// Copyright 2015 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// profiler.h: a simple sampling profiler that's always just one #include away!
//
// Overview
// ========
//
// This profiler only samples a pseudo-stack, not the actual call stack.
// The code to be profiled needs to be instrumented with
// pseudo-stack "labels", see ScopedProfilingLabel.
// Using pseudo-stacks allows this profiler to be very simple, low-overhead,
// portable, and independent of compilation details such as function inlining
// and frame pointers. The granularity of instrumentation can be freely chosen,
// and it is possible to get some annotate-like detail, i.e. detail within one
// function without splitting it into multiple functions.
//
// This profiler should remain small and simple; its key feature is to fit in
// a single header file so that there should never be a reason to refrain
// from profiling. More complex and feature-rich alternatives are
// readily available. This one offers a strict superset of its
// functionality: https://github.com/bgirard/GeckoProfiler, including
// intertwining pseudostacks with real call stacks, more annotation options,
// and advanced visualization.
//
// Usage
// =====
//
// 0. Enable profiling by defining GEMMLOWP_PROFILING. When profiling is
// not enabled, profiling instrumentation from instrumentation.h
// (ScopedProfilingLabel, RegisterCurrentThreadForProfiling)
// is still defined but does nothing. On the other hand,
// when profiling is not enabled, it is an error to #include the
// present file.
//
// 1. Each thread can opt in to profiling by calling
// RegisterCurrentThreadForProfiling() defined in instrumentation.h.
// This can be done at any time, before or during profiling.
// No sample will be collected from a thread until
// it has called RegisterCurrentThreadForProfiling().
//
// 2. Instrument your code to be profiled with ScopedProfilingLabel,
// which is a RAII helper defined in instrumentation.h. The identifier
// names (some_label, etc) do not matter; what will show up
// in the profile is the string passed to the constructor, which
// must be a literal string. See the full example below.
//
// Note: the overhead of ScopedProfilingLabel is zero when not
// enabling profiling (when not defining GEMMLOWP_PROFILING).
//
// 3. Use the profiler.h interface to control profiling. There are two
// functions: StartProfiling() and FinishProfiling(). They must be
// called on the same thread. FinishProfiling() prints the profile
// on stdout.
//
// Full example
// ============
/*
#define GEMMLOWP_PROFILING
#include "profiling/instrumentation.h"
using namespace gemmlowp;
const int iters = 100000000;
volatile int i;
void Bar() {
ScopedProfilingLabel label("Bar");
for (i = 0; i < iters; i++) {}
}
void Foo() {
ScopedProfilingLabel label("Foo");
for (i = 0; i < iters; i++) {}
Bar();
}
void Init() {
RegisterCurrentThreadForProfiling();
}
#include "profiling/profiler.h"
int main() {
Init();
StartProfiling();
Foo();
FinishProfiling();
}
*
* Output:
*
gemmlowp profile (1 threads, 304 samples)
100.00% Foo
51.32% other
48.68% Bar
0.00% other (outside of any label)
*/
//
// Interpreting results
// ====================
//
// Each node shows the absolute percentage, among all the samples,
// of the number of samples that recorded the given pseudo-stack.
// The percentages are *NOT* relative to the parent node. In addition
// to your own labels, you will also see 'other' nodes that collect
// the remainder of samples under the parent node that didn't fall into
// any of the labelled child nodes. Example:
//
// 20% Foo
// 12% Bar
// 6% Xyz
// 2% other
//
// This means that 20% of all labels were under Foo, of which 12%/20%==60%
// were under Bar, 6%/20%==30% were under Xyz, and 2%/20%==10% were not
// under either Bar or Xyz.
//
// Typically, one wants to keep adding ScopedProfilingLabel's until
// the 'other' nodes show low percentages.
//
// Interpreting results with multiple threads
// ==========================================
//
// At each sample, each thread registered for profiling gets sampled once.
// So if there is one "main thread" spending its time in MainFunc() and
// 4 "worker threads" spending time in WorkerFunc(), then 80% (=4/5) of the
// samples will be in WorkerFunc, so the profile will look like this:
//
// 80% WorkerFunc
// 20% MainFunc
#ifndef GEMMLOWP_PROFILING_PROFILER_H_
#define GEMMLOWP_PROFILING_PROFILER_H_
#ifndef GEMMLOWP_PROFILING
#error Profiling is not enabled!
#endif
#include <vector>
#include "instrumentation.h"
namespace gemmlowp {
// A tree view of a profile.
class ProfileTreeView {
struct Node {
std::vector<Node*> children;
const char* label;
std::size_t weight;
Node() : label(nullptr), weight(0) {}
~Node() {
for (auto child : children) {
delete child;
}
}
};
static bool CompareNodes(Node* n1, Node* n2) {
return n1->weight > n2->weight;
}
Node root_;
void PrintNode(const Node* node, int level) const {
if (level) {
for (int i = 1; i < level; i++) {
printf(" ");
}
printf("%.2f%% %s\n", 100.0f * node->weight / root_.weight, node->label);
}
for (auto child : node->children) {
PrintNode(child, level + 1);
}
}
static void AddStackToNode(const ProfilingStack& stack, Node* node,
std::size_t level) {
node->weight++;
if (stack.size == level) {
return;
}
Node* child_to_add_to = nullptr;
for (auto child : node->children) {
if (child->label == stack.labels[level]) {
child_to_add_to = child;
break;
}
}
if (!child_to_add_to) {
child_to_add_to = new Node;
child_to_add_to->label = stack.labels[level];
node->children.push_back(child_to_add_to);
}
AddStackToNode(stack, child_to_add_to, level + 1);
return;
}
void AddStack(const ProfilingStack& stack) {
AddStackToNode(stack, &root_, 0);
}
void AddOtherChildrenToNode(Node* node) {
std::size_t top_level_children_weight = 0;
for (auto c : node->children) {
AddOtherChildrenToNode(c);
top_level_children_weight += c->weight;
}
if (top_level_children_weight) {
Node* other_child = new Node;
other_child->label =
node == &root_ ? "other (outside of any label)" : "other";
other_child->weight = node->weight - top_level_children_weight;
node->children.push_back(other_child);
}
}
void AddOtherNodes() { AddOtherChildrenToNode(&root_); }
void SortNode(Node* node) {
std::sort(node->children.begin(), node->children.end(), CompareNodes);
for (auto child : node->children) {
SortNode(child);
}
}
void Sort() { SortNode(&root_); }
public:
explicit ProfileTreeView(const std::vector<ProfilingStack>& stacks) {
for (auto stack : stacks) {
AddStack(stack);
}
AddOtherNodes();
Sort();
}
void Print() const {
printf("\n");
printf("gemmlowp profile (%d threads, %d samples)\n",
static_cast<int>(ThreadsUnderProfiling().size()),
static_cast<int>(root_.weight));
PrintNode(&root_, 0);
printf("\n");
}
};
// This function is the only place that determines our sampling frequency.
inline void WaitOneProfilerTick() {
static const int millisecond = 1000000;
#if defined __arm__ || defined __aarch64__
// Reduced sampling frequency on mobile devices helps limit time and memory
// overhead there.
static const int interval = 10 * millisecond;
#else
static const int interval = 1 * millisecond;
#endif
timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = interval;
nanosleep(&ts, nullptr);
}
// This is how we track whether we've already started profiling,
// to guard against misuse of the API.
inline bool& IsProfiling() {
static bool b;
return b;
}
// This is how we tell the profiler thread to finish.
inline bool& ProfilerThreadShouldFinish() {
static bool b;
return b;
}
// The profiler thread. See ProfilerThreadFunc.
inline pthread_t& ProfilerThread() {
static pthread_t t;
return t;
}
// Records a stack from a running thread.
// The tricky part is that we're not interrupting the thread.
// This is OK because we're looking at a pseudo-stack of labels,
// not at the real thread stack, and if the pseudo-stack changes
// while we're recording it, we are OK with getting either the
// old or the new stack. Note that ProfilingStack::Pop
// only decrements the size, and doesn't null the popped label,
// so if we're concurrently recording it, it shouldn't change
// under our feet until another label is pushed, at which point
// we are OK with getting either this new label or the old one.
// In the end, the key atomicity property that we are relying on
// here is that pointers are changed atomically, and the labels
// are pointers (to literal strings).
inline void RecordStack(const ThreadInfo* thread, ProfilingStack* dst) {
assert(!dst->size);
while (dst->size < thread->stack.size) {
dst->labels[dst->size] = thread->stack.labels[dst->size];
dst->size++;
MemoryBarrier(); // thread->stack can change at any time
}
}
// The profiler thread's entry point.
// Note that a separate thread is to be started each time we call
// StartProfiling(), and finishes when we call FinishProfiling().
// So here we only need to handle the recording and reporting of
// a single profile.
inline void* ProfilerThreadFunc(void*) {
assert(ProfilerThread() == pthread_self());
// Since we only handle one profile per profiler thread, the
// profile data (the array of recorded stacks) can be a local variable here.
std::vector<ProfilingStack> stacks;
while (!ProfilerThreadShouldFinish()) {
WaitOneProfilerTick();
{
AutoGlobalLock<ProfilerLockId> lock;
for (auto t : ThreadsUnderProfiling()) {
ProfilingStack s;
RecordStack(t, &s);
stacks.push_back(s);
}
}
}
// Profiling is finished and we now report the results.
ProfileTreeView(stacks).Print();
return nullptr;
}
// Starts recording samples.
inline void StartProfiling() {
AutoGlobalLock<ProfilerLockId> lock;
ReleaseBuildAssertion(!IsProfiling(), "We're already profiling!");
IsProfiling() = true;
ProfilerThreadShouldFinish() = false;
pthread_create(&ProfilerThread(), nullptr, ProfilerThreadFunc, nullptr);
}
// Stops recording samples, and prints a profile tree-view on stdout.
inline void FinishProfiling() {
{
AutoGlobalLock<ProfilerLockId> lock;
ReleaseBuildAssertion(IsProfiling(), "We weren't profiling!");
// The ProfilerThreadShouldFinish() mechanism here is really naive and bad,
// as the scary comments below should make clear.
// Should we use a condition variable?
ProfilerThreadShouldFinish() = true;
} // must release the lock here to avoid deadlock with profiler thread.
pthread_join(ProfilerThread(), nullptr);
IsProfiling() = false; // yikes, this should be guarded by the lock!
}
} // namespace gemmlowp
#endif // GEMMLOWP_PROFILING_PROFILER_H_