unwind_VRS_RegClass regclass, uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
switch (regclass) {
case _UVRSC_CORE:
if (representation != _UVRSD_UINT32 || regno > 15)
return _UVRSR_FAILED;
return unw_get_reg(cursor, (unw_regnum_t)(UNW_ARM_R0 + regno),
(unw_word_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXC:
if (representation != _UVRSD_UINT32 || regno > 3)
return _UVRSR_FAILED;
return unw_get_reg(cursor, (unw_regnum_t)(UNW_ARM_WC0 + regno),
(unw_word_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_VFP:
if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE)
return _UVRSR_FAILED;
if (representation == _UVRSD_VFPX) {
// Can only touch d0-15 with FSTMFDX.
if (regno > 15)
return _UVRSR_FAILED;
unw_save_vfp_as_X(cursor);
} else {
if (regno > 31)
return _UVRSR_FAILED;
}
return unw_get_fpreg(cursor, (unw_regnum_t)(UNW_ARM_D0 + regno),
(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
case _UVRSC_WMMXD:
if (representation != _UVRSD_DOUBLE || regno > 31)
return _UVRSR_FAILED;
return unw_get_fpreg(cursor, (unw_regnum_t)(UNW_ARM_WR0 + regno),
(unw_fpreg_t *)valuep) == UNW_ESUCCESS
? _UVRSR_OK
: _UVRSR_FAILED;
}
_LIBUNWIND_ABORT("unsupported register class");
}
_Unwind_VRS_Result _Unwind_VRS_Get(
_Unwind_Context *context,
_Unwind_VRS_RegClass regclass,
uint32_t regno,
_Unwind_VRS_DataRepresentation representation,
void *valuep) {
_Unwind_VRS_Result result =
_Unwind_VRS_Get_Internal(context, regclass, regno, representation,
valuep);
_LIBUNWIND_TRACE_API("_Unwind_VRS_Get(context=%p, regclass=%d, reg=%d, "
"rep=%d, value=0x%llX, result = %d)\n",
static_cast<void *>(context), regclass, regno,
representation,
ValueAsBitPattern(representation, valuep), result);
return result;
}
_Unwind_VRS_Result
_Unwind_VRS_Pop(_Unwind_Context *context, _Unwind_VRS_RegClass regclass,
uint32_t discriminator,
_Unwind_VRS_DataRepresentation representation) {
_LIBUNWIND_TRACE_API("_Unwind_VRS_Pop(context=%p, regclass=%d, "
"discriminator=%d, representation=%d)\n",
static_cast<void *>(context), regclass, discriminator,
representation);
switch (regclass) {
case _UVRSC_CORE:
case _UVRSC_WMMXC: {
if (representation != _UVRSD_UINT32)
return _UVRSR_FAILED;
// When popping SP from the stack, we don't want to override it from the
// computed new stack location. See EHABI #7.5.4 table 3.
bool poppedSP = false;
uint32_t* sp;
if (_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP,
_UVRSD_UINT32, &sp) != _UVRSR_OK) {
return _UVRSR_FAILED;
}
for (uint32_t i = 0; i < 16; ++i) {
if (!(discriminator & static_cast<uint32_t>(1 << i)))
continue;
uint32_t value = *sp++;
if (regclass == _UVRSC_CORE && i == 13)
poppedSP = true;
if (_Unwind_VRS_Set(context, regclass, i,
_UVRSD_UINT32, &value) != _UVRSR_OK) {
return _UVRSR_FAILED;
}
}
if (!poppedSP) {
return _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP,
_UVRSD_UINT32, &sp);
}
return _UVRSR_OK;
}
case _UVRSC_VFP:
case _UVRSC_WMMXD: {
if (representation != _UVRSD_VFPX && representation != _UVRSD_DOUBLE)
return _UVRSR_FAILED;
uint32_t first = discriminator >> 16;
uint32_t count = discriminator & 0xffff;
uint32_t end = first+count;
uint32_t* sp;
if (_Unwind_VRS_Get(context, _UVRSC_CORE, UNW_ARM_SP,
_UVRSD_UINT32, &sp) != _UVRSR_OK) {
return _UVRSR_FAILED;
}
// For _UVRSD_VFPX, we're assuming the data is stored in FSTMX "standard
// format 1", which is equivalent to FSTMD + a padding word.
for (uint32_t i = first; i < end; ++i) {
// SP is only 32-bit aligned so don't copy 64-bit at a time.
uint64_t value = *sp++;
value |= ((uint64_t)(*sp++)) << 32;
if (_Unwind_VRS_Set(context, regclass, i, representation, &value) !=
_UVRSR_OK)
return _UVRSR_FAILED;
}
if (representation == _UVRSD_VFPX)
++sp;
return _Unwind_VRS_Set(context, _UVRSC_CORE, UNW_ARM_SP, _UVRSD_UINT32,
&sp);
}
}
_LIBUNWIND_ABORT("unsupported register class");
}
/// Called by personality handler during phase 2 to find the start of the
/// function.
_LIBUNWIND_EXPORT uintptr_t
_Unwind_GetRegionStart(struct _Unwind_Context *context) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
unw_proc_info_t frameInfo;
uintptr_t result = 0;
if (unw_get_proc_info(cursor, &frameInfo) == UNW_ESUCCESS)
result = (uintptr_t)frameInfo.start_ip;
_LIBUNWIND_TRACE_API("_Unwind_GetRegionStart(context=%p) => 0x%llX\n",
static_cast<void *>(context), (long long)result);
return result;
}
/// Called by personality handler during phase 2 if a foreign exception
// is caught.
_LIBUNWIND_EXPORT void
_Unwind_DeleteException(_Unwind_Exception *exception_object) {
_LIBUNWIND_TRACE_API("_Unwind_DeleteException(ex_obj=%p)\n",
static_cast<void *>(exception_object));
if (exception_object->exception_cleanup != NULL)
(*exception_object->exception_cleanup)(_URC_FOREIGN_EXCEPTION_CAUGHT,
exception_object);
}
extern "C" _LIBUNWIND_EXPORT _Unwind_Reason_Code
__gnu_unwind_frame(_Unwind_Exception *exception_object,
struct _Unwind_Context *context) {
unw_cursor_t *cursor = (unw_cursor_t *)context;
if (unw_step(cursor) != UNW_STEP_SUCCESS)
return _URC_FAILURE;
return _URC_OK;
}
#endif // _LIBUNWIND_ARM_EHABI