//===--- CompilerInstance.cpp ---------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/CompilerInstance.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Config/config.h"
#include "clang/Frontend/ChainedDiagnosticConsumer.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/LogDiagnosticPrinter.h"
#include "clang/Frontend/SerializedDiagnosticPrinter.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Frontend/Utils.h"
#include "clang/Frontend/VerifyDiagnosticConsumer.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/PTHManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/GlobalModuleIndex.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/LockFileManager.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <sys/stat.h>
#include <system_error>
#include <time.h>
using namespace clang;
CompilerInstance::CompilerInstance(
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
bool BuildingModule)
: ModuleLoader(BuildingModule), Invocation(new CompilerInvocation()),
ModuleManager(nullptr), ThePCHContainerOperations(PCHContainerOps),
BuildGlobalModuleIndex(false), HaveFullGlobalModuleIndex(false),
ModuleBuildFailed(false) {}
CompilerInstance::~CompilerInstance() {
assert(OutputFiles.empty() && "Still output files in flight?");
}
void CompilerInstance::setInvocation(CompilerInvocation *Value) {
Invocation = Value;
}
bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
return (BuildGlobalModuleIndex ||
(ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
getFrontendOpts().GenerateGlobalModuleIndex)) &&
!ModuleBuildFailed;
}
void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
Diagnostics = Value;
}
void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; }
void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; }
void CompilerInstance::setFileManager(FileManager *Value) {
FileMgr = Value;
if (Value)
VirtualFileSystem = Value->getVirtualFileSystem();
else
VirtualFileSystem.reset();
}
void CompilerInstance::setSourceManager(SourceManager *Value) {
SourceMgr = Value;
}
void CompilerInstance::setPreprocessor(Preprocessor *Value) { PP = Value; }
void CompilerInstance::setASTContext(ASTContext *Value) {
Context = Value;
if (Context && Consumer)
getASTConsumer().Initialize(getASTContext());
}
void CompilerInstance::setSema(Sema *S) {
TheSema.reset(S);
}
void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
Consumer = std::move(Value);
if (Context && Consumer)
getASTConsumer().Initialize(getASTContext());
}
void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
CompletionConsumer.reset(Value);
}
std::unique_ptr<Sema> CompilerInstance::takeSema() {
return std::move(TheSema);
}
IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
return ModuleManager;
}
void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
ModuleManager = Reader;
}
std::shared_ptr<ModuleDependencyCollector>
CompilerInstance::getModuleDepCollector() const {
return ModuleDepCollector;
}
void CompilerInstance::setModuleDepCollector(
std::shared_ptr<ModuleDependencyCollector> Collector) {
ModuleDepCollector = Collector;
}
// Diagnostics
static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
const CodeGenOptions *CodeGenOpts,
DiagnosticsEngine &Diags) {
std::error_code EC;
std::unique_ptr<raw_ostream> StreamOwner;
raw_ostream *OS = &llvm::errs();
if (DiagOpts->DiagnosticLogFile != "-") {
// Create the output stream.
auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
DiagOpts->DiagnosticLogFile, EC,
llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
if (EC) {
Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
<< DiagOpts->DiagnosticLogFile << EC.message();
} else {
FileOS->SetUnbuffered();
OS = FileOS.get();
StreamOwner = std::move(FileOS);
}
}
// Chain in the diagnostic client which will log the diagnostics.
auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
std::move(StreamOwner));
if (CodeGenOpts)
Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
assert(Diags.ownsClient());
Diags.setClient(
new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
}
static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
DiagnosticsEngine &Diags,
StringRef OutputFile) {
auto SerializedConsumer =
clang::serialized_diags::create(OutputFile, DiagOpts);
if (Diags.ownsClient()) {
Diags.setClient(new ChainedDiagnosticConsumer(
Diags.takeClient(), std::move(SerializedConsumer)));
} else {
Diags.setClient(new ChainedDiagnosticConsumer(
Diags.getClient(), std::move(SerializedConsumer)));
}
}
void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
bool ShouldOwnClient) {
Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
ShouldOwnClient, &getCodeGenOpts());
}
IntrusiveRefCntPtr<DiagnosticsEngine>
CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
DiagnosticConsumer *Client,
bool ShouldOwnClient,
const CodeGenOptions *CodeGenOpts) {
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticsEngine>
Diags(new DiagnosticsEngine(DiagID, Opts));
// Create the diagnostic client for reporting errors or for
// implementing -verify.
if (Client) {
Diags->setClient(Client, ShouldOwnClient);
} else
Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
// Chain in -verify checker, if requested.
if (Opts->VerifyDiagnostics)
Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
// Chain in -diagnostic-log-file dumper, if requested.
if (!Opts->DiagnosticLogFile.empty())
SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
if (!Opts->DiagnosticSerializationFile.empty())
SetupSerializedDiagnostics(Opts, *Diags,
Opts->DiagnosticSerializationFile);
// Configure our handling of diagnostics.
ProcessWarningOptions(*Diags, *Opts);
return Diags;
}
// File Manager
void CompilerInstance::createFileManager() {
if (!hasVirtualFileSystem()) {
// TODO: choose the virtual file system based on the CompilerInvocation.
setVirtualFileSystem(vfs::getRealFileSystem());
}
FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
}
// Source Manager
void CompilerInstance::createSourceManager(FileManager &FileMgr) {
SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
}
// Initialize the remapping of files to alternative contents, e.g.,
// those specified through other files.
static void InitializeFileRemapping(DiagnosticsEngine &Diags,
SourceManager &SourceMgr,
FileManager &FileMgr,
const PreprocessorOptions &InitOpts) {
// Remap files in the source manager (with buffers).
for (const auto &RB : InitOpts.RemappedFileBuffers) {
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile =
FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
if (!FromFile) {
Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
if (!InitOpts.RetainRemappedFileBuffers)
delete RB.second;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
SourceMgr.overrideFileContents(FromFile, RB.second,
InitOpts.RetainRemappedFileBuffers);
}
// Remap files in the source manager (with other files).
for (const auto &RF : InitOpts.RemappedFiles) {
// Find the file that we're mapping to.
const FileEntry *ToFile = FileMgr.getFile(RF.second);
if (!ToFile) {
Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
continue;
}
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile =
FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
if (!FromFile) {
Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
SourceMgr.overrideFileContents(FromFile, ToFile);
}
SourceMgr.setOverridenFilesKeepOriginalName(
InitOpts.RemappedFilesKeepOriginalName);
}
// Preprocessor
void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
const PreprocessorOptions &PPOpts = getPreprocessorOpts();
// Create a PTH manager if we are using some form of a token cache.
PTHManager *PTHMgr = nullptr;
if (!PPOpts.TokenCache.empty())
PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
// Create the Preprocessor.
HeaderSearch *HeaderInfo = new HeaderSearch(&getHeaderSearchOpts(),
getSourceManager(),
getDiagnostics(),
getLangOpts(),
&getTarget());
PP = new Preprocessor(&getPreprocessorOpts(), getDiagnostics(), getLangOpts(),
getSourceManager(), *HeaderInfo, *this, PTHMgr,
/*OwnsHeaderSearch=*/true, TUKind);
PP->Initialize(getTarget(), getAuxTarget());
// Note that this is different then passing PTHMgr to Preprocessor's ctor.
// That argument is used as the IdentifierInfoLookup argument to
// IdentifierTable's ctor.
if (PTHMgr) {
PTHMgr->setPreprocessor(&*PP);
PP->setPTHManager(PTHMgr);
}
if (PPOpts.DetailedRecord)
PP->createPreprocessingRecord();
// Apply remappings to the source manager.
InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
PP->getFileManager(), PPOpts);
// Predefine macros and configure the preprocessor.
InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(),
getFrontendOpts());
// Initialize the header search object.
ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
PP->getLangOpts(), PP->getTargetInfo().getTriple());
PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules)
PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
// Handle generating dependencies, if requested.
const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
if (!DepOpts.OutputFile.empty())
TheDependencyFileGenerator.reset(
DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
if (!DepOpts.DOTOutputFile.empty())
AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
getHeaderSearchOpts().Sysroot);
for (auto &Listener : DependencyCollectors)
Listener->attachToPreprocessor(*PP);
// If we don't have a collector, but we are collecting module dependencies,
// then we're the top level compiler instance and need to create one.
if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty())
ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
DepOpts.ModuleDependencyOutputDir);
// Handle generating header include information, if requested.
if (DepOpts.ShowHeaderIncludes)
AttachHeaderIncludeGen(*PP, DepOpts.ExtraDeps);
if (!DepOpts.HeaderIncludeOutputFile.empty()) {
StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
if (OutputPath == "-")
OutputPath = "";
AttachHeaderIncludeGen(*PP, DepOpts.ExtraDeps,
/*ShowAllHeaders=*/true, OutputPath,
/*ShowDepth=*/false);
}
if (DepOpts.PrintShowIncludes) {
AttachHeaderIncludeGen(*PP, DepOpts.ExtraDeps,
/*ShowAllHeaders=*/false, /*OutputPath=*/"",
/*ShowDepth=*/true, /*MSStyle=*/true);
}
}
std::string CompilerInstance::getSpecificModuleCachePath() {
// Set up the module path, including the hash for the
// module-creation options.
SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath);
if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash)
llvm::sys::path::append(SpecificModuleCache,
getInvocation().getModuleHash());
return SpecificModuleCache.str();
}
// ASTContext
void CompilerInstance::createASTContext() {
Preprocessor &PP = getPreprocessor();
auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
PP.getIdentifierTable(), PP.getSelectorTable(),
PP.getBuiltinInfo());
Context->InitBuiltinTypes(getTarget(), getAuxTarget());
setASTContext(Context);
}
// ExternalASTSource
void CompilerInstance::createPCHExternalASTSource(
StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
void *DeserializationListener, bool OwnDeserializationListener) {
bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
ModuleManager = createPCHExternalASTSource(
Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
getPCHContainerReader(),
getFrontendOpts().ModuleFileExtensions,
DeserializationListener,
OwnDeserializationListener, Preamble,
getFrontendOpts().UseGlobalModuleIndex);
}
IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
const PCHContainerReader &PCHContainerRdr,
ArrayRef<IntrusiveRefCntPtr<ModuleFileExtension>> Extensions,
void *DeserializationListener, bool OwnDeserializationListener,
bool Preamble, bool UseGlobalModuleIndex) {
HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader(
PP, Context, PCHContainerRdr, Extensions,
Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation,
AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false,
HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
// We need the external source to be set up before we read the AST, because
// eagerly-deserialized declarations may use it.
Context.setExternalSource(Reader.get());
Reader->setDeserializationListener(
static_cast<ASTDeserializationListener *>(DeserializationListener),
/*TakeOwnership=*/OwnDeserializationListener);
switch (Reader->ReadAST(Path,
Preamble ? serialization::MK_Preamble
: serialization::MK_PCH,
SourceLocation(),
ASTReader::ARR_None)) {
case ASTReader::Success:
// Set the predefines buffer as suggested by the PCH reader. Typically, the
// predefines buffer will be empty.
PP.setPredefines(Reader->getSuggestedPredefines());
return Reader;
case ASTReader::Failure:
// Unrecoverable failure: don't even try to process the input file.
break;
case ASTReader::Missing:
case ASTReader::OutOfDate:
case ASTReader::VersionMismatch:
case ASTReader::ConfigurationMismatch:
case ASTReader::HadErrors:
// No suitable PCH file could be found. Return an error.
break;
}
Context.setExternalSource(nullptr);
return nullptr;
}
// Code Completion
static bool EnableCodeCompletion(Preprocessor &PP,
const std::string &Filename,
unsigned Line,
unsigned Column) {
// Tell the source manager to chop off the given file at a specific
// line and column.
const FileEntry *Entry = PP.getFileManager().getFile(Filename);
if (!Entry) {
PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
<< Filename;
return true;
}
// Truncate the named file at the given line/column.
PP.SetCodeCompletionPoint(Entry, Line, Column);
return false;
}
void CompilerInstance::createCodeCompletionConsumer() {
const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
if (!CompletionConsumer) {
setCodeCompletionConsumer(
createCodeCompletionConsumer(getPreprocessor(),
Loc.FileName, Loc.Line, Loc.Column,
getFrontendOpts().CodeCompleteOpts,
llvm::outs()));
if (!CompletionConsumer)
return;
} else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
Loc.Line, Loc.Column)) {
setCodeCompletionConsumer(nullptr);
return;
}
if (CompletionConsumer->isOutputBinary() &&
llvm::sys::ChangeStdoutToBinary()) {
getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
setCodeCompletionConsumer(nullptr);
}
}
void CompilerInstance::createFrontendTimer() {
FrontendTimerGroup.reset(new llvm::TimerGroup("Clang front-end time report"));
FrontendTimer.reset(
new llvm::Timer("Clang front-end timer", *FrontendTimerGroup));
}
CodeCompleteConsumer *
CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
StringRef Filename,
unsigned Line,
unsigned Column,
const CodeCompleteOptions &Opts,
raw_ostream &OS) {
if (EnableCodeCompletion(PP, Filename, Line, Column))
return nullptr;
// Set up the creation routine for code-completion.
return new PrintingCodeCompleteConsumer(Opts, OS);
}
void CompilerInstance::createSema(TranslationUnitKind TUKind,
CodeCompleteConsumer *CompletionConsumer) {
TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
TUKind, CompletionConsumer));
}
// Output Files
void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
assert(OutFile.OS && "Attempt to add empty stream to output list!");
OutputFiles.push_back(std::move(OutFile));
}
void CompilerInstance::clearOutputFiles(bool EraseFiles) {
for (OutputFile &OF : OutputFiles) {
// Manually close the stream before we rename it.
OF.OS.reset();
if (!OF.TempFilename.empty()) {
if (EraseFiles) {
llvm::sys::fs::remove(OF.TempFilename);
} else {
SmallString<128> NewOutFile(OF.Filename);
// If '-working-directory' was passed, the output filename should be
// relative to that.
FileMgr->FixupRelativePath(NewOutFile);
if (std::error_code ec =
llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
getDiagnostics().Report(diag::err_unable_to_rename_temp)
<< OF.TempFilename << OF.Filename << ec.message();
llvm::sys::fs::remove(OF.TempFilename);
}
}
} else if (!OF.Filename.empty() && EraseFiles)
llvm::sys::fs::remove(OF.Filename);
}
OutputFiles.clear();
NonSeekStream.reset();
}
raw_pwrite_stream *
CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
StringRef Extension) {
return createOutputFile(getFrontendOpts().OutputFile, Binary,
/*RemoveFileOnSignal=*/true, InFile, Extension,
/*UseTemporary=*/true);
}
llvm::raw_null_ostream *CompilerInstance::createNullOutputFile() {
auto OS = llvm::make_unique<llvm::raw_null_ostream>();
llvm::raw_null_ostream *Ret = OS.get();
addOutputFile(OutputFile("", "", std::move(OS)));
return Ret;
}
raw_pwrite_stream *
CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
bool RemoveFileOnSignal, StringRef InFile,
StringRef Extension, bool UseTemporary,
bool CreateMissingDirectories) {
std::string OutputPathName, TempPathName;
std::error_code EC;
std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
if (!OS) {
getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
<< EC.message();
return nullptr;
}
raw_pwrite_stream *Ret = OS.get();
// Add the output file -- but don't try to remove "-", since this means we are
// using stdin.
addOutputFile(OutputFile((OutputPathName != "-") ? OutputPathName : "",
TempPathName, std::move(OS)));
return Ret;
}
std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
StringRef OutputPath, std::error_code &Error, bool Binary,
bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
bool UseTemporary, bool CreateMissingDirectories,
std::string *ResultPathName, std::string *TempPathName) {
assert((!CreateMissingDirectories || UseTemporary) &&
"CreateMissingDirectories is only allowed when using temporary files");
std::string OutFile, TempFile;
if (!OutputPath.empty()) {
OutFile = OutputPath;
} else if (InFile == "-") {
OutFile = "-";
} else if (!Extension.empty()) {
SmallString<128> Path(InFile);
llvm::sys::path::replace_extension(Path, Extension);
OutFile = Path.str();
} else {
OutFile = "-";
}
std::unique_ptr<llvm::raw_fd_ostream> OS;
std::string OSFile;
if (UseTemporary) {
if (OutFile == "-")
UseTemporary = false;
else {
llvm::sys::fs::file_status Status;
llvm::sys::fs::status(OutputPath, Status);
if (llvm::sys::fs::exists(Status)) {
// Fail early if we can't write to the final destination.
if (!llvm::sys::fs::can_write(OutputPath)) {
Error = make_error_code(llvm::errc::operation_not_permitted);
return nullptr;
}
// Don't use a temporary if the output is a special file. This handles
// things like '-o /dev/null'
if (!llvm::sys::fs::is_regular_file(Status))
UseTemporary = false;
}
}
}
if (UseTemporary) {
// Create a temporary file.
SmallString<128> TempPath;
TempPath = OutFile;
TempPath += "-%%%%%%%%";
int fd;
std::error_code EC =
llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
if (CreateMissingDirectories &&
EC == llvm::errc::no_such_file_or_directory) {
StringRef Parent = llvm::sys::path::parent_path(OutputPath);
EC = llvm::sys::fs::create_directories(Parent);
if (!EC) {
EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
}
}
if (!EC) {
OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
OSFile = TempFile = TempPath.str();
}
// If we failed to create the temporary, fallback to writing to the file
// directly. This handles the corner case where we cannot write to the
// directory, but can write to the file.
}
if (!OS) {
OSFile = OutFile;
OS.reset(new llvm::raw_fd_ostream(
OSFile, Error,
(Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
if (Error)
return nullptr;
}
// Make sure the out stream file gets removed if we crash.
if (RemoveFileOnSignal)
llvm::sys::RemoveFileOnSignal(OSFile);
if (ResultPathName)
*ResultPathName = OutFile;
if (TempPathName)
*TempPathName = TempFile;
if (!Binary || OS->supportsSeeking())
return std::move(OS);
auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
assert(!NonSeekStream);
NonSeekStream = std::move(OS);
return std::move(B);
}
// Initialization Utilities
bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
return InitializeSourceManager(Input, getDiagnostics(),
getFileManager(), getSourceManager(),
getFrontendOpts());
}
bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input,
DiagnosticsEngine &Diags,
FileManager &FileMgr,
SourceManager &SourceMgr,
const FrontendOptions &Opts) {
SrcMgr::CharacteristicKind
Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
if (Input.isBuffer()) {
SourceMgr.setMainFileID(SourceMgr.createFileID(
std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind));
assert(SourceMgr.getMainFileID().isValid() &&
"Couldn't establish MainFileID!");
return true;
}
StringRef InputFile = Input.getFile();
// Figure out where to get and map in the main file.
if (InputFile != "-") {
const FileEntry *File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
if (!File) {
Diags.Report(diag::err_fe_error_reading) << InputFile;
return false;
}
// The natural SourceManager infrastructure can't currently handle named
// pipes, but we would at least like to accept them for the main
// file. Detect them here, read them with the volatile flag so FileMgr will
// pick up the correct size, and simply override their contents as we do for
// STDIN.
if (File->isNamedPipe()) {
auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
if (MB) {
// Create a new virtual file that will have the correct size.
File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
SourceMgr.overrideFileContents(File, std::move(*MB));
} else {
Diags.Report(diag::err_cannot_open_file) << InputFile
<< MB.getError().message();
return false;
}
}
SourceMgr.setMainFileID(
SourceMgr.createFileID(File, SourceLocation(), Kind));
} else {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
llvm::MemoryBuffer::getSTDIN();
if (std::error_code EC = SBOrErr.getError()) {
Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
return false;
}
std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
SB->getBufferSize(), 0);
SourceMgr.setMainFileID(
SourceMgr.createFileID(File, SourceLocation(), Kind));
SourceMgr.overrideFileContents(File, std::move(SB));
}
assert(SourceMgr.getMainFileID().isValid() &&
"Couldn't establish MainFileID!");
return true;
}
// High-Level Operations
bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
// FIXME: Take this as an argument, once all the APIs we used have moved to
// taking it as an input instead of hard-coding llvm::errs.
raw_ostream &OS = llvm::errs();
// Create the target instance.
setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
getInvocation().TargetOpts));
if (!hasTarget())
return false;
// Create TargetInfo for the other side of CUDA compilation.
if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) {
std::shared_ptr<TargetOptions> TO(new TargetOptions);
TO->Triple = getFrontendOpts().AuxTriple;
setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO));
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
getTarget().adjust(getLangOpts());
// rewriter project will change target built-in bool type from its default.
if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
getTarget().noSignedCharForObjCBool();
// Validate/process some options.
if (getHeaderSearchOpts().Verbose)
OS << "clang -cc1 version " CLANG_VERSION_STRING
<< " based upon " << BACKEND_PACKAGE_STRING
<< " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
if (getFrontendOpts().ShowTimers)
createFrontendTimer();
if (getFrontendOpts().ShowStats)
llvm::EnableStatistics();
for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) {
// Reset the ID tables if we are reusing the SourceManager and parsing
// regular files.
if (hasSourceManager() && !Act.isModelParsingAction())
getSourceManager().clearIDTables();
if (Act.BeginSourceFile(*this, FIF)) {
Act.Execute();
Act.EndSourceFile();
}
}
// Notify the diagnostic client that all files were processed.
getDiagnostics().getClient()->finish();
if (getDiagnosticOpts().ShowCarets) {
// We can have multiple diagnostics sharing one diagnostic client.
// Get the total number of warnings/errors from the client.
unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
if (NumWarnings)
OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
if (NumWarnings && NumErrors)
OS << " and ";
if (NumErrors)
OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
if (NumWarnings || NumErrors)
OS << " generated.\n";
}
if (getFrontendOpts().ShowStats && hasFileManager()) {
getFileManager().PrintStats();
OS << "\n";
}
return !getDiagnostics().getClient()->getNumErrors();
}
/// \brief Determine the appropriate source input kind based on language
/// options.
static InputKind getSourceInputKindFromOptions(const LangOptions &LangOpts) {
if (LangOpts.OpenCL)
return IK_OpenCL;
if (LangOpts.CUDA)
return IK_CUDA;
if (LangOpts.ObjC1)
return LangOpts.CPlusPlus? IK_ObjCXX : IK_ObjC;
return LangOpts.CPlusPlus? IK_CXX : IK_C;
}
/// \brief Compile a module file for the given module, using the options
/// provided by the importing compiler instance. Returns true if the module
/// was built without errors.
static bool compileModuleImpl(CompilerInstance &ImportingInstance,
SourceLocation ImportLoc,
Module *Module,
StringRef ModuleFileName) {
ModuleMap &ModMap
= ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
// Construct a compiler invocation for creating this module.
IntrusiveRefCntPtr<CompilerInvocation> Invocation
(new CompilerInvocation(ImportingInstance.getInvocation()));
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
// For any options that aren't intended to affect how a module is built,
// reset them to their default values.
Invocation->getLangOpts()->resetNonModularOptions();
PPOpts.resetNonModularOptions();
// Remove any macro definitions that are explicitly ignored by the module.
// They aren't supposed to affect how the module is built anyway.
const HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
PPOpts.Macros.erase(
std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
[&HSOpts](const std::pair<std::string, bool> &def) {
StringRef MacroDef = def.first;
return HSOpts.ModulesIgnoreMacros.count(MacroDef.split('=').first) > 0;
}),
PPOpts.Macros.end());
// Note the name of the module we're building.
Invocation->getLangOpts()->CurrentModule = Module->getTopLevelModuleName();
// Make sure that the failed-module structure has been allocated in
// the importing instance, and propagate the pointer to the newly-created
// instance.
PreprocessorOptions &ImportingPPOpts
= ImportingInstance.getInvocation().getPreprocessorOpts();
if (!ImportingPPOpts.FailedModules)
ImportingPPOpts.FailedModules = new PreprocessorOptions::FailedModulesSet;
PPOpts.FailedModules = ImportingPPOpts.FailedModules;
// If there is a module map file, build the module using the module map.
// Set up the inputs/outputs so that we build the module from its umbrella
// header.
FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
FrontendOpts.OutputFile = ModuleFileName.str();
FrontendOpts.DisableFree = false;
FrontendOpts.GenerateGlobalModuleIndex = false;
FrontendOpts.BuildingImplicitModule = true;
FrontendOpts.Inputs.clear();
InputKind IK = getSourceInputKindFromOptions(*Invocation->getLangOpts());
// Don't free the remapped file buffers; they are owned by our caller.
PPOpts.RetainRemappedFileBuffers = true;
Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
assert(ImportingInstance.getInvocation().getModuleHash() ==
Invocation->getModuleHash() && "Module hash mismatch!");
// Construct a compiler instance that will be used to actually create the
// module.
CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(),
/*BuildingModule=*/true);
Instance.setInvocation(&*Invocation);
Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
ImportingInstance.getDiagnosticClient()),
/*ShouldOwnClient=*/true);
Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
// Note that this module is part of the module build stack, so that we
// can detect cycles in the module graph.
Instance.setFileManager(&ImportingInstance.getFileManager());
Instance.createSourceManager(Instance.getFileManager());
SourceManager &SourceMgr = Instance.getSourceManager();
SourceMgr.setModuleBuildStack(
ImportingInstance.getSourceManager().getModuleBuildStack());
SourceMgr.pushModuleBuildStack(Module->getTopLevelModuleName(),
FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
// If we're collecting module dependencies, we need to share a collector
// between all of the module CompilerInstances. Other than that, we don't
// want to produce any dependency output from the module build.
Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
Invocation->getDependencyOutputOpts() = DependencyOutputOptions();
// Get or create the module map that we'll use to build this module.
std::string InferredModuleMapContent;
if (const FileEntry *ModuleMapFile =
ModMap.getContainingModuleMapFile(Module)) {
// Use the module map where this module resides.
FrontendOpts.Inputs.emplace_back(ModuleMapFile->getName(), IK);
} else {
SmallString<128> FakeModuleMapFile(Module->Directory->getName());
llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
FrontendOpts.Inputs.emplace_back(FakeModuleMapFile, IK);
llvm::raw_string_ostream OS(InferredModuleMapContent);
Module->print(OS);
OS.flush();
std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
ModuleMapFile = Instance.getFileManager().getVirtualFile(
FakeModuleMapFile, InferredModuleMapContent.size(), 0);
SourceMgr.overrideFileContents(ModuleMapFile, std::move(ModuleMapBuffer));
}
// Construct a module-generating action. Passing through the module map is
// safe because the FileManager is shared between the compiler instances.
GenerateModuleAction CreateModuleAction(
ModMap.getModuleMapFileForUniquing(Module), Module->IsSystem);
ImportingInstance.getDiagnostics().Report(ImportLoc,
diag::remark_module_build)
<< Module->Name << ModuleFileName;
// Execute the action to actually build the module in-place. Use a separate
// thread so that we get a stack large enough.
const unsigned ThreadStackSize = 8 << 20;
llvm::CrashRecoveryContext CRC;
CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(CreateModuleAction); },
ThreadStackSize);
ImportingInstance.getDiagnostics().Report(ImportLoc,
diag::remark_module_build_done)
<< Module->Name;
// Delete the temporary module map file.
// FIXME: Even though we're executing under crash protection, it would still
// be nice to do this with RemoveFileOnSignal when we can. However, that
// doesn't make sense for all clients, so clean this up manually.
Instance.clearOutputFiles(/*EraseFiles=*/true);
// We've rebuilt a module. If we're allowed to generate or update the global
// module index, record that fact in the importing compiler instance.
if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
ImportingInstance.setBuildGlobalModuleIndex(true);
}
return !Instance.getDiagnostics().hasErrorOccurred();
}
static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
SourceLocation ImportLoc,
SourceLocation ModuleNameLoc, Module *Module,
StringRef ModuleFileName) {
DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
auto diagnoseBuildFailure = [&] {
Diags.Report(ModuleNameLoc, diag::err_module_not_built)
<< Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
};
// FIXME: have LockFileManager return an error_code so that we can
// avoid the mkdir when the directory already exists.
StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
llvm::sys::fs::create_directories(Dir);
while (1) {
unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
llvm::LockFileManager Locked(ModuleFileName);
switch (Locked) {
case llvm::LockFileManager::LFS_Error:
Diags.Report(ModuleNameLoc, diag::err_module_lock_failure)
<< Module->Name;
return false;
case llvm::LockFileManager::LFS_Owned:
// We're responsible for building the module ourselves.
if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
ModuleFileName)) {
diagnoseBuildFailure();
return false;
}
break;
case llvm::LockFileManager::LFS_Shared:
// Someone else is responsible for building the module. Wait for them to
// finish.
switch (Locked.waitForUnlock()) {
case llvm::LockFileManager::Res_Success:
ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
break;
case llvm::LockFileManager::Res_OwnerDied:
continue; // try again to get the lock.
case llvm::LockFileManager::Res_Timeout:
Diags.Report(ModuleNameLoc, diag::err_module_lock_timeout)
<< Module->Name;
// Clear the lock file so that future invokations can make progress.
Locked.unsafeRemoveLockFile();
return false;
}
break;
}
// Try to read the module file, now that we've compiled it.
ASTReader::ASTReadResult ReadResult =
ImportingInstance.getModuleManager()->ReadAST(
ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
ModuleLoadCapabilities);
if (ReadResult == ASTReader::OutOfDate &&
Locked == llvm::LockFileManager::LFS_Shared) {
// The module may be out of date in the presence of file system races,
// or if one of its imports depends on header search paths that are not
// consistent with this ImportingInstance. Try again...
continue;
} else if (ReadResult == ASTReader::Missing) {
diagnoseBuildFailure();
} else if (ReadResult != ASTReader::Success &&
!Diags.hasErrorOccurred()) {
// The ASTReader didn't diagnose the error, so conservatively report it.
diagnoseBuildFailure();
}
return ReadResult == ASTReader::Success;
}
}
/// \brief Diagnose differences between the current definition of the given
/// configuration macro and the definition provided on the command line.
static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
Module *Mod, SourceLocation ImportLoc) {
IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
SourceManager &SourceMgr = PP.getSourceManager();
// If this identifier has never had a macro definition, then it could
// not have changed.
if (!Id->hadMacroDefinition())
return;
auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
// Find the macro definition from the command line.
MacroInfo *CmdLineDefinition = nullptr;
for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
// We only care about the predefines buffer.
FileID FID = SourceMgr.getFileID(MD->getLocation());
if (FID.isInvalid() || FID != PP.getPredefinesFileID())
continue;
if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
CmdLineDefinition = DMD->getMacroInfo();
break;
}
auto *CurrentDefinition = PP.getMacroInfo(Id);
if (CurrentDefinition == CmdLineDefinition) {
// Macro matches. Nothing to do.
} else if (!CurrentDefinition) {
// This macro was defined on the command line, then #undef'd later.
// Complain.
PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
<< true << ConfigMacro << Mod->getFullModuleName();
auto LatestDef = LatestLocalMD->getDefinition();
assert(LatestDef.isUndefined() &&
"predefined macro went away with no #undef?");
PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
<< true;
return;
} else if (!CmdLineDefinition) {
// There was no definition for this macro in the predefines buffer,
// but there was a local definition. Complain.
PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
<< false << ConfigMacro << Mod->getFullModuleName();
PP.Diag(CurrentDefinition->getDefinitionLoc(),
diag::note_module_def_undef_here)
<< false;
} else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
/*Syntactically=*/true)) {
// The macro definitions differ.
PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
<< false << ConfigMacro << Mod->getFullModuleName();
PP.Diag(CurrentDefinition->getDefinitionLoc(),
diag::note_module_def_undef_here)
<< false;
}
}
/// \brief Write a new timestamp file with the given path.
static void writeTimestampFile(StringRef TimestampFile) {
std::error_code EC;
llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
}
/// \brief Prune the module cache of modules that haven't been accessed in
/// a long time.
static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
struct stat StatBuf;
llvm::SmallString<128> TimestampFile;
TimestampFile = HSOpts.ModuleCachePath;
assert(!TimestampFile.empty());
llvm::sys::path::append(TimestampFile, "modules.timestamp");
// Try to stat() the timestamp file.
if (::stat(TimestampFile.c_str(), &StatBuf)) {
// If the timestamp file wasn't there, create one now.
if (errno == ENOENT) {
writeTimestampFile(TimestampFile);
}
return;
}
// Check whether the time stamp is older than our pruning interval.
// If not, do nothing.
time_t TimeStampModTime = StatBuf.st_mtime;
time_t CurrentTime = time(nullptr);
if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
return;
// Write a new timestamp file so that nobody else attempts to prune.
// There is a benign race condition here, if two Clang instances happen to
// notice at the same time that the timestamp is out-of-date.
writeTimestampFile(TimestampFile);
// Walk the entire module cache, looking for unused module files and module
// indices.
std::error_code EC;
SmallString<128> ModuleCachePathNative;
llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
Dir != DirEnd && !EC; Dir.increment(EC)) {
// If we don't have a directory, there's nothing to look into.
if (!llvm::sys::fs::is_directory(Dir->path()))
continue;
// Walk all of the files within this directory.
for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
File != FileEnd && !EC; File.increment(EC)) {
// We only care about module and global module index files.
StringRef Extension = llvm::sys::path::extension(File->path());
if (Extension != ".pcm" && Extension != ".timestamp" &&
llvm::sys::path::filename(File->path()) != "modules.idx")
continue;
// Look at this file. If we can't stat it, there's nothing interesting
// there.
if (::stat(File->path().c_str(), &StatBuf))
continue;
// If the file has been used recently enough, leave it there.
time_t FileAccessTime = StatBuf.st_atime;
if (CurrentTime - FileAccessTime <=
time_t(HSOpts.ModuleCachePruneAfter)) {
continue;
}
// Remove the file.
llvm::sys::fs::remove(File->path());
// Remove the timestamp file.
std::string TimpestampFilename = File->path() + ".timestamp";
llvm::sys::fs::remove(TimpestampFilename);
}
// If we removed all of the files in the directory, remove the directory
// itself.
if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
llvm::sys::fs::directory_iterator() && !EC)
llvm::sys::fs::remove(Dir->path());
}
}
void CompilerInstance::createModuleManager() {
if (!ModuleManager) {
if (!hasASTContext())
createASTContext();
// If we're implicitly building modules but not currently recursively
// building a module, check whether we need to prune the module cache.
if (getSourceManager().getModuleBuildStack().empty() &&
!getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() &&
getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
pruneModuleCache(getHeaderSearchOpts());
}
HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
std::string Sysroot = HSOpts.Sysroot;
const PreprocessorOptions &PPOpts = getPreprocessorOpts();
std::unique_ptr<llvm::Timer> ReadTimer;
if (FrontendTimerGroup)
ReadTimer = llvm::make_unique<llvm::Timer>("Reading modules",
*FrontendTimerGroup);
ModuleManager = new ASTReader(
getPreprocessor(), getASTContext(), getPCHContainerReader(),
getFrontendOpts().ModuleFileExtensions,
Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation,
/*AllowASTWithCompilerErrors=*/false,
/*AllowConfigurationMismatch=*/false,
HSOpts.ModulesValidateSystemHeaders,
getFrontendOpts().UseGlobalModuleIndex,
std::move(ReadTimer));
if (hasASTConsumer()) {
ModuleManager->setDeserializationListener(
getASTConsumer().GetASTDeserializationListener());
getASTContext().setASTMutationListener(
getASTConsumer().GetASTMutationListener());
}
getASTContext().setExternalSource(ModuleManager);
if (hasSema())
ModuleManager->InitializeSema(getSema());
if (hasASTConsumer())
ModuleManager->StartTranslationUnit(&getASTConsumer());
if (TheDependencyFileGenerator)
TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
if (ModuleDepCollector)
ModuleDepCollector->attachToASTReader(*ModuleManager);
for (auto &Listener : DependencyCollectors)
Listener->attachToASTReader(*ModuleManager);
}
}
bool CompilerInstance::loadModuleFile(StringRef FileName) {
llvm::Timer Timer;
if (FrontendTimerGroup)
Timer.init("Preloading " + FileName.str(), *FrontendTimerGroup);
llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
// Helper to recursively read the module names for all modules we're adding.
// We mark these as known and redirect any attempt to load that module to
// the files we were handed.
struct ReadModuleNames : ASTReaderListener {
CompilerInstance &CI;
llvm::SmallVector<IdentifierInfo*, 8> LoadedModules;
ReadModuleNames(CompilerInstance &CI) : CI(CI) {}
void ReadModuleName(StringRef ModuleName) override {
LoadedModules.push_back(
CI.getPreprocessor().getIdentifierInfo(ModuleName));
}
void registerAll() {
for (auto *II : LoadedModules) {
CI.KnownModules[II] = CI.getPreprocessor()
.getHeaderSearchInfo()
.getModuleMap()
.findModule(II->getName());
}
LoadedModules.clear();
}
void markAllUnavailable() {
for (auto *II : LoadedModules) {
if (Module *M = CI.getPreprocessor()
.getHeaderSearchInfo()
.getModuleMap()
.findModule(II->getName()))
M->HasIncompatibleModuleFile = true;
}
LoadedModules.clear();
}
};
// If we don't already have an ASTReader, create one now.
if (!ModuleManager)
createModuleManager();
auto Listener = llvm::make_unique<ReadModuleNames>(*this);
auto &ListenerRef = *Listener;
ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager,
std::move(Listener));
// Try to load the module file.
switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule,
SourceLocation(),
ASTReader::ARR_ConfigurationMismatch)) {
case ASTReader::Success:
// We successfully loaded the module file; remember the set of provided
// modules so that we don't try to load implicit modules for them.
ListenerRef.registerAll();
return true;
case ASTReader::ConfigurationMismatch:
// Ignore unusable module files.
getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch)
<< FileName;
// All modules provided by any files we tried and failed to load are now
// unavailable; includes of those modules should now be handled textually.
ListenerRef.markAllUnavailable();
return true;
default:
return false;
}
}
ModuleLoadResult
CompilerInstance::loadModule(SourceLocation ImportLoc,
ModuleIdPath Path,
Module::NameVisibilityKind Visibility,
bool IsInclusionDirective) {
// Determine what file we're searching from.
StringRef ModuleName = Path[0].first->getName();
SourceLocation ModuleNameLoc = Path[0].second;
// If we've already handled this import, just return the cached result.
// This one-element cache is important to eliminate redundant diagnostics
// when both the preprocessor and parser see the same import declaration.
if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) {
// Make the named module visible.
if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule &&
ModuleName != getLangOpts().ImplementationOfModule)
ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
ImportLoc);
return LastModuleImportResult;
}
clang::Module *Module = nullptr;
// If we don't already have information on this module, load the module now.
llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
= KnownModules.find(Path[0].first);
if (Known != KnownModules.end()) {
// Retrieve the cached top-level module.
Module = Known->second;
} else if (ModuleName == getLangOpts().CurrentModule ||
ModuleName == getLangOpts().ImplementationOfModule) {
// This is the module we're building.
Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
} else {
// Search for a module with the given name.
Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
if (!Module) {
getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
<< ModuleName
<< SourceRange(ImportLoc, ModuleNameLoc);
ModuleBuildFailed = true;
return ModuleLoadResult();
}
std::string ModuleFileName =
PP->getHeaderSearchInfo().getModuleFileName(Module);
if (ModuleFileName.empty()) {
if (Module->HasIncompatibleModuleFile) {
// We tried and failed to load a module file for this module. Fall
// back to textual inclusion for its headers.
return ModuleLoadResult(nullptr, /*missingExpected*/true);
}
getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
<< ModuleName;
ModuleBuildFailed = true;
return ModuleLoadResult();
}
// If we don't already have an ASTReader, create one now.
if (!ModuleManager)
createModuleManager();
llvm::Timer Timer;
if (FrontendTimerGroup)
Timer.init("Loading " + ModuleFileName, *FrontendTimerGroup);
llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
// Try to load the module file.
unsigned ARRFlags = ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing;
switch (ModuleManager->ReadAST(ModuleFileName,
serialization::MK_ImplicitModule,
ImportLoc, ARRFlags)) {
case ASTReader::Success:
break;
case ASTReader::OutOfDate:
case ASTReader::Missing: {
// The module file is missing or out-of-date. Build it.
assert(Module && "missing module file");
// Check whether there is a cycle in the module graph.
ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
for (; Pos != PosEnd; ++Pos) {
if (Pos->first == ModuleName)
break;
}
if (Pos != PosEnd) {
SmallString<256> CyclePath;
for (; Pos != PosEnd; ++Pos) {
CyclePath += Pos->first;
CyclePath += " -> ";
}
CyclePath += ModuleName;
getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
<< ModuleName << CyclePath;
return ModuleLoadResult();
}
// Check whether we have already attempted to build this module (but
// failed).
if (getPreprocessorOpts().FailedModules &&
getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
<< ModuleName
<< SourceRange(ImportLoc, ModuleNameLoc);
ModuleBuildFailed = true;
return ModuleLoadResult();
}
// Try to compile and then load the module.
if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
ModuleFileName)) {
assert(getDiagnostics().hasErrorOccurred() &&
"undiagnosed error in compileAndLoadModule");
if (getPreprocessorOpts().FailedModules)
getPreprocessorOpts().FailedModules->addFailed(ModuleName);
KnownModules[Path[0].first] = nullptr;
ModuleBuildFailed = true;
return ModuleLoadResult();
}
// Okay, we've rebuilt and now loaded the module.
break;
}
case ASTReader::VersionMismatch:
case ASTReader::ConfigurationMismatch:
case ASTReader::HadErrors:
ModuleLoader::HadFatalFailure = true;
// FIXME: The ASTReader will already have complained, but can we shoehorn
// that diagnostic information into a more useful form?
KnownModules[Path[0].first] = nullptr;
return ModuleLoadResult();
case ASTReader::Failure:
ModuleLoader::HadFatalFailure = true;
// Already complained, but note now that we failed.
KnownModules[Path[0].first] = nullptr;
ModuleBuildFailed = true;
return ModuleLoadResult();
}
// Cache the result of this top-level module lookup for later.
Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
}
// If we never found the module, fail.
if (!Module)
return ModuleLoadResult();
// Verify that the rest of the module path actually corresponds to
// a submodule.
if (Path.size() > 1) {
for (unsigned I = 1, N = Path.size(); I != N; ++I) {
StringRef Name = Path[I].first->getName();
clang::Module *Sub = Module->findSubmodule(Name);
if (!Sub) {
// Attempt to perform typo correction to find a module name that works.
SmallVector<StringRef, 2> Best;
unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
for (clang::Module::submodule_iterator J = Module->submodule_begin(),
JEnd = Module->submodule_end();
J != JEnd; ++J) {
unsigned ED = Name.edit_distance((*J)->Name,
/*AllowReplacements=*/true,
BestEditDistance);
if (ED <= BestEditDistance) {
if (ED < BestEditDistance) {
Best.clear();
BestEditDistance = ED;
}
Best.push_back((*J)->Name);
}
}
// If there was a clear winner, user it.
if (Best.size() == 1) {
getDiagnostics().Report(Path[I].second,
diag::err_no_submodule_suggest)
<< Path[I].first << Module->getFullModuleName() << Best[0]
<< SourceRange(Path[0].second, Path[I-1].second)
<< FixItHint::CreateReplacement(SourceRange(Path[I].second),
Best[0]);
Sub = Module->findSubmodule(Best[0]);
}
}
if (!Sub) {
// No submodule by this name. Complain, and don't look for further
// submodules.
getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
<< Path[I].first << Module->getFullModuleName()
<< SourceRange(Path[0].second, Path[I-1].second);
break;
}
Module = Sub;
}
}
// Don't make the module visible if we are in the implementation.
if (ModuleName == getLangOpts().ImplementationOfModule)
return ModuleLoadResult(Module, false);
// Make the named module visible, if it's not already part of the module
// we are parsing.
if (ModuleName != getLangOpts().CurrentModule) {
if (!Module->IsFromModuleFile) {
// We have an umbrella header or directory that doesn't actually include
// all of the headers within the directory it covers. Complain about
// this missing submodule and recover by forgetting that we ever saw
// this submodule.
// FIXME: Should we detect this at module load time? It seems fairly
// expensive (and rare).
getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
<< Module->getFullModuleName()
<< SourceRange(Path.front().second, Path.back().second);
return ModuleLoadResult(nullptr, true);
}
// Check whether this module is available.
clang::Module::Requirement Requirement;
clang::Module::UnresolvedHeaderDirective MissingHeader;
if (!Module->isAvailable(getLangOpts(), getTarget(), Requirement,
MissingHeader)) {
if (MissingHeader.FileNameLoc.isValid()) {
getDiagnostics().Report(MissingHeader.FileNameLoc,
diag::err_module_header_missing)
<< MissingHeader.IsUmbrella << MissingHeader.FileName;
} else {
getDiagnostics().Report(ImportLoc, diag::err_module_unavailable)
<< Module->getFullModuleName()
<< Requirement.second << Requirement.first
<< SourceRange(Path.front().second, Path.back().second);
}
LastModuleImportLoc = ImportLoc;
LastModuleImportResult = ModuleLoadResult();
return ModuleLoadResult();
}
ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
}
// Check for any configuration macros that have changed.
clang::Module *TopModule = Module->getTopLevelModule();
for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
Module, ImportLoc);
}
LastModuleImportLoc = ImportLoc;
LastModuleImportResult = ModuleLoadResult(Module, false);
return LastModuleImportResult;
}
void CompilerInstance::makeModuleVisible(Module *Mod,
Module::NameVisibilityKind Visibility,
SourceLocation ImportLoc) {
if (!ModuleManager)
createModuleManager();
if (!ModuleManager)
return;
ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
}
GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
SourceLocation TriggerLoc) {
if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty())
return nullptr;
if (!ModuleManager)
createModuleManager();
// Can't do anything if we don't have the module manager.
if (!ModuleManager)
return nullptr;
// Get an existing global index. This loads it if not already
// loaded.
ModuleManager->loadGlobalIndex();
GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
// If the global index doesn't exist, create it.
if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
hasPreprocessor()) {
llvm::sys::fs::create_directories(
getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
GlobalModuleIndex::writeIndex(
getFileManager(), getPCHContainerReader(),
getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
ModuleManager->resetForReload();
ModuleManager->loadGlobalIndex();
GlobalIndex = ModuleManager->getGlobalIndex();
}
// For finding modules needing to be imported for fixit messages,
// we need to make the global index cover all modules, so we do that here.
if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
bool RecreateIndex = false;
for (ModuleMap::module_iterator I = MMap.module_begin(),
E = MMap.module_end(); I != E; ++I) {
Module *TheModule = I->second;
const FileEntry *Entry = TheModule->getASTFile();
if (!Entry) {
SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
Path.push_back(std::make_pair(
getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
std::reverse(Path.begin(), Path.end());
// Load a module as hidden. This also adds it to the global index.
loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false);
RecreateIndex = true;
}
}
if (RecreateIndex) {
GlobalModuleIndex::writeIndex(
getFileManager(), getPCHContainerReader(),
getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
ModuleManager->resetForReload();
ModuleManager->loadGlobalIndex();
GlobalIndex = ModuleManager->getGlobalIndex();
}
HaveFullGlobalModuleIndex = true;
}
return GlobalIndex;
}
// Check global module index for missing imports.
bool
CompilerInstance::lookupMissingImports(StringRef Name,
SourceLocation TriggerLoc) {
// Look for the symbol in non-imported modules, but only if an error
// actually occurred.
if (!buildingModule()) {
// Load global module index, or retrieve a previously loaded one.
GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
TriggerLoc);
// Only if we have a global index.
if (GlobalIndex) {
GlobalModuleIndex::HitSet FoundModules;
// Find the modules that reference the identifier.
// Note that this only finds top-level modules.
// We'll let diagnoseTypo find the actual declaration module.
if (GlobalIndex->lookupIdentifier(Name, FoundModules))
return true;
}
}
return false;
}
void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }