"""psCharStrings.py -- module implementing various kinds of CharStrings:
CFF dictionary data and Type1/Type2 CharStrings.
"""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
import struct
DEBUG = 0
t1OperandEncoding = [None] * 256
t1OperandEncoding[0:32] = (32) * ["do_operator"]
t1OperandEncoding[32:247] = (247 - 32) * ["read_byte"]
t1OperandEncoding[247:251] = (251 - 247) * ["read_smallInt1"]
t1OperandEncoding[251:255] = (255 - 251) * ["read_smallInt2"]
t1OperandEncoding[255] = "read_longInt"
assert len(t1OperandEncoding) == 256
t2OperandEncoding = t1OperandEncoding[:]
t2OperandEncoding[28] = "read_shortInt"
t2OperandEncoding[255] = "read_fixed1616"
cffDictOperandEncoding = t2OperandEncoding[:]
cffDictOperandEncoding[29] = "read_longInt"
cffDictOperandEncoding[30] = "read_realNumber"
cffDictOperandEncoding[255] = "reserved"
realNibbles = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'.', 'E', 'E-', None, '-']
realNibblesDict = {}
for _i in range(len(realNibbles)):
realNibblesDict[realNibbles[_i]] = _i
class ByteCodeBase(object):
def read_byte(self, b0, data, index):
return b0 - 139, index
def read_smallInt1(self, b0, data, index):
b1 = byteord(data[index])
return (b0-247)*256 + b1 + 108, index+1
def read_smallInt2(self, b0, data, index):
b1 = byteord(data[index])
return -(b0-251)*256 - b1 - 108, index+1
def read_shortInt(self, b0, data, index):
value, = struct.unpack(">h", data[index:index+2])
return value, index+2
def read_longInt(self, b0, data, index):
value, = struct.unpack(">l", data[index:index+4])
return value, index+4
def read_fixed1616(self, b0, data, index):
value, = struct.unpack(">l", data[index:index+4])
return value / 65536, index+4
def read_realNumber(self, b0, data, index):
number = ''
while True:
b = byteord(data[index])
index = index + 1
nibble0 = (b & 0xf0) >> 4
nibble1 = b & 0x0f
if nibble0 == 0xf:
break
number = number + realNibbles[nibble0]
if nibble1 == 0xf:
break
number = number + realNibbles[nibble1]
return float(number), index
def buildOperatorDict(operatorList):
oper = {}
opc = {}
for item in operatorList:
if len(item) == 2:
oper[item[0]] = item[1]
else:
oper[item[0]] = item[1:]
if isinstance(item[0], tuple):
opc[item[1]] = item[0]
else:
opc[item[1]] = (item[0],)
return oper, opc
t2Operators = [
# opcode name
(1, 'hstem'),
(3, 'vstem'),
(4, 'vmoveto'),
(5, 'rlineto'),
(6, 'hlineto'),
(7, 'vlineto'),
(8, 'rrcurveto'),
(10, 'callsubr'),
(11, 'return'),
(14, 'endchar'),
(16, 'blend'),
(18, 'hstemhm'),
(19, 'hintmask'),
(20, 'cntrmask'),
(21, 'rmoveto'),
(22, 'hmoveto'),
(23, 'vstemhm'),
(24, 'rcurveline'),
(25, 'rlinecurve'),
(26, 'vvcurveto'),
(27, 'hhcurveto'),
# (28, 'shortint'), # not really an operator
(29, 'callgsubr'),
(30, 'vhcurveto'),
(31, 'hvcurveto'),
((12, 0), 'ignore'), # dotsection. Yes, there a few very early OTF/CFF
# fonts with this deprecated operator. Just ignore it.
((12, 3), 'and'),
((12, 4), 'or'),
((12, 5), 'not'),
((12, 8), 'store'),
((12, 9), 'abs'),
((12, 10), 'add'),
((12, 11), 'sub'),
((12, 12), 'div'),
((12, 13), 'load'),
((12, 14), 'neg'),
((12, 15), 'eq'),
((12, 18), 'drop'),
((12, 20), 'put'),
((12, 21), 'get'),
((12, 22), 'ifelse'),
((12, 23), 'random'),
((12, 24), 'mul'),
((12, 26), 'sqrt'),
((12, 27), 'dup'),
((12, 28), 'exch'),
((12, 29), 'index'),
((12, 30), 'roll'),
((12, 34), 'hflex'),
((12, 35), 'flex'),
((12, 36), 'hflex1'),
((12, 37), 'flex1'),
]
def getIntEncoder(format):
if format == "cff":
fourByteOp = bytechr(29)
elif format == "t1":
fourByteOp = bytechr(255)
else:
assert format == "t2"
fourByteOp = None
def encodeInt(value, fourByteOp=fourByteOp, bytechr=bytechr,
pack=struct.pack, unpack=struct.unpack):
if -107 <= value <= 107:
code = bytechr(value + 139)
elif 108 <= value <= 1131:
value = value - 108
code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF)
elif -1131 <= value <= -108:
value = -value - 108
code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF)
elif fourByteOp is None:
# T2 only supports 2 byte ints
if -32768 <= value <= 32767:
code = bytechr(28) + pack(">h", value)
else:
# Backwards compatible hack: due to a previous bug in FontTools,
# 16.16 fixed numbers were written out as 4-byte ints. When
# these numbers were small, they were wrongly written back as
# small ints instead of 4-byte ints, breaking round-tripping.
# This here workaround doesn't do it any better, since we can't
# distinguish anymore between small ints that were supposed to
# be small fixed numbers and small ints that were just small
# ints. Hence the warning.
import sys
sys.stderr.write("Warning: 4-byte T2 number got passed to the "
"IntType handler. This should happen only when reading in "
"old XML files.\n")
code = bytechr(255) + pack(">l", value)
else:
code = fourByteOp + pack(">l", value)
return code
return encodeInt
encodeIntCFF = getIntEncoder("cff")
encodeIntT1 = getIntEncoder("t1")
encodeIntT2 = getIntEncoder("t2")
def encodeFixed(f, pack=struct.pack):
# For T2 only
return b"\xff" + pack(">l", int(round(f * 65536)))
def encodeFloat(f):
# For CFF only, used in cffLib
s = str(f).upper()
if s[:2] == "0.":
s = s[1:]
elif s[:3] == "-0.":
s = "-" + s[2:]
nibbles = []
while s:
c = s[0]
s = s[1:]
if c == "E" and s[:1] == "-":
s = s[1:]
c = "E-"
nibbles.append(realNibblesDict[c])
nibbles.append(0xf)
if len(nibbles) % 2:
nibbles.append(0xf)
d = bytechr(30)
for i in range(0, len(nibbles), 2):
d = d + bytechr(nibbles[i] << 4 | nibbles[i+1])
return d
class CharStringCompileError(Exception): pass
class T2CharString(ByteCodeBase):
operandEncoding = t2OperandEncoding
operators, opcodes = buildOperatorDict(t2Operators)
def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None):
if program is None:
program = []
self.bytecode = bytecode
self.program = program
self.private = private
self.globalSubrs = globalSubrs if globalSubrs is not None else []
def __repr__(self):
if self.bytecode is None:
return "<%s (source) at %x>" % (self.__class__.__name__, id(self))
else:
return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self))
def getIntEncoder(self):
return encodeIntT2
def getFixedEncoder(self):
return encodeFixed
def decompile(self):
if not self.needsDecompilation():
return
subrs = getattr(self.private, "Subrs", [])
decompiler = SimpleT2Decompiler(subrs, self.globalSubrs)
decompiler.execute(self)
def draw(self, pen):
subrs = getattr(self.private, "Subrs", [])
extractor = T2OutlineExtractor(pen, subrs, self.globalSubrs,
self.private.nominalWidthX, self.private.defaultWidthX)
extractor.execute(self)
self.width = extractor.width
def compile(self):
if self.bytecode is not None:
return
assert self.program, "illegal CharString: decompiled to empty program"
assert self.program[-1] in ("endchar", "return", "callsubr", "callgsubr",
"seac"), "illegal CharString"
bytecode = []
opcodes = self.opcodes
program = self.program
encodeInt = self.getIntEncoder()
encodeFixed = self.getFixedEncoder()
i = 0
end = len(program)
while i < end:
token = program[i]
i = i + 1
tp = type(token)
if issubclass(tp, basestring):
try:
bytecode.extend(bytechr(b) for b in opcodes[token])
except KeyError:
raise CharStringCompileError("illegal operator: %s" % token)
if token in ('hintmask', 'cntrmask'):
bytecode.append(program[i]) # hint mask
i = i + 1
elif tp == int:
bytecode.append(encodeInt(token))
elif tp == float:
bytecode.append(encodeFixed(token))
else:
assert 0, "unsupported type: %s" % tp
try:
bytecode = bytesjoin(bytecode)
except TypeError:
print(bytecode)
raise
self.setBytecode(bytecode)
def needsDecompilation(self):
return self.bytecode is not None
def setProgram(self, program):
self.program = program
self.bytecode = None
def setBytecode(self, bytecode):
self.bytecode = bytecode
self.program = None
def getToken(self, index,
len=len, byteord=byteord, getattr=getattr, type=type, StringType=str):
if self.bytecode is not None:
if index >= len(self.bytecode):
return None, 0, 0
b0 = byteord(self.bytecode[index])
index = index + 1
code = self.operandEncoding[b0]
handler = getattr(self, code)
token, index = handler(b0, self.bytecode, index)
else:
if index >= len(self.program):
return None, 0, 0
token = self.program[index]
index = index + 1
isOperator = isinstance(token, StringType)
return token, isOperator, index
def getBytes(self, index, nBytes):
if self.bytecode is not None:
newIndex = index + nBytes
bytes = self.bytecode[index:newIndex]
index = newIndex
else:
bytes = self.program[index]
index = index + 1
assert len(bytes) == nBytes
return bytes, index
def do_operator(self, b0, data, index):
if b0 == 12:
op = (b0, byteord(data[index]))
index = index+1
else:
op = b0
operator = self.operators[op]
return operator, index
def toXML(self, xmlWriter):
from fontTools.misc.textTools import num2binary
if self.bytecode is not None:
xmlWriter.dumphex(self.bytecode)
else:
index = 0
args = []
while True:
token, isOperator, index = self.getToken(index)
if token is None:
break
if isOperator:
args = [str(arg) for arg in args]
if token in ('hintmask', 'cntrmask'):
hintMask, isOperator, index = self.getToken(index)
bits = []
for byte in hintMask:
bits.append(num2binary(byteord(byte), 8))
hintMask = strjoin(bits)
line = ' '.join(args + [token, hintMask])
else:
line = ' '.join(args + [token])
xmlWriter.write(line)
xmlWriter.newline()
args = []
else:
args.append(token)
def fromXML(self, name, attrs, content):
from fontTools.misc.textTools import binary2num, readHex
if attrs.get("raw"):
self.setBytecode(readHex(content))
return
content = strjoin(content)
content = content.split()
program = []
end = len(content)
i = 0
while i < end:
token = content[i]
i = i + 1
try:
token = int(token)
except ValueError:
try:
token = float(token)
except ValueError:
program.append(token)
if token in ('hintmask', 'cntrmask'):
mask = content[i]
maskBytes = b""
for j in range(0, len(mask), 8):
maskBytes = maskBytes + bytechr(binary2num(mask[j:j+8]))
program.append(maskBytes)
i = i + 1
else:
program.append(token)
else:
program.append(token)
self.setProgram(program)
t1Operators = [
# opcode name
(1, 'hstem'),
(3, 'vstem'),
(4, 'vmoveto'),
(5, 'rlineto'),
(6, 'hlineto'),
(7, 'vlineto'),
(8, 'rrcurveto'),
(9, 'closepath'),
(10, 'callsubr'),
(11, 'return'),
(13, 'hsbw'),
(14, 'endchar'),
(21, 'rmoveto'),
(22, 'hmoveto'),
(30, 'vhcurveto'),
(31, 'hvcurveto'),
((12, 0), 'dotsection'),
((12, 1), 'vstem3'),
((12, 2), 'hstem3'),
((12, 6), 'seac'),
((12, 7), 'sbw'),
((12, 12), 'div'),
((12, 16), 'callothersubr'),
((12, 17), 'pop'),
((12, 33), 'setcurrentpoint'),
]
class T1CharString(T2CharString):
operandEncoding = t1OperandEncoding
operators, opcodes = buildOperatorDict(t1Operators)
def __init__(self, bytecode=None, program=None, subrs=None):
if program is None:
program = []
self.bytecode = bytecode
self.program = program
self.subrs = subrs
def getIntEncoder(self):
return encodeIntT1
def getFixedEncoder(self):
def encodeFixed(value):
raise TypeError("Type 1 charstrings don't support floating point operands")
def decompile(self):
if self.bytecode is None:
return
program = []
index = 0
while True:
token, isOperator, index = self.getToken(index)
if token is None:
break
program.append(token)
self.setProgram(program)
def draw(self, pen):
extractor = T1OutlineExtractor(pen, self.subrs)
extractor.execute(self)
self.width = extractor.width
class SimpleT2Decompiler(object):
def __init__(self, localSubrs, globalSubrs):
self.localSubrs = localSubrs
self.localBias = calcSubrBias(localSubrs)
self.globalSubrs = globalSubrs
self.globalBias = calcSubrBias(globalSubrs)
self.reset()
def reset(self):
self.callingStack = []
self.operandStack = []
self.hintCount = 0
self.hintMaskBytes = 0
def execute(self, charString):
self.callingStack.append(charString)
needsDecompilation = charString.needsDecompilation()
if needsDecompilation:
program = []
pushToProgram = program.append
else:
pushToProgram = lambda x: None
pushToStack = self.operandStack.append
index = 0
while True:
token, isOperator, index = charString.getToken(index)
if token is None:
break # we're done!
pushToProgram(token)
if isOperator:
handlerName = "op_" + token
if hasattr(self, handlerName):
handler = getattr(self, handlerName)
rv = handler(index)
if rv:
hintMaskBytes, index = rv
pushToProgram(hintMaskBytes)
else:
self.popall()
else:
pushToStack(token)
if needsDecompilation:
assert program, "illegal CharString: decompiled to empty program"
assert program[-1] in ("endchar", "return", "callsubr", "callgsubr",
"seac"), "illegal CharString"
charString.setProgram(program)
del self.callingStack[-1]
def pop(self):
value = self.operandStack[-1]
del self.operandStack[-1]
return value
def popall(self):
stack = self.operandStack[:]
self.operandStack[:] = []
return stack
def push(self, value):
self.operandStack.append(value)
def op_return(self, index):
if self.operandStack:
pass
def op_endchar(self, index):
pass
def op_ignore(self, index):
pass
def op_callsubr(self, index):
subrIndex = self.pop()
subr = self.localSubrs[subrIndex+self.localBias]
self.execute(subr)
def op_callgsubr(self, index):
subrIndex = self.pop()
subr = self.globalSubrs[subrIndex+self.globalBias]
self.execute(subr)
def op_hstem(self, index):
self.countHints()
def op_vstem(self, index):
self.countHints()
def op_hstemhm(self, index):
self.countHints()
def op_vstemhm(self, index):
self.countHints()
def op_hintmask(self, index):
if not self.hintMaskBytes:
self.countHints()
self.hintMaskBytes = (self.hintCount + 7) // 8
hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes)
return hintMaskBytes, index
op_cntrmask = op_hintmask
def countHints(self):
args = self.popall()
self.hintCount = self.hintCount + len(args) // 2
# misc
def op_and(self, index):
raise NotImplementedError
def op_or(self, index):
raise NotImplementedError
def op_not(self, index):
raise NotImplementedError
def op_store(self, index):
raise NotImplementedError
def op_abs(self, index):
raise NotImplementedError
def op_add(self, index):
raise NotImplementedError
def op_sub(self, index):
raise NotImplementedError
def op_div(self, index):
raise NotImplementedError
def op_load(self, index):
raise NotImplementedError
def op_neg(self, index):
raise NotImplementedError
def op_eq(self, index):
raise NotImplementedError
def op_drop(self, index):
raise NotImplementedError
def op_put(self, index):
raise NotImplementedError
def op_get(self, index):
raise NotImplementedError
def op_ifelse(self, index):
raise NotImplementedError
def op_random(self, index):
raise NotImplementedError
def op_mul(self, index):
raise NotImplementedError
def op_sqrt(self, index):
raise NotImplementedError
def op_dup(self, index):
raise NotImplementedError
def op_exch(self, index):
raise NotImplementedError
def op_index(self, index):
raise NotImplementedError
def op_roll(self, index):
raise NotImplementedError
class T2OutlineExtractor(SimpleT2Decompiler):
def __init__(self, pen, localSubrs, globalSubrs, nominalWidthX, defaultWidthX):
SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs)
self.pen = pen
self.nominalWidthX = nominalWidthX
self.defaultWidthX = defaultWidthX
def reset(self):
SimpleT2Decompiler.reset(self)
self.hints = []
self.gotWidth = 0
self.width = 0
self.currentPoint = (0, 0)
self.sawMoveTo = 0
def _nextPoint(self, point):
x, y = self.currentPoint
point = x + point[0], y + point[1]
self.currentPoint = point
return point
def rMoveTo(self, point):
self.pen.moveTo(self._nextPoint(point))
self.sawMoveTo = 1
def rLineTo(self, point):
if not self.sawMoveTo:
self.rMoveTo((0, 0))
self.pen.lineTo(self._nextPoint(point))
def rCurveTo(self, pt1, pt2, pt3):
if not self.sawMoveTo:
self.rMoveTo((0, 0))
nextPoint = self._nextPoint
self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3))
def closePath(self):
if self.sawMoveTo:
self.pen.closePath()
self.sawMoveTo = 0
def endPath(self):
# In T2 there are no open paths, so always do a closePath when
# finishing a sub path.
self.closePath()
def popallWidth(self, evenOdd=0):
args = self.popall()
if not self.gotWidth:
if evenOdd ^ (len(args) % 2):
self.width = self.nominalWidthX + args[0]
args = args[1:]
else:
self.width = self.defaultWidthX
self.gotWidth = 1
return args
def countHints(self):
args = self.popallWidth()
self.hintCount = self.hintCount + len(args) // 2
#
# hint operators
#
#def op_hstem(self, index):
# self.countHints()
#def op_vstem(self, index):
# self.countHints()
#def op_hstemhm(self, index):
# self.countHints()
#def op_vstemhm(self, index):
# self.countHints()
#def op_hintmask(self, index):
# self.countHints()
#def op_cntrmask(self, index):
# self.countHints()
#
# path constructors, moveto
#
def op_rmoveto(self, index):
self.endPath()
self.rMoveTo(self.popallWidth())
def op_hmoveto(self, index):
self.endPath()
self.rMoveTo((self.popallWidth(1)[0], 0))
def op_vmoveto(self, index):
self.endPath()
self.rMoveTo((0, self.popallWidth(1)[0]))
def op_endchar(self, index):
self.endPath()
args = self.popallWidth()
if args:
from fontTools.encodings.StandardEncoding import StandardEncoding
# endchar can do seac accent bulding; The T2 spec says it's deprecated,
# but recent software that shall remain nameless does output it.
adx, ady, bchar, achar = args
baseGlyph = StandardEncoding[bchar]
self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
accentGlyph = StandardEncoding[achar]
self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))
#
# path constructors, lines
#
def op_rlineto(self, index):
args = self.popall()
for i in range(0, len(args), 2):
point = args[i:i+2]
self.rLineTo(point)
def op_hlineto(self, index):
self.alternatingLineto(1)
def op_vlineto(self, index):
self.alternatingLineto(0)
#
# path constructors, curves
#
def op_rrcurveto(self, index):
"""{dxa dya dxb dyb dxc dyc}+ rrcurveto"""
args = self.popall()
for i in range(0, len(args), 6):
dxa, dya, dxb, dyb, dxc, dyc, = args[i:i+6]
self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc))
def op_rcurveline(self, index):
"""{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline"""
args = self.popall()
for i in range(0, len(args)-2, 6):
dxb, dyb, dxc, dyc, dxd, dyd = args[i:i+6]
self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
self.rLineTo(args[-2:])
def op_rlinecurve(self, index):
"""{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve"""
args = self.popall()
lineArgs = args[:-6]
for i in range(0, len(lineArgs), 2):
self.rLineTo(lineArgs[i:i+2])
dxb, dyb, dxc, dyc, dxd, dyd = args[-6:]
self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
def op_vvcurveto(self, index):
"dx1? {dya dxb dyb dyc}+ vvcurveto"
args = self.popall()
if len(args) % 2:
dx1 = args[0]
args = args[1:]
else:
dx1 = 0
for i in range(0, len(args), 4):
dya, dxb, dyb, dyc = args[i:i+4]
self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc))
dx1 = 0
def op_hhcurveto(self, index):
"""dy1? {dxa dxb dyb dxc}+ hhcurveto"""
args = self.popall()
if len(args) % 2:
dy1 = args[0]
args = args[1:]
else:
dy1 = 0
for i in range(0, len(args), 4):
dxa, dxb, dyb, dxc = args[i:i+4]
self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0))
dy1 = 0
def op_vhcurveto(self, index):
"""dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30)
{dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto
"""
args = self.popall()
while args:
args = self.vcurveto(args)
if args:
args = self.hcurveto(args)
def op_hvcurveto(self, index):
"""dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
{dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
"""
args = self.popall()
while args:
args = self.hcurveto(args)
if args:
args = self.vcurveto(args)
#
# path constructors, flex
#
def op_hflex(self, index):
dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall()
dy1 = dy3 = dy4 = dy6 = 0
dy5 = -dy2
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
def op_flex(self, index):
dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall()
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
def op_hflex1(self, index):
dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall()
dy3 = dy4 = 0
dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5)
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
def op_flex1(self, index):
dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall()
dx = dx1 + dx2 + dx3 + dx4 + dx5
dy = dy1 + dy2 + dy3 + dy4 + dy5
if abs(dx) > abs(dy):
dx6 = d6
dy6 = -dy
else:
dx6 = -dx
dy6 = d6
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
#
# MultipleMaster. Well...
#
def op_blend(self, index):
self.popall()
# misc
def op_and(self, index):
raise NotImplementedError
def op_or(self, index):
raise NotImplementedError
def op_not(self, index):
raise NotImplementedError
def op_store(self, index):
raise NotImplementedError
def op_abs(self, index):
raise NotImplementedError
def op_add(self, index):
raise NotImplementedError
def op_sub(self, index):
raise NotImplementedError
def op_div(self, index):
num2 = self.pop()
num1 = self.pop()
d1 = num1//num2
d2 = num1/num2
if d1 == d2:
self.push(d1)
else:
self.push(d2)
def op_load(self, index):
raise NotImplementedError
def op_neg(self, index):
raise NotImplementedError
def op_eq(self, index):
raise NotImplementedError
def op_drop(self, index):
raise NotImplementedError
def op_put(self, index):
raise NotImplementedError
def op_get(self, index):
raise NotImplementedError
def op_ifelse(self, index):
raise NotImplementedError
def op_random(self, index):
raise NotImplementedError
def op_mul(self, index):
raise NotImplementedError
def op_sqrt(self, index):
raise NotImplementedError
def op_dup(self, index):
raise NotImplementedError
def op_exch(self, index):
raise NotImplementedError
def op_index(self, index):
raise NotImplementedError
def op_roll(self, index):
raise NotImplementedError
#
# miscellaneous helpers
#
def alternatingLineto(self, isHorizontal):
args = self.popall()
for arg in args:
if isHorizontal:
point = (arg, 0)
else:
point = (0, arg)
self.rLineTo(point)
isHorizontal = not isHorizontal
def vcurveto(self, args):
dya, dxb, dyb, dxc = args[:4]
args = args[4:]
if len(args) == 1:
dyc = args[0]
args = []
else:
dyc = 0
self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc))
return args
def hcurveto(self, args):
dxa, dxb, dyb, dyc = args[:4]
args = args[4:]
if len(args) == 1:
dxc = args[0]
args = []
else:
dxc = 0
self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc))
return args
class T1OutlineExtractor(T2OutlineExtractor):
def __init__(self, pen, subrs):
self.pen = pen
self.subrs = subrs
self.reset()
def reset(self):
self.flexing = 0
self.width = 0
self.sbx = 0
T2OutlineExtractor.reset(self)
def endPath(self):
if self.sawMoveTo:
self.pen.endPath()
self.sawMoveTo = 0
def popallWidth(self, evenOdd=0):
return self.popall()
def exch(self):
stack = self.operandStack
stack[-1], stack[-2] = stack[-2], stack[-1]
#
# path constructors
#
def op_rmoveto(self, index):
if self.flexing:
return
self.endPath()
self.rMoveTo(self.popall())
def op_hmoveto(self, index):
if self.flexing:
# We must add a parameter to the stack if we are flexing
self.push(0)
return
self.endPath()
self.rMoveTo((self.popall()[0], 0))
def op_vmoveto(self, index):
if self.flexing:
# We must add a parameter to the stack if we are flexing
self.push(0)
self.exch()
return
self.endPath()
self.rMoveTo((0, self.popall()[0]))
def op_closepath(self, index):
self.closePath()
def op_setcurrentpoint(self, index):
args = self.popall()
x, y = args
self.currentPoint = x, y
def op_endchar(self, index):
self.endPath()
def op_hsbw(self, index):
sbx, wx = self.popall()
self.width = wx
self.sbx = sbx
self.currentPoint = sbx, self.currentPoint[1]
def op_sbw(self, index):
self.popall() # XXX
#
def op_callsubr(self, index):
subrIndex = self.pop()
subr = self.subrs[subrIndex]
self.execute(subr)
def op_callothersubr(self, index):
subrIndex = self.pop()
nArgs = self.pop()
#print nArgs, subrIndex, "callothersubr"
if subrIndex == 0 and nArgs == 3:
self.doFlex()
self.flexing = 0
elif subrIndex == 1 and nArgs == 0:
self.flexing = 1
# ignore...
def op_pop(self, index):
pass # ignore...
def doFlex(self):
finaly = self.pop()
finalx = self.pop()
self.pop() # flex height is unused
p3y = self.pop()
p3x = self.pop()
bcp4y = self.pop()
bcp4x = self.pop()
bcp3y = self.pop()
bcp3x = self.pop()
p2y = self.pop()
p2x = self.pop()
bcp2y = self.pop()
bcp2x = self.pop()
bcp1y = self.pop()
bcp1x = self.pop()
rpy = self.pop()
rpx = self.pop()
# call rrcurveto
self.push(bcp1x+rpx)
self.push(bcp1y+rpy)
self.push(bcp2x)
self.push(bcp2y)
self.push(p2x)
self.push(p2y)
self.op_rrcurveto(None)
# call rrcurveto
self.push(bcp3x)
self.push(bcp3y)
self.push(bcp4x)
self.push(bcp4y)
self.push(p3x)
self.push(p3y)
self.op_rrcurveto(None)
# Push back final coords so subr 0 can find them
self.push(finalx)
self.push(finaly)
def op_dotsection(self, index):
self.popall() # XXX
def op_hstem3(self, index):
self.popall() # XXX
def op_seac(self, index):
"asb adx ady bchar achar seac"
from fontTools.encodings.StandardEncoding import StandardEncoding
asb, adx, ady, bchar, achar = self.popall()
baseGlyph = StandardEncoding[bchar]
self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
accentGlyph = StandardEncoding[achar]
adx = adx + self.sbx - asb # seac weirdness
self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))
def op_vstem3(self, index):
self.popall() # XXX
class DictDecompiler(ByteCodeBase):
operandEncoding = cffDictOperandEncoding
def __init__(self, strings):
self.stack = []
self.strings = strings
self.dict = {}
def getDict(self):
assert len(self.stack) == 0, "non-empty stack"
return self.dict
def decompile(self, data):
index = 0
lenData = len(data)
push = self.stack.append
while index < lenData:
b0 = byteord(data[index])
index = index + 1
code = self.operandEncoding[b0]
handler = getattr(self, code)
value, index = handler(b0, data, index)
if value is not None:
push(value)
def pop(self):
value = self.stack[-1]
del self.stack[-1]
return value
def popall(self):
args = self.stack[:]
del self.stack[:]
return args
def do_operator(self, b0, data, index):
if b0 == 12:
op = (b0, byteord(data[index]))
index = index+1
else:
op = b0
operator, argType = self.operators[op]
self.handle_operator(operator, argType)
return None, index
def handle_operator(self, operator, argType):
if isinstance(argType, type(())):
value = ()
for i in range(len(argType)-1, -1, -1):
arg = argType[i]
arghandler = getattr(self, "arg_" + arg)
value = (arghandler(operator),) + value
else:
arghandler = getattr(self, "arg_" + argType)
value = arghandler(operator)
self.dict[operator] = value
def arg_number(self, name):
return self.pop()
def arg_SID(self, name):
return self.strings[self.pop()]
def arg_array(self, name):
return self.popall()
def arg_delta(self, name):
out = []
current = 0
for v in self.popall():
current = current + v
out.append(current)
return out
def calcSubrBias(subrs):
nSubrs = len(subrs)
if nSubrs < 1240:
bias = 107
elif nSubrs < 33900:
bias = 1131
else:
bias = 32768
return bias