/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief glProgramUniform*() tests.
*
* \todo [2013-02-26 nuutti] Much duplication between ES2&3 uniform api
* tests and this. Utilities to glshared?
*//*--------------------------------------------------------------------*/
#include "es31fProgramUniformTests.hpp"
#include "gluCallLogWrapper.hpp"
#include "gluShaderProgram.hpp"
#include "gluVarType.hpp"
#include "gluPixelTransfer.hpp"
#include "gluTextureUtil.hpp"
#include "gluTexture.hpp"
#include "gluDrawUtil.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuTestLog.hpp"
#include "tcuSurface.hpp"
#include "tcuCommandLine.hpp"
#include "deRandom.hpp"
#include "deStringUtil.hpp"
#include "deString.h"
#include "deSharedPtr.hpp"
#include "deMemory.h"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include <set>
#include <cstring>
using namespace glw;
namespace deqp
{
namespace gles31
{
namespace Functional
{
using std::vector;
using std::string;
using tcu::TestLog;
using tcu::ScopedLogSection;
using glu::ShaderProgram;
using glu::StructType;
using de::Random;
using de::SharedPtr;
typedef bool (* dataTypePredicate)(glu::DataType);
enum
{
MAX_RENDER_WIDTH = 32,
MAX_RENDER_HEIGHT = 32,
MAX_NUM_SAMPLER_UNIFORMS = 16
};
static const glu::DataType s_testDataTypes[] =
{
glu::TYPE_FLOAT,
glu::TYPE_FLOAT_VEC2,
glu::TYPE_FLOAT_VEC3,
glu::TYPE_FLOAT_VEC4,
glu::TYPE_FLOAT_MAT2,
glu::TYPE_FLOAT_MAT2X3,
glu::TYPE_FLOAT_MAT2X4,
glu::TYPE_FLOAT_MAT3X2,
glu::TYPE_FLOAT_MAT3,
glu::TYPE_FLOAT_MAT3X4,
glu::TYPE_FLOAT_MAT4X2,
glu::TYPE_FLOAT_MAT4X3,
glu::TYPE_FLOAT_MAT4,
glu::TYPE_INT,
glu::TYPE_INT_VEC2,
glu::TYPE_INT_VEC3,
glu::TYPE_INT_VEC4,
glu::TYPE_UINT,
glu::TYPE_UINT_VEC2,
glu::TYPE_UINT_VEC3,
glu::TYPE_UINT_VEC4,
glu::TYPE_BOOL,
glu::TYPE_BOOL_VEC2,
glu::TYPE_BOOL_VEC3,
glu::TYPE_BOOL_VEC4,
glu::TYPE_SAMPLER_2D,
glu::TYPE_SAMPLER_CUBE
// \note We don't test all sampler types here.
};
static inline int getGLInt (const glw::Functions& funcs, const deUint32 name)
{
int val = -1;
funcs.getIntegerv(name, &val);
return val;
}
static inline tcu::Vec4 vec4FromPtr (const float* const ptr)
{
tcu::Vec4 result;
for (int i = 0; i < 4; i++)
result[i] = ptr[i];
return result;
}
static inline string beforeLast (const string& str, const char c)
{
return str.substr(0, str.find_last_of(c));
}
static inline void fillWithColor (const tcu::PixelBufferAccess& access, const tcu::Vec4& color)
{
for (int z = 0; z < access.getDepth(); z++)
for (int y = 0; y < access.getHeight(); y++)
for (int x = 0; x < access.getWidth(); x++)
access.setPixel(color, x, y, z);
}
static inline int getSamplerNumLookupDimensions (const glu::DataType type)
{
switch (type)
{
case glu::TYPE_SAMPLER_2D:
case glu::TYPE_INT_SAMPLER_2D:
case glu::TYPE_UINT_SAMPLER_2D:
return 2;
case glu::TYPE_SAMPLER_3D:
case glu::TYPE_INT_SAMPLER_3D:
case glu::TYPE_UINT_SAMPLER_3D:
case glu::TYPE_SAMPLER_2D_SHADOW:
case glu::TYPE_SAMPLER_2D_ARRAY:
case glu::TYPE_INT_SAMPLER_2D_ARRAY:
case glu::TYPE_UINT_SAMPLER_2D_ARRAY:
case glu::TYPE_SAMPLER_CUBE:
case glu::TYPE_INT_SAMPLER_CUBE:
case glu::TYPE_UINT_SAMPLER_CUBE:
return 3;
case glu::TYPE_SAMPLER_CUBE_SHADOW:
case glu::TYPE_SAMPLER_2D_ARRAY_SHADOW:
return 4;
default:
DE_ASSERT(false);
return 0;
}
}
static inline glu::DataType getSamplerLookupReturnType (const glu::DataType type)
{
switch (type)
{
case glu::TYPE_SAMPLER_2D:
case glu::TYPE_SAMPLER_CUBE:
case glu::TYPE_SAMPLER_2D_ARRAY:
case glu::TYPE_SAMPLER_3D:
return glu::TYPE_FLOAT_VEC4;
case glu::TYPE_UINT_SAMPLER_2D:
case glu::TYPE_UINT_SAMPLER_CUBE:
case glu::TYPE_UINT_SAMPLER_2D_ARRAY:
case glu::TYPE_UINT_SAMPLER_3D:
return glu::TYPE_UINT_VEC4;
case glu::TYPE_INT_SAMPLER_2D:
case glu::TYPE_INT_SAMPLER_CUBE:
case glu::TYPE_INT_SAMPLER_2D_ARRAY:
case glu::TYPE_INT_SAMPLER_3D:
return glu::TYPE_INT_VEC4;
case glu::TYPE_SAMPLER_2D_SHADOW:
case glu::TYPE_SAMPLER_CUBE_SHADOW:
case glu::TYPE_SAMPLER_2D_ARRAY_SHADOW:
return glu::TYPE_FLOAT;
default:
DE_ASSERT(false);
return glu::TYPE_LAST;
}
}
template<glu::DataType T>
static bool dataTypeEquals (const glu::DataType t)
{
return t == T;
}
template<int N>
static bool dataTypeIsMatrixWithNRows (const glu::DataType t)
{
return glu::isDataTypeMatrix(t) && glu::getDataTypeMatrixNumRows(t) == N;
}
static bool typeContainsMatchingBasicType (const glu::VarType& type, const dataTypePredicate predicate)
{
if (type.isBasicType())
return predicate(type.getBasicType());
else if (type.isArrayType())
return typeContainsMatchingBasicType(type.getElementType(), predicate);
else
{
DE_ASSERT(type.isStructType());
const StructType& structType = *type.getStructPtr();
for (int i = 0; i < structType.getNumMembers(); i++)
if (typeContainsMatchingBasicType(structType.getMember(i).getType(), predicate))
return true;
return false;
}
}
static void getDistinctSamplerTypes (vector<glu::DataType>& dst, const glu::VarType& type)
{
if (type.isBasicType())
{
const glu::DataType basicType = type.getBasicType();
if (glu::isDataTypeSampler(basicType) && std::find(dst.begin(), dst.end(), basicType) == dst.end())
dst.push_back(basicType);
}
else if (type.isArrayType())
getDistinctSamplerTypes(dst, type.getElementType());
else
{
DE_ASSERT(type.isStructType());
const StructType& structType = *type.getStructPtr();
for (int i = 0; i < structType.getNumMembers(); i++)
getDistinctSamplerTypes(dst, structType.getMember(i).getType());
}
}
static int getNumSamplersInType (const glu::VarType& type)
{
if (type.isBasicType())
return glu::isDataTypeSampler(type.getBasicType()) ? 1 : 0;
else if (type.isArrayType())
return getNumSamplersInType(type.getElementType()) * type.getArraySize();
else
{
DE_ASSERT(type.isStructType());
const StructType& structType = *type.getStructPtr();
int sum = 0;
for (int i = 0; i < structType.getNumMembers(); i++)
sum += getNumSamplersInType(structType.getMember(i).getType());
return sum;
}
}
namespace
{
struct VarValue
{
glu::DataType type;
union
{
float floatV[4*4]; // At most mat4. \note Matrices here are column-major.
deInt32 intV[4];
deUint32 uintV[4];
bool boolV[4];
struct
{
int unit;
union
{
float floatV[4];
deInt32 intV[4];
deUint32 uintV[4];
} fillColor;
} samplerV;
} val;
};
enum CaseShaderType
{
CASESHADERTYPE_VERTEX = 0,
CASESHADERTYPE_FRAGMENT,
CASESHADERTYPE_BOTH,
CASESHADERTYPE_LAST
};
struct Uniform
{
string name;
glu::VarType type;
Uniform (const char* const name_, const glu::VarType& type_) : name(name_), type(type_) {}
};
// A set of uniforms, along with related struct types.
class UniformCollection
{
public:
int getNumUniforms (void) const { return (int)m_uniforms.size(); }
int getNumStructTypes (void) const { return (int)m_structTypes.size(); }
Uniform& getUniform (const int ndx) { return m_uniforms[ndx]; }
const Uniform& getUniform (const int ndx) const { return m_uniforms[ndx]; }
const StructType* getStructType (const int ndx) const { return m_structTypes[ndx]; }
void addUniform (const Uniform& uniform) { m_uniforms.push_back(uniform); }
void addStructType (const StructType* const type) { m_structTypes.push_back(type); }
UniformCollection (void) {}
~UniformCollection (void)
{
for (int i = 0; i < (int)m_structTypes.size(); i++)
delete m_structTypes[i];
}
// Add the contents of m_uniforms and m_structTypes to receiver, and remove them from this one.
// \note receiver takes ownership of the struct types.
void moveContents (UniformCollection& receiver)
{
for (int i = 0; i < (int)m_uniforms.size(); i++)
receiver.addUniform(m_uniforms[i]);
m_uniforms.clear();
for (int i = 0; i < (int)m_structTypes.size(); i++)
receiver.addStructType(m_structTypes[i]);
m_structTypes.clear();
}
bool containsMatchingBasicType (const dataTypePredicate predicate) const
{
for (int i = 0; i < (int)m_uniforms.size(); i++)
if (typeContainsMatchingBasicType(m_uniforms[i].type, predicate))
return true;
return false;
}
vector<glu::DataType> getSamplerTypes (void) const
{
vector<glu::DataType> samplerTypes;
for (int i = 0; i < (int)m_uniforms.size(); i++)
getDistinctSamplerTypes(samplerTypes, m_uniforms[i].type);
return samplerTypes;
}
bool containsSeveralSamplerTypes (void) const
{
return getSamplerTypes().size() > 1;
}
int getNumSamplers (void) const
{
int sum = 0;
for (int i = 0; i < (int)m_uniforms.size(); i++)
sum += getNumSamplersInType(m_uniforms[i].type);
return sum;
}
static UniformCollection* basic (const glu::DataType type, const char* const nameSuffix = "")
{
UniformCollection* const res = new UniformCollection;
const glu::Precision prec = glu::isDataTypeBoolOrBVec(type) ? glu::PRECISION_LAST : glu::PRECISION_MEDIUMP;
res->m_uniforms.push_back(Uniform((string("u_var") + nameSuffix).c_str(), glu::VarType(type, prec)));
return res;
}
static UniformCollection* basicArray (const glu::DataType type, const char* const nameSuffix = "")
{
UniformCollection* const res = new UniformCollection;
const glu::Precision prec = glu::isDataTypeBoolOrBVec(type) ? glu::PRECISION_LAST : glu::PRECISION_MEDIUMP;
res->m_uniforms.push_back(Uniform((string("u_var") + nameSuffix).c_str(), glu::VarType(glu::VarType(type, prec), 3)));
return res;
}
static UniformCollection* basicStruct (const glu::DataType type0, const glu::DataType type1, const bool containsArrays, const char* const nameSuffix = "")
{
UniformCollection* const res = new UniformCollection;
const glu::Precision prec0 = glu::isDataTypeBoolOrBVec(type0) ? glu::PRECISION_LAST : glu::PRECISION_MEDIUMP;
const glu::Precision prec1 = glu::isDataTypeBoolOrBVec(type1) ? glu::PRECISION_LAST : glu::PRECISION_MEDIUMP;
StructType* const structType = new StructType((string("structType") + nameSuffix).c_str());
structType->addMember("m0", glu::VarType(type0, prec0));
structType->addMember("m1", glu::VarType(type1, prec1));
if (containsArrays)
{
structType->addMember("m2", glu::VarType(glu::VarType(type0, prec0), 3));
structType->addMember("m3", glu::VarType(glu::VarType(type1, prec1), 3));
}
res->addStructType(structType);
res->addUniform(Uniform((string("u_var") + nameSuffix).c_str(), glu::VarType(structType)));
return res;
}
static UniformCollection* structInArray (const glu::DataType type0, const glu::DataType type1, const bool containsArrays, const char* const nameSuffix = "")
{
UniformCollection* const res = basicStruct(type0, type1, containsArrays, nameSuffix);
res->getUniform(0).type = glu::VarType(res->getUniform(0).type, 3);
return res;
}
static UniformCollection* nestedArraysStructs (const glu::DataType type0, const glu::DataType type1, const char* const nameSuffix = "")
{
UniformCollection* const res = new UniformCollection;
const glu::Precision prec0 = glu::isDataTypeBoolOrBVec(type0) ? glu::PRECISION_LAST : glu::PRECISION_MEDIUMP;
const glu::Precision prec1 = glu::isDataTypeBoolOrBVec(type1) ? glu::PRECISION_LAST : glu::PRECISION_MEDIUMP;
StructType* const structType = new StructType((string("structType") + nameSuffix).c_str());
StructType* const subStructType = new StructType((string("subStructType") + nameSuffix).c_str());
StructType* const subSubStructType = new StructType((string("subSubStructType") + nameSuffix).c_str());
subSubStructType->addMember("mss0", glu::VarType(type0, prec0));
subSubStructType->addMember("mss1", glu::VarType(type1, prec1));
subStructType->addMember("ms0", glu::VarType(type1, prec1));
subStructType->addMember("ms1", glu::VarType(glu::VarType(type0, prec0), 2));
subStructType->addMember("ms2", glu::VarType(glu::VarType(subSubStructType), 2));
structType->addMember("m0", glu::VarType(type0, prec0));
structType->addMember("m1", glu::VarType(subStructType));
structType->addMember("m2", glu::VarType(type1, prec1));
res->addStructType(subSubStructType);
res->addStructType(subStructType);
res->addStructType(structType);
res->addUniform(Uniform((string("u_var") + nameSuffix).c_str(), glu::VarType(structType)));
return res;
}
static UniformCollection* multipleBasic (const char* const nameSuffix = "")
{
static const glu::DataType types[] = { glu::TYPE_FLOAT, glu::TYPE_INT_VEC3, glu::TYPE_UINT_VEC4, glu::TYPE_FLOAT_MAT3, glu::TYPE_BOOL_VEC2 };
UniformCollection* const res = new UniformCollection;
for (int i = 0; i < DE_LENGTH_OF_ARRAY(types); i++)
{
UniformCollection* const sub = basic(types[i], ("_" + de::toString(i) + nameSuffix).c_str());
sub->moveContents(*res);
delete sub;
}
return res;
}
static UniformCollection* multipleBasicArray (const char* const nameSuffix = "")
{
static const glu::DataType types[] = { glu::TYPE_FLOAT, glu::TYPE_INT_VEC3, glu::TYPE_BOOL_VEC2 };
UniformCollection* const res = new UniformCollection;
for (int i = 0; i < DE_LENGTH_OF_ARRAY(types); i++)
{
UniformCollection* const sub = basicArray(types[i], ("_" + de::toString(i) + nameSuffix).c_str());
sub->moveContents(*res);
delete sub;
}
return res;
}
static UniformCollection* multipleNestedArraysStructs (const char* const nameSuffix = "")
{
static const glu::DataType types0[] = { glu::TYPE_FLOAT, glu::TYPE_INT, glu::TYPE_BOOL_VEC4 };
static const glu::DataType types1[] = { glu::TYPE_FLOAT_VEC4, glu::TYPE_INT_VEC4, glu::TYPE_BOOL };
UniformCollection* const res = new UniformCollection;
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(types0) == DE_LENGTH_OF_ARRAY(types1));
for (int i = 0; i < DE_LENGTH_OF_ARRAY(types0); i++)
{
UniformCollection* const sub = nestedArraysStructs(types0[i], types1[i], ("_" + de::toString(i) + nameSuffix).c_str());
sub->moveContents(*res);
delete sub;
}
return res;
}
private:
// \note Copying these would be cumbersome, since deep-copying both m_uniforms and m_structTypes
// would mean that we'd need to update pointers from uniforms to point to the new structTypes.
// When the same UniformCollection is needed in several places, a SharedPtr is used instead.
UniformCollection (const UniformCollection&); // Not allowed.
UniformCollection& operator= (const UniformCollection&); // Not allowed.
vector<Uniform> m_uniforms;
vector<const StructType*> m_structTypes;
};
}; // anonymous
static VarValue getSamplerFillValue (const VarValue& sampler)
{
DE_ASSERT(glu::isDataTypeSampler(sampler.type));
VarValue result;
result.type = getSamplerLookupReturnType(sampler.type);
switch (result.type)
{
case glu::TYPE_FLOAT_VEC4:
for (int i = 0; i < 4; i++)
result.val.floatV[i] = sampler.val.samplerV.fillColor.floatV[i];
break;
case glu::TYPE_UINT_VEC4:
for (int i = 0; i < 4; i++)
result.val.uintV[i] = sampler.val.samplerV.fillColor.uintV[i];
break;
case glu::TYPE_INT_VEC4:
for (int i = 0; i < 4; i++)
result.val.intV[i] = sampler.val.samplerV.fillColor.intV[i];
break;
case glu::TYPE_FLOAT:
result.val.floatV[0] = sampler.val.samplerV.fillColor.floatV[0];
break;
default:
DE_ASSERT(false);
}
return result;
}
static VarValue getSamplerUnitValue (const VarValue& sampler)
{
DE_ASSERT(glu::isDataTypeSampler(sampler.type));
VarValue result;
result.type = glu::TYPE_INT;
result.val.intV[0] = sampler.val.samplerV.unit;
return result;
}
static glu::DataType getDataTypeTransposedMatrix (const glu::DataType original)
{
return glu::getDataTypeMatrix(glu::getDataTypeMatrixNumRows(original), glu::getDataTypeMatrixNumColumns(original));
}
static VarValue getTransposeMatrix (const VarValue& original)
{
DE_ASSERT(glu::isDataTypeMatrix(original.type));
const int rows = glu::getDataTypeMatrixNumRows(original.type);
const int cols = glu::getDataTypeMatrixNumColumns(original.type);
VarValue result;
result.type = getDataTypeTransposedMatrix(original.type);
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
result.val.floatV[i*cols + j] = original.val.floatV[j*rows + i];
return result;
}
static string shaderVarValueStr (const VarValue& value)
{
const int numElems = glu::getDataTypeScalarSize(value.type);
std::ostringstream result;
if (numElems > 1)
result << glu::getDataTypeName(value.type) << "(";
for (int i = 0; i < numElems; i++)
{
if (i > 0)
result << ", ";
if (glu::isDataTypeFloatOrVec(value.type) || glu::isDataTypeMatrix(value.type))
result << de::floatToString(value.val.floatV[i], 2);
else if (glu::isDataTypeIntOrIVec((value.type)))
result << de::toString(value.val.intV[i]);
else if (glu::isDataTypeUintOrUVec((value.type)))
result << de::toString(value.val.uintV[i]) << "u";
else if (glu::isDataTypeBoolOrBVec((value.type)))
result << (value.val.boolV[i] ? "true" : "false");
else if (glu::isDataTypeSampler((value.type)))
result << shaderVarValueStr(getSamplerFillValue(value));
else
DE_ASSERT(false);
}
if (numElems > 1)
result << ")";
return result.str();
}
static string apiVarValueStr (const VarValue& value)
{
const int numElems = glu::getDataTypeScalarSize(value.type);
std::ostringstream result;
if (numElems > 1)
result << "(";
for (int i = 0; i < numElems; i++)
{
if (i > 0)
result << ", ";
if (glu::isDataTypeFloatOrVec(value.type) || glu::isDataTypeMatrix(value.type))
result << de::floatToString(value.val.floatV[i], 2);
else if (glu::isDataTypeIntOrIVec((value.type)))
result << de::toString(value.val.intV[i]);
else if (glu::isDataTypeUintOrUVec((value.type)))
result << de::toString(value.val.uintV[i]);
else if (glu::isDataTypeBoolOrBVec((value.type)))
result << (value.val.boolV[i] ? "true" : "false");
else if (glu::isDataTypeSampler((value.type)))
result << value.val.samplerV.unit;
else
DE_ASSERT(false);
}
if (numElems > 1)
result << ")";
return result.str();
}
static VarValue generateRandomVarValue (const glu::DataType type, Random& rnd, int samplerUnit = -1 /* Used if type is a sampler type. \note Samplers' unit numbers are not randomized. */)
{
const int numElems = glu::getDataTypeScalarSize(type);
VarValue result;
result.type = type;
DE_ASSERT((samplerUnit >= 0) == (glu::isDataTypeSampler(type)));
if (glu::isDataTypeFloatOrVec(type) || glu::isDataTypeMatrix(type))
{
for (int i = 0; i < numElems; i++)
result.val.floatV[i] = rnd.getFloat(-10.0f, 10.0f);
}
else if (glu::isDataTypeIntOrIVec(type))
{
for (int i = 0; i < numElems; i++)
result.val.intV[i] = rnd.getInt(-10, 10);
}
else if (glu::isDataTypeUintOrUVec(type))
{
for (int i = 0; i < numElems; i++)
result.val.uintV[i] = (deUint32)rnd.getInt(0, 10);
}
else if (glu::isDataTypeBoolOrBVec(type))
{
for (int i = 0; i < numElems; i++)
result.val.boolV[i] = rnd.getBool();
}
else if (glu::isDataTypeSampler(type))
{
const glu::DataType texResultType = getSamplerLookupReturnType(type);
const glu::DataType texResultScalarType = glu::getDataTypeScalarType(texResultType);
const int texResultNumDims = glu::getDataTypeScalarSize(texResultType);
result.val.samplerV.unit = samplerUnit;
for (int i = 0; i < texResultNumDims; i++)
{
switch (texResultScalarType)
{
case glu::TYPE_FLOAT: result.val.samplerV.fillColor.floatV[i] = rnd.getFloat(0.0f, 1.0f); break;
case glu::TYPE_INT: result.val.samplerV.fillColor.intV[i] = rnd.getInt(-10, 10); break;
case glu::TYPE_UINT: result.val.samplerV.fillColor.uintV[i] = (deUint32)rnd.getInt(0, 10); break;
default:
DE_ASSERT(false);
}
}
}
else
DE_ASSERT(false);
return result;
}
static bool apiVarValueEquals (const VarValue& a, const VarValue& b)
{
const int size = glu::getDataTypeScalarSize(a.type);
const float floatThreshold = 0.05f;
DE_ASSERT(a.type == b.type);
if (glu::isDataTypeFloatOrVec(a.type) || glu::isDataTypeMatrix(a.type))
{
for (int i = 0; i < size; i++)
if (de::abs(a.val.floatV[i] - b.val.floatV[i]) >= floatThreshold)
return false;
}
else if (glu::isDataTypeIntOrIVec(a.type))
{
for (int i = 0; i < size; i++)
if (a.val.intV[i] != b.val.intV[i])
return false;
}
else if (glu::isDataTypeUintOrUVec(a.type))
{
for (int i = 0; i < size; i++)
if (a.val.uintV[i] != b.val.uintV[i])
return false;
}
else if (glu::isDataTypeBoolOrBVec(a.type))
{
for (int i = 0; i < size; i++)
if (a.val.boolV[i] != b.val.boolV[i])
return false;
}
else if (glu::isDataTypeSampler(a.type))
{
if (a.val.samplerV.unit != b.val.samplerV.unit)
return false;
}
else
DE_ASSERT(false);
return true;
}
static VarValue getRandomBoolRepresentation (const VarValue& boolValue, const glu::DataType targetScalarType, Random& rnd)
{
DE_ASSERT(glu::isDataTypeBoolOrBVec(boolValue.type));
const int size = glu::getDataTypeScalarSize(boolValue.type);
const glu::DataType targetType = size == 1 ? targetScalarType : glu::getDataTypeVector(targetScalarType, size);
VarValue result;
result.type = targetType;
switch (targetScalarType)
{
case glu::TYPE_INT:
for (int i = 0; i < size; i++)
{
if (boolValue.val.boolV[i])
{
result.val.intV[i] = rnd.getInt(-10, 10);
if (result.val.intV[i] == 0)
result.val.intV[i] = 1;
}
else
result.val.intV[i] = 0;
}
break;
case glu::TYPE_UINT:
for (int i = 0; i < size; i++)
{
if (boolValue.val.boolV[i])
result.val.uintV[i] = rnd.getInt(1, 10);
else
result.val.uintV[i] = 0;
}
break;
case glu::TYPE_FLOAT:
for (int i = 0; i < size; i++)
{
if (boolValue.val.boolV[i])
{
result.val.floatV[i] = rnd.getFloat(-10.0f, 10.0f);
if (result.val.floatV[i] == 0.0f)
result.val.floatV[i] = 1.0f;
}
else
result.val.floatV[i] = 0;
}
break;
default:
DE_ASSERT(false);
}
return result;
}
static const char* getCaseShaderTypeName (const CaseShaderType type)
{
switch (type)
{
case CASESHADERTYPE_VERTEX: return "vertex";
case CASESHADERTYPE_FRAGMENT: return "fragment";
case CASESHADERTYPE_BOTH: return "both";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
class UniformCase : public TestCase, protected glu::CallLogWrapper
{
public:
enum Feature
{
// ARRAYUSAGE_ONLY_MIDDLE_INDEX: only middle index of each array is used in shader. If not given, use all indices.
FEATURE_ARRAYUSAGE_ONLY_MIDDLE_INDEX = 1<<0,
// UNIFORMFUNC_VALUE: use pass-by-value versions of uniform assignment funcs, e.g. glProgramUniform1f(), where possible. If not given, use pass-by-pointer versions.
FEATURE_UNIFORMFUNC_VALUE = 1<<1,
// MATRIXMODE_ROWMAJOR: pass matrices to GL in row major form. If not given, use column major.
FEATURE_MATRIXMODE_ROWMAJOR = 1<<2,
// ARRAYASSIGN: how basic-type arrays are assigned with glProgramUniform*(). If none given, assign each element of an array separately.
FEATURE_ARRAYASSIGN_FULL = 1<<3, //!< Assign all elements of an array with one glProgramUniform*().
FEATURE_ARRAYASSIGN_BLOCKS_OF_TWO = 1<<4, //!< Assign two elements per one glProgramUniform*().
// UNIFORMUSAGE_EVERY_OTHER: use about half of the uniforms. If not given, use all uniforms (except that some array indices may be omitted according to ARRAYUSAGE).
FEATURE_UNIFORMUSAGE_EVERY_OTHER = 1<<5,
// BOOLEANAPITYPE: type used to pass booleans to and from GL api. If none given, use float.
FEATURE_BOOLEANAPITYPE_INT = 1<<6,
FEATURE_BOOLEANAPITYPE_UINT = 1<<7,
// ARRAY_FIRST_ELEM_NAME_NO_INDEX: in certain API functions, when referring to the first element of an array, use just the array name without [0] at the end.
FEATURE_ARRAY_FIRST_ELEM_NAME_NO_INDEX = 1<<8
};
UniformCase (Context& context, const char* name, const char* description, CaseShaderType caseType, const SharedPtr<const UniformCollection>& uniformCollection);
UniformCase (Context& context, const char* name, const char* description, CaseShaderType caseType, const SharedPtr<const UniformCollection>& uniformCollection, deUint32 features);
virtual ~UniformCase (void);
virtual void init (void);
virtual void deinit (void);
IterateResult iterate (void);
protected:
// A basic uniform is a uniform (possibly struct or array member) whose type is a basic type (e.g. float, ivec4, sampler2d).
struct BasicUniform
{
string name;
glu::DataType type;
bool isUsedInShader;
VarValue finalValue; //!< The value we ultimately want to set for this uniform.
string rootName; //!< If this is a member of a basic-typed array, rootName is the name of that array with "[0]" appended. Otherwise it equals name.
int elemNdx; //!< If this is a member of a basic-typed array, elemNdx is the index in that array. Otherwise -1.
int rootSize; //!< If this is a member of a basic-typed array, rootSize is the size of that array. Otherwise 1.
BasicUniform (const char* const name_,
const glu::DataType type_,
const bool isUsedInShader_,
const VarValue& finalValue_,
const char* const rootName_ = DE_NULL,
const int elemNdx_ = -1,
const int rootSize_ = 1)
: name (name_)
, type (type_)
, isUsedInShader (isUsedInShader_)
, finalValue (finalValue_)
, rootName (rootName_ == DE_NULL ? name_ : rootName_)
, elemNdx (elemNdx_)
, rootSize (rootSize_)
{
}
static vector<BasicUniform>::const_iterator findWithName (const vector<BasicUniform>& vec, const char* const name)
{
for (vector<BasicUniform>::const_iterator it = vec.begin(); it != vec.end(); it++)
{
if (it->name == name)
return it;
}
return vec.end();
}
};
// Reference values for info that is expected to be reported by glGetActiveUniform() or glGetActiveUniformsiv().
struct BasicUniformReportRef
{
string name;
// \note minSize and maxSize are for arrays and can be distinct since implementations are allowed, but not required, to trim the inactive end indices of arrays.
int minSize;
int maxSize;
glu::DataType type;
bool isUsedInShader;
BasicUniformReportRef (const char* const name_, const int minS, const int maxS, const glu::DataType type_, const bool used)
: name(name_), minSize(minS), maxSize(maxS), type(type_), isUsedInShader(used) { DE_ASSERT(minSize <= maxSize); }
BasicUniformReportRef (const char* const name_, const glu::DataType type_, const bool used)
: name(name_), minSize(1), maxSize(1), type(type_), isUsedInShader(used) {}
};
// Get uniform values with glGetUniform*() and put to valuesDst. Uniforms that get -1 from glGetUniformLocation() get glu::TYPE_INVALID.
bool getUniforms (vector<VarValue>& valuesDst, const vector<BasicUniform>& basicUniforms, deUint32 programGL);
// Assign the basicUniforms[].finalValue values for uniforms. \note rnd parameter is for booleans (true can be any nonzero value).
void assignUniforms (const vector<BasicUniform>& basicUniforms, deUint32 programGL, Random& rnd);
// Compare the uniform values given in values (obtained with glGetUniform*()) with the basicUniform.finalValue values.
bool compareUniformValues (const vector<VarValue>& values, const vector<BasicUniform>& basicUniforms);
// Render and check that all pixels are green (i.e. all uniform comparisons passed).
bool renderTest (const vector<BasicUniform>& basicUniforms, const ShaderProgram& program, Random& rnd);
virtual bool test (const vector<BasicUniform>& basicUniforms, const vector<BasicUniformReportRef>& basicUniformReportsRef, const ShaderProgram& program, Random& rnd) = 0;
const deUint32 m_features;
const SharedPtr<const UniformCollection> m_uniformCollection;
private:
// Generates the basic uniforms, based on the uniform with name varName and type varType, in the same manner as are expected
// to be returned by glGetActiveUniform(), e.g. generates a name like var[0] for arrays, and recursively generates struct member names.
void generateBasicUniforms (vector<BasicUniform>& basicUniformsDst,
vector<BasicUniformReportRef>& basicUniformReportsDst,
const glu::VarType& varType,
const char* varName,
bool isParentActive,
int& samplerUnitCounter,
Random& rnd) const;
void writeUniformDefinitions (std::ostringstream& dst) const;
void writeUniformCompareExpr (std::ostringstream& dst, const BasicUniform& uniform) const;
void writeUniformComparisons (std::ostringstream& dst, const vector<BasicUniform>& basicUniforms, const char* variableName) const;
string generateVertexSource (const vector<BasicUniform>& basicUniforms) const;
string generateFragmentSource (const vector<BasicUniform>& basicUniforms) const;
void setupTexture (const VarValue& value);
const CaseShaderType m_caseShaderType;
vector<glu::Texture2D*> m_textures2d;
vector<glu::TextureCube*> m_texturesCube;
vector<deUint32> m_filledTextureUnits;
};
UniformCase::UniformCase (Context& context, const char* const name, const char* const description, const CaseShaderType caseShaderType, const SharedPtr<const UniformCollection>& uniformCollection, const deUint32 features)
: TestCase (context, name, description)
, CallLogWrapper (context.getRenderContext().getFunctions(), m_testCtx.getLog())
, m_features (features)
, m_uniformCollection (uniformCollection)
, m_caseShaderType (caseShaderType)
{
}
UniformCase::UniformCase (Context& context, const char* const name, const char* const description, const CaseShaderType caseShaderType, const SharedPtr<const UniformCollection>& uniformCollection)
: TestCase (context, name, description)
, CallLogWrapper (context.getRenderContext().getFunctions(), m_testCtx.getLog())
, m_features (0)
, m_uniformCollection (uniformCollection)
, m_caseShaderType (caseShaderType)
{
}
void UniformCase::init (void)
{
{
const glw::Functions& funcs = m_context.getRenderContext().getFunctions();
const int numSamplerUniforms = m_uniformCollection->getNumSamplers();
const int vertexTexUnitsRequired = m_caseShaderType != CASESHADERTYPE_FRAGMENT ? numSamplerUniforms : 0;
const int fragmentTexUnitsRequired = m_caseShaderType != CASESHADERTYPE_VERTEX ? numSamplerUniforms : 0;
const int combinedTexUnitsRequired = vertexTexUnitsRequired + fragmentTexUnitsRequired;
const int vertexTexUnitsSupported = getGLInt(funcs, GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS);
const int fragmentTexUnitsSupported = getGLInt(funcs, GL_MAX_TEXTURE_IMAGE_UNITS);
const int combinedTexUnitsSupported = getGLInt(funcs, GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS);
DE_ASSERT(numSamplerUniforms <= MAX_NUM_SAMPLER_UNIFORMS);
if (vertexTexUnitsRequired > vertexTexUnitsSupported)
throw tcu::NotSupportedError(de::toString(vertexTexUnitsRequired) + " vertex texture units required, " + de::toString(vertexTexUnitsSupported) + " supported");
if (fragmentTexUnitsRequired > fragmentTexUnitsSupported)
throw tcu::NotSupportedError(de::toString(fragmentTexUnitsRequired) + " fragment texture units required, " + de::toString(fragmentTexUnitsSupported) + " supported");
if (combinedTexUnitsRequired > combinedTexUnitsSupported)
throw tcu::NotSupportedError(de::toString(combinedTexUnitsRequired) + " combined texture units required, " + de::toString(combinedTexUnitsSupported) + " supported");
}
enableLogging(true);
}
void UniformCase::deinit (void)
{
for (int i = 0; i < (int)m_textures2d.size(); i++)
delete m_textures2d[i];
m_textures2d.clear();
for (int i = 0; i < (int)m_texturesCube.size(); i++)
delete m_texturesCube[i];
m_texturesCube.clear();
m_filledTextureUnits.clear();
}
UniformCase::~UniformCase (void)
{
UniformCase::deinit();
}
void UniformCase::generateBasicUniforms (vector<BasicUniform>& basicUniformsDst, vector<BasicUniformReportRef>& basicUniformReportsDst, const glu::VarType& varType, const char* const varName, const bool isParentActive, int& samplerUnitCounter, Random& rnd) const
{
if (varType.isBasicType())
{
const bool isActive = isParentActive && (m_features & FEATURE_UNIFORMUSAGE_EVERY_OTHER ? basicUniformsDst.size() % 2 == 0 : true);
const glu::DataType type = varType.getBasicType();
const VarValue value = glu::isDataTypeSampler(type) ? generateRandomVarValue(type, rnd, samplerUnitCounter++)
: generateRandomVarValue(varType.getBasicType(), rnd);
basicUniformsDst.push_back(BasicUniform(varName, varType.getBasicType(), isActive, value));
basicUniformReportsDst.push_back(BasicUniformReportRef(varName, varType.getBasicType(), isActive));
}
else if (varType.isArrayType())
{
const int size = varType.getArraySize();
const string arrayRootName = string("") + varName + "[0]";
vector<bool> isElemActive;
for (int elemNdx = 0; elemNdx < varType.getArraySize(); elemNdx++)
{
const string indexedName = string("") + varName + "[" + de::toString(elemNdx) + "]";
const bool isCurElemActive = isParentActive &&
(m_features & FEATURE_UNIFORMUSAGE_EVERY_OTHER ? basicUniformsDst.size() % 2 == 0 : true) &&
(m_features & FEATURE_ARRAYUSAGE_ONLY_MIDDLE_INDEX ? elemNdx == size/2 : true);
isElemActive.push_back(isCurElemActive);
if (varType.getElementType().isBasicType())
{
// \note We don't want separate entries in basicUniformReportsDst for elements of basic-type arrays.
const glu::DataType elemBasicType = varType.getElementType().getBasicType();
const VarValue value = glu::isDataTypeSampler(elemBasicType) ? generateRandomVarValue(elemBasicType, rnd, samplerUnitCounter++)
: generateRandomVarValue(elemBasicType, rnd);
basicUniformsDst.push_back(BasicUniform(indexedName.c_str(), elemBasicType, isCurElemActive, value, arrayRootName.c_str(), elemNdx, size));
}
else
generateBasicUniforms(basicUniformsDst, basicUniformReportsDst, varType.getElementType(), indexedName.c_str(), isCurElemActive, samplerUnitCounter, rnd);
}
if (varType.getElementType().isBasicType())
{
int minSize;
for (minSize = varType.getArraySize(); minSize > 0 && !isElemActive[minSize-1]; minSize--);
basicUniformReportsDst.push_back(BasicUniformReportRef(arrayRootName.c_str(), minSize, size, varType.getElementType().getBasicType(), isParentActive && minSize > 0));
}
}
else
{
DE_ASSERT(varType.isStructType());
const StructType& structType = *varType.getStructPtr();
for (int i = 0; i < structType.getNumMembers(); i++)
{
const glu::StructMember& member = structType.getMember(i);
const string memberFullName = string("") + varName + "." + member.getName();
generateBasicUniforms(basicUniformsDst, basicUniformReportsDst, member.getType(), memberFullName.c_str(), isParentActive, samplerUnitCounter, rnd);
}
}
}
void UniformCase::writeUniformDefinitions (std::ostringstream& dst) const
{
for (int i = 0; i < (int)m_uniformCollection->getNumStructTypes(); i++)
dst << glu::declare(m_uniformCollection->getStructType(i)) << ";\n";
for (int i = 0; i < (int)m_uniformCollection->getNumUniforms(); i++)
dst << "uniform " << glu::declare(m_uniformCollection->getUniform(i).type, m_uniformCollection->getUniform(i).name.c_str()) << ";\n";
dst << "\n";
{
static const struct
{
dataTypePredicate requiringTypes[2];
const char* definition;
} compareFuncs[] =
{
{ { glu::isDataTypeFloatOrVec, glu::isDataTypeMatrix }, "mediump float compare_float (mediump float a, mediump float b) { return abs(a - b) < 0.05 ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_VEC2>, dataTypeIsMatrixWithNRows<2> }, "mediump float compare_vec2 (mediump vec2 a, mediump vec2 b) { return compare_float(a.x, b.x)*compare_float(a.y, b.y); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_VEC3>, dataTypeIsMatrixWithNRows<3> }, "mediump float compare_vec3 (mediump vec3 a, mediump vec3 b) { return compare_float(a.x, b.x)*compare_float(a.y, b.y)*compare_float(a.z, b.z); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_VEC4>, dataTypeIsMatrixWithNRows<4> }, "mediump float compare_vec4 (mediump vec4 a, mediump vec4 b) { return compare_float(a.x, b.x)*compare_float(a.y, b.y)*compare_float(a.z, b.z)*compare_float(a.w, b.w); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT2>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat2 (mediump mat2 a, mediump mat2 b) { return compare_vec2(a[0], b[0])*compare_vec2(a[1], b[1]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT2X3>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat2x3 (mediump mat2x3 a, mediump mat2x3 b){ return compare_vec3(a[0], b[0])*compare_vec3(a[1], b[1]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT2X4>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat2x4 (mediump mat2x4 a, mediump mat2x4 b){ return compare_vec4(a[0], b[0])*compare_vec4(a[1], b[1]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT3X2>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat3x2 (mediump mat3x2 a, mediump mat3x2 b){ return compare_vec2(a[0], b[0])*compare_vec2(a[1], b[1])*compare_vec2(a[2], b[2]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT3>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat3 (mediump mat3 a, mediump mat3 b) { return compare_vec3(a[0], b[0])*compare_vec3(a[1], b[1])*compare_vec3(a[2], b[2]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT3X4>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat3x4 (mediump mat3x4 a, mediump mat3x4 b){ return compare_vec4(a[0], b[0])*compare_vec4(a[1], b[1])*compare_vec4(a[2], b[2]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT4X2>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat4x2 (mediump mat4x2 a, mediump mat4x2 b){ return compare_vec2(a[0], b[0])*compare_vec2(a[1], b[1])*compare_vec2(a[2], b[2])*compare_vec2(a[3], b[3]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT4X3>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat4x3 (mediump mat4x3 a, mediump mat4x3 b){ return compare_vec3(a[0], b[0])*compare_vec3(a[1], b[1])*compare_vec3(a[2], b[2])*compare_vec3(a[3], b[3]); }" },
{ { dataTypeEquals<glu::TYPE_FLOAT_MAT4>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_mat4 (mediump mat4 a, mediump mat4 b) { return compare_vec4(a[0], b[0])*compare_vec4(a[1], b[1])*compare_vec4(a[2], b[2])*compare_vec4(a[3], b[3]); }" },
{ { dataTypeEquals<glu::TYPE_INT>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_int (mediump int a, mediump int b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_INT_VEC2>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_ivec2 (mediump ivec2 a, mediump ivec2 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_INT_VEC3>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_ivec3 (mediump ivec3 a, mediump ivec3 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_INT_VEC4>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_ivec4 (mediump ivec4 a, mediump ivec4 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_UINT>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_uint (mediump uint a, mediump uint b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_UINT_VEC2>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_uvec2 (mediump uvec2 a, mediump uvec2 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_UINT_VEC3>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_uvec3 (mediump uvec3 a, mediump uvec3 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_UINT_VEC4>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_uvec4 (mediump uvec4 a, mediump uvec4 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_BOOL>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_bool (bool a, bool b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_BOOL_VEC2>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_bvec2 (bvec2 a, bvec2 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_BOOL_VEC3>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_bvec3 (bvec3 a, bvec3 b) { return a == b ? 1.0 : 0.0; }" },
{ { dataTypeEquals<glu::TYPE_BOOL_VEC4>, dataTypeEquals<glu::TYPE_INVALID> }, "mediump float compare_bvec4 (bvec4 a, bvec4 b) { return a == b ? 1.0 : 0.0; }" }
};
const vector<glu::DataType> samplerTypes = m_uniformCollection->getSamplerTypes();
for (int compFuncNdx = 0; compFuncNdx < DE_LENGTH_OF_ARRAY(compareFuncs); compFuncNdx++)
{
const dataTypePredicate (&typeReq)[2] = compareFuncs[compFuncNdx].requiringTypes;
bool containsTypeSampler = false;
for (int i = 0; i < (int)samplerTypes.size(); i++)
{
if (glu::isDataTypeSampler(samplerTypes[i]))
{
const glu::DataType retType = getSamplerLookupReturnType(samplerTypes[i]);
if (typeReq[0](retType) || typeReq[1](retType))
{
containsTypeSampler = true;
break;
}
}
}
if (containsTypeSampler || m_uniformCollection->containsMatchingBasicType(typeReq[0]) || m_uniformCollection->containsMatchingBasicType(typeReq[1]))
dst << compareFuncs[compFuncNdx].definition << "\n";
}
}
}
void UniformCase::writeUniformCompareExpr (std::ostringstream& dst, const BasicUniform& uniform) const
{
if (glu::isDataTypeSampler(uniform.type))
dst << "compare_" << glu::getDataTypeName(getSamplerLookupReturnType(uniform.type)) << "(texture(" << uniform.name << ", vec" << getSamplerNumLookupDimensions(uniform.type) << "(0.0))";
else
dst << "compare_" << glu::getDataTypeName(uniform.type) << "(" << uniform.name;
dst << ", " << shaderVarValueStr(uniform.finalValue) << ")";
}
void UniformCase::writeUniformComparisons (std::ostringstream& dst, const vector<BasicUniform>& basicUniforms, const char* const variableName) const
{
for (int i = 0; i < (int)basicUniforms.size(); i++)
{
const BasicUniform& unif = basicUniforms[i];
if (unif.isUsedInShader)
{
dst << "\t" << variableName << " *= ";
writeUniformCompareExpr(dst, basicUniforms[i]);
dst << ";\n";
}
else
dst << "\t// UNUSED: " << basicUniforms[i].name << "\n";
}
}
string UniformCase::generateVertexSource (const vector<BasicUniform>& basicUniforms) const
{
const bool isVertexCase = m_caseShaderType == CASESHADERTYPE_VERTEX || m_caseShaderType == CASESHADERTYPE_BOTH;
std::ostringstream result;
result << "#version 310 es\n"
"in highp vec4 a_position;\n"
"out mediump float v_vtxOut;\n"
"\n";
if (isVertexCase)
writeUniformDefinitions(result);
result << "\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_vtxOut = 1.0;\n";
if (isVertexCase)
writeUniformComparisons(result, basicUniforms, "v_vtxOut");
result << "}\n";
return result.str();
}
string UniformCase::generateFragmentSource (const vector<BasicUniform>& basicUniforms) const
{
const bool isFragmentCase = m_caseShaderType == CASESHADERTYPE_FRAGMENT || m_caseShaderType == CASESHADERTYPE_BOTH;
std::ostringstream result;
result << "#version 310 es\n"
"in mediump float v_vtxOut;\n"
"\n";
if (isFragmentCase)
writeUniformDefinitions(result);
result << "\n"
"layout(location = 0) out mediump vec4 dEQP_FragColor;\n"
"\n"
"void main (void)\n"
"{\n"
" mediump float result = v_vtxOut;\n";
if (isFragmentCase)
writeUniformComparisons(result, basicUniforms, "result");
result << " dEQP_FragColor = vec4(1.0-result, result, 0.0, 1.0);\n"
"}\n";
return result.str();
}
void UniformCase::setupTexture (const VarValue& value)
{
// \note No handling for samplers other than 2D or cube.
enableLogging(false);
DE_ASSERT(getSamplerLookupReturnType(value.type) == glu::TYPE_FLOAT_VEC4);
const int width = 32;
const int height = 32;
const tcu::Vec4 color = vec4FromPtr(&value.val.samplerV.fillColor.floatV[0]);
if (value.type == glu::TYPE_SAMPLER_2D)
{
glu::Texture2D* texture = new glu::Texture2D(m_context.getRenderContext(), GL_RGBA, GL_UNSIGNED_BYTE, width, height);
tcu::Texture2D& refTexture = texture->getRefTexture();
m_textures2d.push_back(texture);
refTexture.allocLevel(0);
fillWithColor(refTexture.getLevel(0), color);
GLU_CHECK_CALL(glActiveTexture(GL_TEXTURE0 + value.val.samplerV.unit));
m_filledTextureUnits.push_back(value.val.samplerV.unit);
texture->upload();
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
}
else if (value.type == glu::TYPE_SAMPLER_CUBE)
{
DE_STATIC_ASSERT(width == height);
glu::TextureCube* texture = new glu::TextureCube(m_context.getRenderContext(), GL_RGBA, GL_UNSIGNED_BYTE, width);
tcu::TextureCube& refTexture = texture->getRefTexture();
m_texturesCube.push_back(texture);
for (int face = 0; face < (int)tcu::CUBEFACE_LAST; face++)
{
refTexture.allocLevel((tcu::CubeFace)face, 0);
fillWithColor(refTexture.getLevelFace(0, (tcu::CubeFace)face), color);
}
GLU_CHECK_CALL(glActiveTexture(GL_TEXTURE0 + value.val.samplerV.unit));
m_filledTextureUnits.push_back(value.val.samplerV.unit);
texture->upload();
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
GLU_CHECK_CALL(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
}
else
DE_ASSERT(false);
enableLogging(true);
}
bool UniformCase::getUniforms (vector<VarValue>& valuesDst, const vector<BasicUniform>& basicUniforms, const deUint32 programGL)
{
TestLog& log = m_testCtx.getLog();
bool success = true;
for (int unifNdx = 0; unifNdx < (int)basicUniforms.size(); unifNdx++)
{
const BasicUniform& uniform = basicUniforms[unifNdx];
const string queryName = m_features & FEATURE_ARRAY_FIRST_ELEM_NAME_NO_INDEX && uniform.elemNdx == 0 ? beforeLast(uniform.name, '[') : uniform.name;
const int location = glGetUniformLocation(programGL, queryName.c_str());
const int size = glu::getDataTypeScalarSize(uniform.type);
VarValue value;
deMemset(&value, 0xcd, sizeof(value)); // Initialize to known garbage.
if (location == -1)
{
value.type = glu::TYPE_INVALID;
valuesDst.push_back(value);
if (uniform.isUsedInShader)
{
log << TestLog::Message << "// FAILURE: " << uniform.name << " was used in shader, but has location -1" << TestLog::EndMessage;
success = false;
}
continue;
}
value.type = uniform.type;
DE_STATIC_ASSERT(sizeof(GLint) == sizeof(value.val.intV[0]));
DE_STATIC_ASSERT(sizeof(GLuint) == sizeof(value.val.uintV[0]));
DE_STATIC_ASSERT(sizeof(GLfloat) == sizeof(value.val.floatV[0]));
if (glu::isDataTypeFloatOrVec(uniform.type) || glu::isDataTypeMatrix(uniform.type))
GLU_CHECK_CALL(glGetUniformfv(programGL, location, &value.val.floatV[0]));
else if (glu::isDataTypeIntOrIVec(uniform.type))
GLU_CHECK_CALL(glGetUniformiv(programGL, location, &value.val.intV[0]));
else if (glu::isDataTypeUintOrUVec(uniform.type))
GLU_CHECK_CALL(glGetUniformuiv(programGL, location, &value.val.uintV[0]));
else if (glu::isDataTypeBoolOrBVec(uniform.type))
{
if (m_features & FEATURE_BOOLEANAPITYPE_INT)
{
GLU_CHECK_CALL(glGetUniformiv(programGL, location, &value.val.intV[0]));
for (int i = 0; i < size; i++)
value.val.boolV[i] = value.val.intV[i] != 0;
}
else if (m_features & FEATURE_BOOLEANAPITYPE_UINT)
{
GLU_CHECK_CALL(glGetUniformuiv(programGL, location, &value.val.uintV[0]));
for (int i = 0; i < size; i++)
value.val.boolV[i] = value.val.uintV[i] != 0;
}
else // Default: use float.
{
GLU_CHECK_CALL(glGetUniformfv(programGL, location, &value.val.floatV[0]));
for (int i = 0; i < size; i++)
value.val.boolV[i] = value.val.floatV[i] != 0.0f;
}
}
else if (glu::isDataTypeSampler(uniform.type))
{
GLint unit = -1;
GLU_CHECK_CALL(glGetUniformiv(programGL, location, &unit));
value.val.samplerV.unit = unit;
}
else
DE_ASSERT(false);
valuesDst.push_back(value);
log << TestLog::Message << "// Got " << uniform.name << " value " << apiVarValueStr(value) << TestLog::EndMessage;
}
return success;
}
void UniformCase::assignUniforms (const vector<BasicUniform>& basicUniforms, deUint32 programGL, Random& rnd)
{
TestLog& log = m_testCtx.getLog();
const bool transpose = (m_features & FEATURE_MATRIXMODE_ROWMAJOR) != 0;
const GLboolean transposeGL = transpose ? GL_TRUE : GL_FALSE;
const glu::DataType boolApiType = m_features & FEATURE_BOOLEANAPITYPE_INT ? glu::TYPE_INT
: m_features & FEATURE_BOOLEANAPITYPE_UINT ? glu::TYPE_UINT
: glu::TYPE_FLOAT;
for (int unifNdx = 0; unifNdx < (int)basicUniforms.size(); unifNdx++)
{
const BasicUniform& uniform = basicUniforms[unifNdx];
const bool isArrayMember = uniform.elemNdx >= 0;
const string queryName = m_features & FEATURE_ARRAY_FIRST_ELEM_NAME_NO_INDEX && uniform.elemNdx == 0 ? beforeLast(uniform.name, '[') : uniform.name;
const int numValuesToAssign = !isArrayMember ? 1
: m_features & FEATURE_ARRAYASSIGN_FULL ? (uniform.elemNdx == 0 ? uniform.rootSize : 0)
: m_features & FEATURE_ARRAYASSIGN_BLOCKS_OF_TWO ? (uniform.elemNdx % 2 == 0 ? 2 : 0)
: /* Default: assign array elements separately */ 1;
DE_ASSERT(numValuesToAssign >= 0);
DE_ASSERT(numValuesToAssign == 1 || isArrayMember);
if (numValuesToAssign == 0)
{
log << TestLog::Message << "// Uniform " << uniform.name << " is covered by another glProgramUniform*v() call to the same array" << TestLog::EndMessage;
continue;
}
const int location = glGetUniformLocation(programGL, queryName.c_str());
const int typeSize = glu::getDataTypeScalarSize(uniform.type);
const bool assignByValue = m_features & FEATURE_UNIFORMFUNC_VALUE && !glu::isDataTypeMatrix(uniform.type) && numValuesToAssign == 1;
vector<VarValue> valuesToAssign;
for (int i = 0; i < numValuesToAssign; i++)
{
const string curName = isArrayMember ? beforeLast(uniform.rootName, '[') + "[" + de::toString(uniform.elemNdx+i) + "]" : uniform.name;
VarValue unifValue;
if (isArrayMember)
{
const vector<BasicUniform>::const_iterator elemUnif = BasicUniform::findWithName(basicUniforms, curName.c_str());
if (elemUnif == basicUniforms.end())
continue;
unifValue = elemUnif->finalValue;
}
else
unifValue = uniform.finalValue;
const VarValue apiValue = glu::isDataTypeBoolOrBVec(unifValue.type) ? getRandomBoolRepresentation(unifValue, boolApiType, rnd)
: glu::isDataTypeSampler(unifValue.type) ? getSamplerUnitValue(unifValue)
: unifValue;
valuesToAssign.push_back(glu::isDataTypeMatrix(apiValue.type) && transpose ? getTransposeMatrix(apiValue) : apiValue);
if (glu::isDataTypeBoolOrBVec(uniform.type))
log << TestLog::Message << "// Using type " << glu::getDataTypeName(boolApiType) << " to set boolean value " << apiVarValueStr(unifValue) << " for " << curName << TestLog::EndMessage;
else if (glu::isDataTypeSampler(uniform.type))
log << TestLog::Message << "// Texture for the sampler uniform " << curName << " will be filled with color " << apiVarValueStr(getSamplerFillValue(uniform.finalValue)) << TestLog::EndMessage;
}
DE_ASSERT(!valuesToAssign.empty());
if (glu::isDataTypeFloatOrVec(valuesToAssign[0].type))
{
if (assignByValue)
{
const float* const ptr = &valuesToAssign[0].val.floatV[0];
switch (typeSize)
{
case 1: GLU_CHECK_CALL(glProgramUniform1f(programGL, location, ptr[0])); break;
case 2: GLU_CHECK_CALL(glProgramUniform2f(programGL, location, ptr[0], ptr[1])); break;
case 3: GLU_CHECK_CALL(glProgramUniform3f(programGL, location, ptr[0], ptr[1], ptr[2])); break;
case 4: GLU_CHECK_CALL(glProgramUniform4f(programGL, location, ptr[0], ptr[1], ptr[2], ptr[3])); break;
default:
DE_ASSERT(false);
}
}
else
{
vector<float> buffer(valuesToAssign.size() * typeSize);
for (int i = 0; i < (int)buffer.size(); i++)
buffer[i] = valuesToAssign[i / typeSize].val.floatV[i % typeSize];
DE_STATIC_ASSERT(sizeof(GLfloat) == sizeof(buffer[0]));
switch (typeSize)
{
case 1: GLU_CHECK_CALL(glProgramUniform1fv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 2: GLU_CHECK_CALL(glProgramUniform2fv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 3: GLU_CHECK_CALL(glProgramUniform3fv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 4: GLU_CHECK_CALL(glProgramUniform4fv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
default:
DE_ASSERT(false);
}
}
}
else if (glu::isDataTypeMatrix(valuesToAssign[0].type))
{
DE_ASSERT(!assignByValue);
vector<float> buffer(valuesToAssign.size() * typeSize);
for (int i = 0; i < (int)buffer.size(); i++)
buffer[i] = valuesToAssign[i / typeSize].val.floatV[i % typeSize];
DE_STATIC_ASSERT(sizeof(GLfloat) == sizeof(buffer[0]));
switch (uniform.type)
{
case glu::TYPE_FLOAT_MAT2: GLU_CHECK_CALL(glProgramUniformMatrix2fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT3: GLU_CHECK_CALL(glProgramUniformMatrix3fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT4: GLU_CHECK_CALL(glProgramUniformMatrix4fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT2X3: GLU_CHECK_CALL(glProgramUniformMatrix2x3fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT2X4: GLU_CHECK_CALL(glProgramUniformMatrix2x4fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT3X2: GLU_CHECK_CALL(glProgramUniformMatrix3x2fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT3X4: GLU_CHECK_CALL(glProgramUniformMatrix3x4fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT4X2: GLU_CHECK_CALL(glProgramUniformMatrix4x2fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
case glu::TYPE_FLOAT_MAT4X3: GLU_CHECK_CALL(glProgramUniformMatrix4x3fv (programGL, location, (GLsizei)valuesToAssign.size(), transposeGL, &buffer[0])); break;
default:
DE_ASSERT(false);
}
}
else if (glu::isDataTypeIntOrIVec(valuesToAssign[0].type))
{
if (assignByValue)
{
const deInt32* const ptr = &valuesToAssign[0].val.intV[0];
switch (typeSize)
{
case 1: GLU_CHECK_CALL(glProgramUniform1i(programGL, location, ptr[0])); break;
case 2: GLU_CHECK_CALL(glProgramUniform2i(programGL, location, ptr[0], ptr[1])); break;
case 3: GLU_CHECK_CALL(glProgramUniform3i(programGL, location, ptr[0], ptr[1], ptr[2])); break;
case 4: GLU_CHECK_CALL(glProgramUniform4i(programGL, location, ptr[0], ptr[1], ptr[2], ptr[3])); break;
default:
DE_ASSERT(false);
}
}
else
{
vector<deInt32> buffer(valuesToAssign.size() * typeSize);
for (int i = 0; i < (int)buffer.size(); i++)
buffer[i] = valuesToAssign[i / typeSize].val.intV[i % typeSize];
DE_STATIC_ASSERT(sizeof(GLint) == sizeof(buffer[0]));
switch (typeSize)
{
case 1: GLU_CHECK_CALL(glProgramUniform1iv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 2: GLU_CHECK_CALL(glProgramUniform2iv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 3: GLU_CHECK_CALL(glProgramUniform3iv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 4: GLU_CHECK_CALL(glProgramUniform4iv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
default:
DE_ASSERT(false);
}
}
}
else if (glu::isDataTypeUintOrUVec(valuesToAssign[0].type))
{
if (assignByValue)
{
const deUint32* const ptr = &valuesToAssign[0].val.uintV[0];
switch (typeSize)
{
case 1: GLU_CHECK_CALL(glProgramUniform1ui(programGL, location, ptr[0])); break;
case 2: GLU_CHECK_CALL(glProgramUniform2ui(programGL, location, ptr[0], ptr[1])); break;
case 3: GLU_CHECK_CALL(glProgramUniform3ui(programGL, location, ptr[0], ptr[1], ptr[2])); break;
case 4: GLU_CHECK_CALL(glProgramUniform4ui(programGL, location, ptr[0], ptr[1], ptr[2], ptr[3])); break;
default:
DE_ASSERT(false);
}
}
else
{
vector<deUint32> buffer(valuesToAssign.size() * typeSize);
for (int i = 0; i < (int)buffer.size(); i++)
buffer[i] = valuesToAssign[i / typeSize].val.intV[i % typeSize];
DE_STATIC_ASSERT(sizeof(GLuint) == sizeof(buffer[0]));
switch (typeSize)
{
case 1: GLU_CHECK_CALL(glProgramUniform1uiv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 2: GLU_CHECK_CALL(glProgramUniform2uiv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 3: GLU_CHECK_CALL(glProgramUniform3uiv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
case 4: GLU_CHECK_CALL(glProgramUniform4uiv(programGL, location, (GLsizei)valuesToAssign.size(), &buffer[0])); break;
default:
DE_ASSERT(false);
}
}
}
else if (glu::isDataTypeSampler(valuesToAssign[0].type))
{
if (assignByValue)
GLU_CHECK_CALL(glProgramUniform1i(programGL, location, uniform.finalValue.val.samplerV.unit));
else
{
const GLint unit = uniform.finalValue.val.samplerV.unit;
GLU_CHECK_CALL(glProgramUniform1iv(programGL, location, (GLsizei)valuesToAssign.size(), &unit));
}
}
else
DE_ASSERT(false);
}
}
bool UniformCase::compareUniformValues (const vector<VarValue>& values, const vector<BasicUniform>& basicUniforms)
{
TestLog& log = m_testCtx.getLog();
bool success = true;
for (int unifNdx = 0; unifNdx < (int)basicUniforms.size(); unifNdx++)
{
const BasicUniform& uniform = basicUniforms[unifNdx];
const VarValue& unifValue = values[unifNdx];
log << TestLog::Message << "// Checking uniform " << uniform.name << TestLog::EndMessage;
if (unifValue.type == glu::TYPE_INVALID) // This happens when glGetUniformLocation() returned -1.
continue;
if (!apiVarValueEquals(unifValue, uniform.finalValue))
{
log << TestLog::Message << "// FAILURE: value obtained with glGetUniform*() for uniform " << uniform.name << " differs from value set with glProgramUniform*()" << TestLog::EndMessage;
success = false;
}
}
return success;
}
bool UniformCase::renderTest (const vector<BasicUniform>& basicUniforms, const ShaderProgram& program, Random& rnd)
{
TestLog& log = m_testCtx.getLog();
const tcu::RenderTarget& renderTarget = m_context.getRenderTarget();
const int viewportW = de::min<int>(renderTarget.getWidth(), MAX_RENDER_WIDTH);
const int viewportH = de::min<int>(renderTarget.getHeight(), MAX_RENDER_HEIGHT);
const int viewportX = rnd.getInt(0, renderTarget.getWidth() - viewportW);
const int viewportY = rnd.getInt(0, renderTarget.getHeight() - viewportH);
tcu::Surface renderedImg (viewportW, viewportH);
// Assert that no two samplers of different types have the same texture unit - this is an error in GL.
for (int i = 0; i < (int)basicUniforms.size(); i++)
{
if (glu::isDataTypeSampler(basicUniforms[i].type))
{
for (int j = 0; j < i; j++)
{
if (glu::isDataTypeSampler(basicUniforms[j].type) && basicUniforms[i].type != basicUniforms[j].type)
DE_ASSERT(basicUniforms[i].finalValue.val.samplerV.unit != basicUniforms[j].finalValue.val.samplerV.unit);
}
}
}
for (int i = 0; i < (int)basicUniforms.size(); i++)
{
if (glu::isDataTypeSampler(basicUniforms[i].type) && std::find(m_filledTextureUnits.begin(), m_filledTextureUnits.end(), basicUniforms[i].finalValue.val.samplerV.unit) == m_filledTextureUnits.end())
{
log << TestLog::Message << "// Filling texture at unit " << apiVarValueStr(basicUniforms[i].finalValue) << " with color " << shaderVarValueStr(basicUniforms[i].finalValue) << TestLog::EndMessage;
setupTexture(basicUniforms[i].finalValue);
}
}
GLU_CHECK_CALL(glViewport(viewportX, viewportY, viewportW, viewportH));
GLU_CHECK_CALL(glClearColor(0.0f, 0.0f, 0.0f, 1.0f));
GLU_CHECK_CALL(glClear(GL_COLOR_BUFFER_BIT));
GLU_CHECK_CALL(glUseProgram(program.getProgram()));
{
static const float position[] =
{
-1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, +1.0f, 0.0f, 1.0f,
+1.0f, -1.0f, 0.0f, 1.0f,
+1.0f, +1.0f, 0.0f, 1.0f
};
static const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
const glu::VertexArrayBinding binding = glu::va::Float("a_position", 4, 4, 0, &position[0]);
glu::draw(m_context.getRenderContext(), program.getProgram(), 1, &binding, glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, renderedImg.getAccess());
}
int numFailedPixels = 0;
for (int y = 0; y < renderedImg.getHeight(); y++)
{
for (int x = 0; x < renderedImg.getWidth(); x++)
{
if (renderedImg.getPixel(x, y) != tcu::RGBA::green())
numFailedPixels += 1;
}
}
if (numFailedPixels > 0)
{
log << TestLog::Image("RenderedImage", "Rendered image", renderedImg);
log << TestLog::Message << "FAILURE: image comparison failed, got " << numFailedPixels << " non-green pixels" << TestLog::EndMessage;
return false;
}
else
{
log << TestLog::Message << "Success: got all-green pixels (all uniforms have correct values)" << TestLog::EndMessage;
return true;
}
}
UniformCase::IterateResult UniformCase::iterate (void)
{
Random rnd (deStringHash(getName()) ^ (deUint32)m_context.getTestContext().getCommandLine().getBaseSeed());
TestLog& log = m_testCtx.getLog();
vector<BasicUniform> basicUniforms;
vector<BasicUniformReportRef> basicUniformReportsRef;
{
int samplerUnitCounter = 0;
for (int i = 0; i < (int)m_uniformCollection->getNumUniforms(); i++)
generateBasicUniforms(basicUniforms, basicUniformReportsRef, m_uniformCollection->getUniform(i).type, m_uniformCollection->getUniform(i).name.c_str(), true, samplerUnitCounter, rnd);
}
const string vertexSource = generateVertexSource(basicUniforms);
const string fragmentSource = generateFragmentSource(basicUniforms);
const ShaderProgram program (m_context.getRenderContext(), glu::makeVtxFragSources(vertexSource, fragmentSource));
// A dummy program that we'll give to glUseProgram before we actually need
// the real program above, to see if an implementation tries to use the
// currently active program for something inappropriate (instead of the
// program given as argument to, say, glProgramUniform*).
const ShaderProgram dummyProgram (m_context.getRenderContext(), glu::makeVtxFragSources("#version 310 es\n"
"void main (void) { gl_Position = vec4(1.0); }\n",
"#version 310 es\n"
"layout(location = 0) out mediump vec4 dEQP_FragColor;\n"
"void main (void) { dEQP_FragColor = vec4(0.0, 0.0, 1.0, 1.0); }\n"));
log << program;
if (!program.isOk())
{
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compile failed");
return STOP;
}
if (!dummyProgram.isOk())
{
log << dummyProgram;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation of dummy program failed");
return STOP;
}
log << TestLog::Message << "// Note: calling glUseProgram with a dummy program (will only use the real program once it's needed for rendering)" << TestLog::EndMessage;
glUseProgram(dummyProgram.getProgram());
const bool success = test(basicUniforms, basicUniformReportsRef, program, rnd);
m_testCtx.setTestResult(success ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
success ? "Passed" : "Failed");
return STOP;
}
class UniformAssignCase : public UniformCase
{
public:
enum CheckMethod
{
CHECKMETHOD_GET_UNIFORM = 0, //!< Check values with glGetUniform*().
CHECKMETHOD_RENDER, //!< Check values by rendering with the value-checking shader.
CHECKMETHOD_LAST
};
enum AssignMethod
{
ASSIGNMETHOD_POINTER = 0,
ASSIGNMETHOD_VALUE,
ASSIGNMETHOD_LAST
};
UniformAssignCase (Context& context,
const char* name,
const char* description,
CaseShaderType shaderType,
const SharedPtr<const UniformCollection>& uniformCollection,
CheckMethod checkMethod,
AssignMethod assignMethod,
deUint32 additionalFeatures = 0);
bool test (const vector<BasicUniform>& basicUniforms, const vector<BasicUniformReportRef>& basicUniformReportsRef, const ShaderProgram& program, Random& rnd);
static const char* getCheckMethodName (CheckMethod checkMethod);
static const char* getCheckMethodDescription (CheckMethod checkMethod);
static const char* getAssignMethodName (AssignMethod checkMethod);
static const char* getAssignMethodDescription (AssignMethod checkMethod);
private:
const CheckMethod m_checkMethod;
};
const char* UniformAssignCase::getCheckMethodName (const CheckMethod checkMethod)
{
switch (checkMethod)
{
case CHECKMETHOD_GET_UNIFORM: return "get_uniform";
case CHECKMETHOD_RENDER: return "render";
default: DE_ASSERT(false); return DE_NULL;
}
}
const char* UniformAssignCase::getCheckMethodDescription (const CheckMethod checkMethod)
{
switch (checkMethod)
{
case CHECKMETHOD_GET_UNIFORM: return "Verify values with glGetUniform*()";
case CHECKMETHOD_RENDER: return "Verify values by rendering";
default: DE_ASSERT(false); return DE_NULL;
}
}
const char* UniformAssignCase::getAssignMethodName (const AssignMethod assignMethod)
{
switch (assignMethod)
{
case ASSIGNMETHOD_POINTER: return "by_pointer";
case ASSIGNMETHOD_VALUE: return "by_value";
default: DE_ASSERT(false); return DE_NULL;
}
}
const char* UniformAssignCase::getAssignMethodDescription (const AssignMethod assignMethod)
{
switch (assignMethod)
{
case ASSIGNMETHOD_POINTER: return "Assign values by-pointer";
case ASSIGNMETHOD_VALUE: return "Assign values by-value";
default: DE_ASSERT(false); return DE_NULL;
}
}
UniformAssignCase::UniformAssignCase (Context& context,
const char* const name,
const char* const description,
const CaseShaderType shaderType,
const SharedPtr<const UniformCollection>& uniformCollection,
const CheckMethod checkMethod,
const AssignMethod assignMethod,
const deUint32 additionalFeatures)
: UniformCase (context, name, description, shaderType, uniformCollection,
(assignMethod == ASSIGNMETHOD_VALUE ? FEATURE_UNIFORMFUNC_VALUE : 0) | additionalFeatures)
, m_checkMethod (checkMethod)
{
DE_ASSERT(assignMethod != ASSIGNMETHOD_LAST);
}
bool UniformAssignCase::test (const vector<BasicUniform>& basicUniforms, const vector<BasicUniformReportRef>& basicUniformReportsRef, const ShaderProgram& program, Random& rnd)
{
DE_UNREF(basicUniformReportsRef);
const deUint32 programGL = program.getProgram();
TestLog& log = m_testCtx.getLog();
{
const ScopedLogSection section(log, "UniformAssign", "Uniform value assignments");
assignUniforms(basicUniforms, programGL, rnd);
}
if (m_checkMethod == CHECKMETHOD_GET_UNIFORM)
{
vector<VarValue> values;
{
const ScopedLogSection section(log, "GetUniforms", "Uniform value query");
const bool success = getUniforms(values, basicUniforms, program.getProgram());
if (!success)
return false;
}
{
const ScopedLogSection section(log, "ValueCheck", "Verify that the reported values match the assigned values");
const bool success = compareUniformValues(values, basicUniforms);
if (!success)
return false;
}
}
else
{
DE_ASSERT(m_checkMethod == CHECKMETHOD_RENDER);
const ScopedLogSection section(log, "RenderTest", "Render test");
const bool success = renderTest(basicUniforms, program, rnd);
if (!success)
return false;
}
return true;
}
ProgramUniformTests::ProgramUniformTests (Context& context)
: TestCaseGroup(context, "program_uniform", "glProgramUniform*() tests")
{
}
ProgramUniformTests::~ProgramUniformTests (void)
{
}
namespace
{
// \note Although this is only used in ProgramUniformTests::init, it needs to be defined here as it's used as a template argument.
struct UniformCollectionCase
{
string namePrefix;
SharedPtr<const UniformCollection> uniformCollection;
UniformCollectionCase (const char* const name, const UniformCollection* uniformCollection_)
: namePrefix (name ? name + string("_") : "")
, uniformCollection (uniformCollection_)
{
}
};
} // anonymous
void ProgramUniformTests::init (void)
{
// Generate sets of UniformCollections that are used by several cases.
enum
{
UNIFORMCOLLECTIONS_BASIC = 0,
UNIFORMCOLLECTIONS_BASIC_ARRAY,
UNIFORMCOLLECTIONS_BASIC_STRUCT,
UNIFORMCOLLECTIONS_STRUCT_IN_ARRAY,
UNIFORMCOLLECTIONS_ARRAY_IN_STRUCT,
UNIFORMCOLLECTIONS_NESTED_STRUCTS_ARRAYS,
UNIFORMCOLLECTIONS_MULTIPLE_BASIC,
UNIFORMCOLLECTIONS_MULTIPLE_BASIC_ARRAY,
UNIFORMCOLLECTIONS_MULTIPLE_NESTED_STRUCTS_ARRAYS,
UNIFORMCOLLECTIONS_LAST
};
struct UniformCollectionGroup
{
string name;
vector<UniformCollectionCase> cases;
} defaultUniformCollections[UNIFORMCOLLECTIONS_LAST];
defaultUniformCollections[UNIFORMCOLLECTIONS_BASIC].name = "basic";
defaultUniformCollections[UNIFORMCOLLECTIONS_BASIC_ARRAY].name = "basic_array";
defaultUniformCollections[UNIFORMCOLLECTIONS_BASIC_STRUCT].name = "basic_struct";
defaultUniformCollections[UNIFORMCOLLECTIONS_STRUCT_IN_ARRAY].name = "struct_in_array";
defaultUniformCollections[UNIFORMCOLLECTIONS_ARRAY_IN_STRUCT].name = "array_in_struct";
defaultUniformCollections[UNIFORMCOLLECTIONS_NESTED_STRUCTS_ARRAYS].name = "nested_structs_arrays";
defaultUniformCollections[UNIFORMCOLLECTIONS_MULTIPLE_BASIC].name = "multiple_basic";
defaultUniformCollections[UNIFORMCOLLECTIONS_MULTIPLE_BASIC_ARRAY].name = "multiple_basic_array";
defaultUniformCollections[UNIFORMCOLLECTIONS_MULTIPLE_NESTED_STRUCTS_ARRAYS].name = "multiple_nested_structs_arrays";
for (int dataTypeNdx = 0; dataTypeNdx < DE_LENGTH_OF_ARRAY(s_testDataTypes); dataTypeNdx++)
{
const glu::DataType dataType = s_testDataTypes[dataTypeNdx];
const char* const typeName = glu::getDataTypeName(dataType);
defaultUniformCollections[UNIFORMCOLLECTIONS_BASIC].cases.push_back(UniformCollectionCase(typeName, UniformCollection::basic(dataType)));
if (glu::isDataTypeScalar(dataType) ||
(glu::isDataTypeVector(dataType) && glu::getDataTypeScalarSize(dataType) == 4) ||
dataType == glu::TYPE_FLOAT_MAT4 ||
dataType == glu::TYPE_SAMPLER_2D)
defaultUniformCollections[UNIFORMCOLLECTIONS_BASIC_ARRAY].cases.push_back(UniformCollectionCase(typeName, UniformCollection::basicArray(dataType)));
if (glu::isDataTypeScalar(dataType) ||
dataType == glu::TYPE_FLOAT_MAT4 ||
dataType == glu::TYPE_SAMPLER_2D)
{
const glu::DataType secondDataType = glu::isDataTypeScalar(dataType) ? glu::getDataTypeVector(dataType, 4)
: dataType == glu::TYPE_FLOAT_MAT4 ? glu::TYPE_FLOAT_MAT2
: dataType == glu::TYPE_SAMPLER_2D ? glu::TYPE_SAMPLER_CUBE
: glu::TYPE_LAST;
DE_ASSERT(secondDataType != glu::TYPE_LAST);
const char* const secondTypeName = glu::getDataTypeName(secondDataType);
const string name = string("") + typeName + "_" + secondTypeName;
defaultUniformCollections[UNIFORMCOLLECTIONS_BASIC_STRUCT].cases.push_back (UniformCollectionCase(name.c_str(), UniformCollection::basicStruct(dataType, secondDataType, false)));
defaultUniformCollections[UNIFORMCOLLECTIONS_ARRAY_IN_STRUCT].cases.push_back (UniformCollectionCase(name.c_str(), UniformCollection::basicStruct(dataType, secondDataType, true)));
defaultUniformCollections[UNIFORMCOLLECTIONS_STRUCT_IN_ARRAY].cases.push_back (UniformCollectionCase(name.c_str(), UniformCollection::structInArray(dataType, secondDataType, false)));
defaultUniformCollections[UNIFORMCOLLECTIONS_NESTED_STRUCTS_ARRAYS].cases.push_back (UniformCollectionCase(name.c_str(), UniformCollection::nestedArraysStructs(dataType, secondDataType)));
}
}
defaultUniformCollections[UNIFORMCOLLECTIONS_MULTIPLE_BASIC].cases.push_back (UniformCollectionCase(DE_NULL, UniformCollection::multipleBasic()));
defaultUniformCollections[UNIFORMCOLLECTIONS_MULTIPLE_BASIC_ARRAY].cases.push_back (UniformCollectionCase(DE_NULL, UniformCollection::multipleBasicArray()));
defaultUniformCollections[UNIFORMCOLLECTIONS_MULTIPLE_NESTED_STRUCTS_ARRAYS].cases.push_back (UniformCollectionCase(DE_NULL, UniformCollection::multipleNestedArraysStructs()));
// Basic by-pointer or by-value uniform assignment cases.
for (int assignMethodI = 0; assignMethodI < (int)UniformAssignCase::ASSIGNMETHOD_LAST; assignMethodI++)
{
const UniformAssignCase::AssignMethod assignMethod = (UniformAssignCase::AssignMethod)assignMethodI;
TestCaseGroup* const assignMethodGroup = new TestCaseGroup(m_context, UniformAssignCase::getAssignMethodName(assignMethod), UniformAssignCase::getAssignMethodDescription(assignMethod));
addChild(assignMethodGroup);
for (int checkMethodI = 0; checkMethodI < (int)UniformAssignCase::CHECKMETHOD_LAST; checkMethodI++)
{
const UniformAssignCase::CheckMethod checkMethod = (UniformAssignCase::CheckMethod)checkMethodI;
TestCaseGroup* const checkMethodGroup = new TestCaseGroup(m_context, UniformAssignCase::getCheckMethodName(checkMethod), UniformAssignCase::getCheckMethodDescription(checkMethod));
assignMethodGroup->addChild(checkMethodGroup);
for (int collectionGroupNdx = 0; collectionGroupNdx < (int)UNIFORMCOLLECTIONS_LAST; collectionGroupNdx++)
{
const int numArrayFirstElemNameCases = checkMethod == UniformAssignCase::CHECKMETHOD_GET_UNIFORM && collectionGroupNdx == UNIFORMCOLLECTIONS_BASIC_ARRAY ? 2 : 1;
for (int referToFirstArrayElemWithoutIndexI = 0; referToFirstArrayElemWithoutIndexI < numArrayFirstElemNameCases; referToFirstArrayElemWithoutIndexI++)
{
const UniformCollectionGroup& collectionGroup = defaultUniformCollections[collectionGroupNdx];
const string collectionGroupName = collectionGroup.name + (referToFirstArrayElemWithoutIndexI == 0 ? "" : "_first_elem_without_brackets");
TestCaseGroup* collectionTestGroup = DE_NULL;
for (int collectionNdx = 0; collectionNdx < (int)collectionGroup.cases.size(); collectionNdx++)
{
const UniformCollectionCase& collectionCase = collectionGroup.cases[collectionNdx];
const string collName = collectionCase.namePrefix;
const SharedPtr<const UniformCollection>& uniformCollection = collectionCase.uniformCollection;
const bool containsBooleans = uniformCollection->containsMatchingBasicType(glu::isDataTypeBoolOrBVec);
const bool varyBoolApiType = checkMethod == UniformAssignCase::CHECKMETHOD_GET_UNIFORM && containsBooleans &&
(collectionGroupNdx == UNIFORMCOLLECTIONS_BASIC || collectionGroupNdx == UNIFORMCOLLECTIONS_BASIC_ARRAY);
const int numBoolVariations = varyBoolApiType ? 3 : 1;
const bool containsMatrices = uniformCollection->containsMatchingBasicType(glu::isDataTypeMatrix);
const bool varyMatrixMode = containsMatrices &&
(collectionGroupNdx == UNIFORMCOLLECTIONS_BASIC || collectionGroupNdx == UNIFORMCOLLECTIONS_BASIC_ARRAY);
const int numMatVariations = varyMatrixMode ? 2 : 1;
if (containsMatrices && assignMethod != UniformAssignCase::ASSIGNMETHOD_POINTER)
continue;
for (int booleanTypeI = 0; booleanTypeI < numBoolVariations; booleanTypeI++)
{
const deUint32 booleanTypeFeat = booleanTypeI == 1 ? UniformCase::FEATURE_BOOLEANAPITYPE_INT
: booleanTypeI == 2 ? UniformCase::FEATURE_BOOLEANAPITYPE_UINT
: 0;
const char* const booleanTypeName = booleanTypeI == 1 ? "int"
: booleanTypeI == 2 ? "uint"
: "float";
const string nameWithBoolType = varyBoolApiType ? collName + "api_" + booleanTypeName + "_" : collName;
for (int matrixTypeI = 0; matrixTypeI < numMatVariations; matrixTypeI++)
{
const string nameWithMatrixType = nameWithBoolType + (matrixTypeI == 1 ? "row_major_" : "");
for (int shaderType = 0; shaderType < (int)CASESHADERTYPE_LAST; shaderType++)
{
const string name = nameWithMatrixType + getCaseShaderTypeName((CaseShaderType)shaderType);
const deUint32 arrayFirstElemNameNoIndexFeat = referToFirstArrayElemWithoutIndexI == 0 ? 0 : UniformCase::FEATURE_ARRAY_FIRST_ELEM_NAME_NO_INDEX;
// skip empty groups by creating groups on demand
if (!collectionTestGroup)
{
collectionTestGroup = new TestCaseGroup(m_context, collectionGroupName.c_str(), "");
checkMethodGroup->addChild(collectionTestGroup);
}
collectionTestGroup->addChild(new UniformAssignCase(m_context, name.c_str(), "", (CaseShaderType)shaderType, uniformCollection,
checkMethod, assignMethod,
booleanTypeFeat | arrayFirstElemNameNoIndexFeat | (matrixTypeI == 1 ? UniformCase::FEATURE_MATRIXMODE_ROWMAJOR : 0)));
}
}
}
}
}
}
}
}
// Cases that assign multiple basic-array elements with one glProgramUniform*v() (i.e. the count parameter is bigger than 1).
{
static const struct
{
UniformCase::Feature arrayAssignMode;
const char* name;
const char* description;
} arrayAssignGroups[] =
{
{ UniformCase::FEATURE_ARRAYASSIGN_FULL, "basic_array_assign_full", "Assign entire basic-type arrays per glProgramUniform*v() call" },
{ UniformCase::FEATURE_ARRAYASSIGN_BLOCKS_OF_TWO, "basic_array_assign_partial", "Assign two elements of a basic-type array per glProgramUniform*v() call" }
};
for (int arrayAssignGroupNdx = 0; arrayAssignGroupNdx < DE_LENGTH_OF_ARRAY(arrayAssignGroups); arrayAssignGroupNdx++)
{
UniformCase::Feature arrayAssignMode = arrayAssignGroups[arrayAssignGroupNdx].arrayAssignMode;
const char* const groupName = arrayAssignGroups[arrayAssignGroupNdx].name;
const char* const groupDesc = arrayAssignGroups[arrayAssignGroupNdx].description;
TestCaseGroup* const curArrayAssignGroup = new TestCaseGroup(m_context, groupName, groupDesc);
addChild(curArrayAssignGroup);
static const int basicArrayCollectionGroups[] = { UNIFORMCOLLECTIONS_BASIC_ARRAY, UNIFORMCOLLECTIONS_ARRAY_IN_STRUCT, UNIFORMCOLLECTIONS_MULTIPLE_BASIC_ARRAY };
for (int collectionGroupNdx = 0; collectionGroupNdx < DE_LENGTH_OF_ARRAY(basicArrayCollectionGroups); collectionGroupNdx++)
{
const UniformCollectionGroup& collectionGroup = defaultUniformCollections[basicArrayCollectionGroups[collectionGroupNdx]];
TestCaseGroup* const collectionTestGroup = new TestCaseGroup(m_context, collectionGroup.name.c_str(), "");
curArrayAssignGroup->addChild(collectionTestGroup);
for (int collectionNdx = 0; collectionNdx < (int)collectionGroup.cases.size(); collectionNdx++)
{
const UniformCollectionCase& collectionCase = collectionGroup.cases[collectionNdx];
const string collName = collectionCase.namePrefix;
const SharedPtr<const UniformCollection>& uniformCollection = collectionCase.uniformCollection;
for (int shaderType = 0; shaderType < (int)CASESHADERTYPE_LAST; shaderType++)
{
const string name = collName + getCaseShaderTypeName((CaseShaderType)shaderType);
collectionTestGroup->addChild(new UniformAssignCase(m_context, name.c_str(), "", (CaseShaderType)shaderType, uniformCollection,
UniformAssignCase::CHECKMETHOD_GET_UNIFORM, UniformAssignCase::ASSIGNMETHOD_POINTER,
arrayAssignMode));
}
}
}
}
}
// Cases with unused uniforms.
{
TestCaseGroup* const unusedUniformsGroup = new TestCaseGroup(m_context, "unused_uniforms", "Test with unused uniforms");
addChild(unusedUniformsGroup);
const UniformCollectionGroup& collectionGroup = defaultUniformCollections[UNIFORMCOLLECTIONS_ARRAY_IN_STRUCT];
for (int collectionNdx = 0; collectionNdx < (int)collectionGroup.cases.size(); collectionNdx++)
{
const UniformCollectionCase& collectionCase = collectionGroup.cases[collectionNdx];
const string collName = collectionCase.namePrefix;
const SharedPtr<const UniformCollection>& uniformCollection = collectionCase.uniformCollection;
for (int shaderType = 0; shaderType < (int)CASESHADERTYPE_LAST; shaderType++)
{
const string name = collName + getCaseShaderTypeName((CaseShaderType)shaderType);
unusedUniformsGroup->addChild(new UniformAssignCase(m_context, name.c_str(), "", (CaseShaderType)shaderType, uniformCollection,
UniformAssignCase::CHECKMETHOD_GET_UNIFORM, UniformAssignCase::ASSIGNMETHOD_POINTER,
UniformCase::FEATURE_ARRAYUSAGE_ONLY_MIDDLE_INDEX | UniformCase::FEATURE_UNIFORMUSAGE_EVERY_OTHER));
}
}
}
}
} // Functional
} // gles31
} // deqp