/*
* Copyright (C) 2011 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.math;
import static com.google.common.math.MathBenchmarking.ARRAY_MASK;
import static com.google.common.math.MathBenchmarking.ARRAY_SIZE;
import static com.google.common.math.MathBenchmarking.RANDOM_SOURCE;
import static com.google.common.math.MathBenchmarking.randomBigInteger;
import static com.google.common.math.MathBenchmarking.randomNonNegativeBigInteger;
import com.google.caliper.BeforeExperiment;
import com.google.caliper.Benchmark;
import com.google.caliper.Param;
import com.google.common.math.DoubleMath;
import com.google.common.math.IntMath;
import com.google.common.math.LongMath;
/**
* Benchmarks against the Apache Commons Math utilities.
*
* <p>Note: the Apache benchmarks are not open sourced to avoid the extra dependency.
*
* @author Louis Wasserman
*/
public class ApacheBenchmark {
private enum Impl {
GUAVA {
@Override
public double factorialDouble(int n) {
return DoubleMath.factorial(n);
}
@Override
public int gcdInt(int a, int b) {
return IntMath.gcd(a, b);
}
@Override
public long gcdLong(long a, long b) {
return LongMath.gcd(a, b);
}
@Override
public long binomialCoefficient(int n, int k) {
return LongMath.binomial(n, k);
}
@Override
public boolean noAddOverflow(int a, int b) {
try {
IntMath.checkedAdd(a, b);
return true;
} catch (ArithmeticException e) {
return false;
}
}
@Override
public boolean noAddOverflow(long a, long b) {
try {
LongMath.checkedAdd(a, b);
return true;
} catch (ArithmeticException e) {
return false;
}
}
@Override
public boolean noMulOverflow(int a, int b) {
try {
IntMath.checkedMultiply(a, b);
return true;
} catch (ArithmeticException e) {
return false;
}
}
@Override
public boolean noMulOverflow(long a, long b) {
try {
LongMath.checkedMultiply(a, b);
return true;
} catch (ArithmeticException e) {
return false;
}
}
};
public abstract double factorialDouble(int n);
public abstract long binomialCoefficient(int n, int k);
public abstract int gcdInt(int a, int b);
public abstract long gcdLong(long a, long b);
public abstract boolean noAddOverflow(int a, int b);
public abstract boolean noAddOverflow(long a, long b);
public abstract boolean noMulOverflow(int a, int b);
public abstract boolean noMulOverflow(long a, long b);
}
private final int[] factorials = new int[ARRAY_SIZE];
private final int[][] binomials = new int[ARRAY_SIZE][2];
private final int[][] nonnegInt = new int[ARRAY_SIZE][2];
private final long[][] nonnegLong = new long[ARRAY_SIZE][2];
private final int[][] intsToAdd = new int[ARRAY_SIZE][2];
private final int[][] intsToMul = new int[ARRAY_SIZE][2];
private final long[][] longsToAdd = new long[ARRAY_SIZE][2];
private final long[][] longsToMul = new long[ARRAY_SIZE][2];
@Param({"APACHE", "GUAVA"})
Impl impl;
@BeforeExperiment
void setUp() {
for (int i = 0; i < ARRAY_SIZE; i++) {
factorials[i] = RANDOM_SOURCE.nextInt(200);
for (int j = 0; j < 2; j++) {
nonnegInt[i][j] = randomNonNegativeBigInteger(Integer.SIZE - 2).intValue();
nonnegLong[i][j] = randomNonNegativeBigInteger(Long.SIZE - 2).longValue();
}
do {
for (int j = 0; j < 2; j++) {
intsToAdd[i][j] = randomBigInteger(Integer.SIZE - 2).intValue();
}
} while (!Impl.GUAVA.noAddOverflow(intsToAdd[i][0], intsToAdd[i][1]));
do {
for (int j = 0; j < 2; j++) {
longsToAdd[i][j] = randomBigInteger(Long.SIZE - 2).longValue();
}
} while (!Impl.GUAVA.noAddOverflow(longsToAdd[i][0], longsToAdd[i][1]));
do {
for (int j = 0; j < 2; j++) {
intsToMul[i][j] = randomBigInteger(Integer.SIZE - 2).intValue();
}
} while (!Impl.GUAVA.noMulOverflow(intsToMul[i][0], intsToMul[i][1]));
do {
for (int j = 0; j < 2; j++) {
longsToMul[i][j] = randomBigInteger(Long.SIZE - 2).longValue();
}
} while (!Impl.GUAVA.noMulOverflow(longsToMul[i][0], longsToMul[i][1]));
int k = binomials[i][1] = RANDOM_SOURCE.nextInt(MathBenchmarking.biggestBinomials.length);
binomials[i][0] = RANDOM_SOURCE.nextInt(MathBenchmarking.biggestBinomials[k] - k) + k;
}
}
@Benchmark long factorialDouble(int reps) {
long tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
tmp += Double.doubleToRawLongBits(impl.factorialDouble(factorials[j]));
}
return tmp;
}
@Benchmark int intGCD(int reps) {
int tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
tmp += impl.gcdInt(nonnegInt[j][0], nonnegInt[j][1]);
}
return tmp;
}
@Benchmark long longGCD(int reps) {
long tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
tmp += impl.gcdLong(nonnegLong[j][0], nonnegLong[j][1]);
}
return tmp;
}
@Benchmark long binomialCoefficient(int reps) {
long tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
tmp += impl.binomialCoefficient(binomials[j][0], binomials[j][1]);
}
return tmp;
}
@Benchmark int intAddOverflow(int reps) {
int tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
if (impl.noAddOverflow(intsToAdd[j][0], intsToAdd[j][1])) {
tmp++;
}
}
return tmp;
}
@Benchmark int longAddOverflow(int reps) {
int tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
if (impl.noAddOverflow(longsToAdd[j][0], longsToAdd[j][1])) {
tmp++;
}
}
return tmp;
}
@Benchmark int intMulOverflow(int reps) {
int tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
if (impl.noMulOverflow(intsToMul[j][0], intsToMul[j][1])) {
tmp++;
}
}
return tmp;
}
@Benchmark int longMulOverflow(int reps) {
int tmp = 0;
for (int i = 0; i < reps; i++) {
int j = i & ARRAY_MASK;
if (impl.noMulOverflow(longsToMul[j][0], longsToMul[j][1])) {
tmp++;
}
}
return tmp;
}
}