/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define _LARGEFILE64_SOURCE #include <ctype.h> #include <errno.h> #include <fcntl.h> #include <getopt.h> #include <inttypes.h> #include <limits.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <unistd.h> #include <functional> #include <utility> #include <vector> #include <android-base/parseint.h> #include <android-base/parsenetaddress.h> #include <android-base/strings.h> #include <sparse/sparse.h> #include <ziparchive/zip_archive.h> #include "bootimg_utils.h" #include "diagnose_usb.h" #include "fastboot.h" #include "fs.h" #include "tcp.h" #include "transport.h" #include "udp.h" #include "usb.h" #ifndef O_BINARY #define O_BINARY 0 #endif #define ARRAY_SIZE(a) (sizeof(a)/sizeof(*(a))) char cur_product[FB_RESPONSE_SZ + 1]; static const char* serial = nullptr; static const char* product = nullptr; static const char* cmdline = nullptr; static unsigned short vendor_id = 0; static int long_listing = 0; static int64_t sparse_limit = -1; static int64_t target_sparse_limit = -1; static unsigned page_size = 2048; static unsigned base_addr = 0x10000000; static unsigned kernel_offset = 0x00008000; static unsigned ramdisk_offset = 0x01000000; static unsigned second_offset = 0x00f00000; static unsigned tags_offset = 0x00000100; static const std::string convert_fbe_marker_filename("convert_fbe"); enum fb_buffer_type { FB_BUFFER, FB_BUFFER_SPARSE, }; struct fastboot_buffer { enum fb_buffer_type type; void* data; int64_t sz; }; static struct { char img_name[13]; char sig_name[13]; char part_name[9]; bool is_optional; } images[] = { {"boot.img", "boot.sig", "boot", false}, {"recovery.img", "recovery.sig", "recovery", true}, {"system.img", "system.sig", "system", false}, {"vendor.img", "vendor.sig", "vendor", true}, }; static char* find_item(const char* item, const char* product) { char *dir; const char *fn; char path[PATH_MAX + 128]; if(!strcmp(item,"boot")) { fn = "boot.img"; } else if(!strcmp(item,"recovery")) { fn = "recovery.img"; } else if(!strcmp(item,"system")) { fn = "system.img"; } else if(!strcmp(item,"vendor")) { fn = "vendor.img"; } else if(!strcmp(item,"userdata")) { fn = "userdata.img"; } else if(!strcmp(item,"cache")) { fn = "cache.img"; } else if(!strcmp(item,"info")) { fn = "android-info.txt"; } else { fprintf(stderr,"unknown partition '%s'\n", item); return 0; } if(product) { get_my_path(path); sprintf(path + strlen(path), "../../../target/product/%s/%s", product, fn); return strdup(path); } dir = getenv("ANDROID_PRODUCT_OUT"); if((dir == 0) || (dir[0] == 0)) { die("neither -p product specified nor ANDROID_PRODUCT_OUT set"); return 0; } sprintf(path, "%s/%s", dir, fn); return strdup(path); } static int64_t get_file_size(int fd) { struct stat sb; return fstat(fd, &sb) == -1 ? -1 : sb.st_size; } static void* load_fd(int fd, int64_t* sz) { int errno_tmp; char* data = nullptr; *sz = get_file_size(fd); if (*sz < 0) { goto oops; } data = (char*) malloc(*sz); if (data == nullptr) goto oops; if(read(fd, data, *sz) != *sz) goto oops; close(fd); return data; oops: errno_tmp = errno; close(fd); if(data != 0) free(data); errno = errno_tmp; return 0; } static void* load_file(const char* fn, int64_t* sz) { int fd = open(fn, O_RDONLY | O_BINARY); if (fd == -1) return nullptr; return load_fd(fd, sz); } static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) { // Require a matching vendor id if the user specified one with -i. if (vendor_id != 0 && info->dev_vendor != vendor_id) { return -1; } if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) { return -1; } // require matching serial number or device path if requested // at the command line with the -s option. if (local_serial && (strcmp(local_serial, info->serial_number) != 0 && strcmp(local_serial, info->device_path) != 0)) return -1; return 0; } static int match_fastboot(usb_ifc_info* info) { return match_fastboot_with_serial(info, serial); } static int list_devices_callback(usb_ifc_info* info) { if (match_fastboot_with_serial(info, nullptr) == 0) { std::string serial = info->serial_number; if (!info->writable) { serial = UsbNoPermissionsShortHelpText(); } if (!serial[0]) { serial = "????????????"; } // output compatible with "adb devices" if (!long_listing) { printf("%s\tfastboot", serial.c_str()); } else { printf("%-22s fastboot", serial.c_str()); if (strlen(info->device_path) > 0) printf(" %s", info->device_path); } putchar('\n'); } return -1; } // Opens a new Transport connected to a device. If |serial| is non-null it will be used to identify // a specific device, otherwise the first USB device found will be used. // // If |serial| is non-null but invalid, this prints an error message to stderr and returns nullptr. // Otherwise it blocks until the target is available. // // The returned Transport is a singleton, so multiple calls to this function will return the same // object, and the caller should not attempt to delete the returned Transport. static Transport* open_device() { static Transport* transport = nullptr; bool announce = true; if (transport != nullptr) { return transport; } Socket::Protocol protocol = Socket::Protocol::kTcp; std::string host; int port = 0; if (serial != nullptr) { const char* net_address = nullptr; if (android::base::StartsWith(serial, "tcp:")) { protocol = Socket::Protocol::kTcp; port = tcp::kDefaultPort; net_address = serial + strlen("tcp:"); } else if (android::base::StartsWith(serial, "udp:")) { protocol = Socket::Protocol::kUdp; port = udp::kDefaultPort; net_address = serial + strlen("udp:"); } if (net_address != nullptr) { std::string error; if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) { fprintf(stderr, "error: Invalid network address '%s': %s\n", net_address, error.c_str()); return nullptr; } } } while (true) { if (!host.empty()) { std::string error; if (protocol == Socket::Protocol::kTcp) { transport = tcp::Connect(host, port, &error).release(); } else if (protocol == Socket::Protocol::kUdp) { transport = udp::Connect(host, port, &error).release(); } if (transport == nullptr && announce) { fprintf(stderr, "error: %s\n", error.c_str()); } } else { transport = usb_open(match_fastboot); } if (transport != nullptr) { return transport; } if (announce) { announce = false; fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device"); } usleep(1000); } } static void list_devices() { // We don't actually open a USB device here, // just getting our callback called so we can // list all the connected devices. usb_open(list_devices_callback); } static void usage() { fprintf(stderr, /* 1234567890123456789012345678901234567890123456789012345678901234567890123456 */ "usage: fastboot [ <option> ] <command>\n" "\n" "commands:\n" " update <filename> Reflash device from update.zip.\n" " flashall Flash boot, system, vendor, and --\n" " if found -- recovery.\n" " flash <partition> [ <filename> ] Write a file to a flash partition.\n" " flashing lock Locks the device. Prevents flashing.\n" " flashing unlock Unlocks the device. Allows flashing\n" " any partition except\n" " bootloader-related partitions.\n" " flashing lock_critical Prevents flashing bootloader-related\n" " partitions.\n" " flashing unlock_critical Enables flashing bootloader-related\n" " partitions.\n" " flashing get_unlock_ability Queries bootloader to see if the\n" " device is unlocked.\n" " flashing get_unlock_bootloader_nonce Queries the bootloader to get the\n" " unlock nonce.\n" " flashing unlock_bootloader <request> Issue unlock bootloader using request.\n" " flashing lock_bootloader Locks the bootloader to prevent\n" " bootloader version rollback.\n" " erase <partition> Erase a flash partition.\n" " format[:[<fs type>][:[<size>]] <partition>\n" " Format a flash partition. Can\n" " override the fs type and/or size\n" " the bootloader reports.\n" " getvar <variable> Display a bootloader variable.\n" " set_active <suffix> Sets the active slot. If slots are\n" " not supported, this does nothing.\n" " boot <kernel> [ <ramdisk> [ <second> ] ] Download and boot kernel.\n" " flash:raw boot <kernel> [ <ramdisk> [ <second> ] ]\n" " Create bootimage and flash it.\n" " devices [-l] List all connected devices [with\n" " device paths].\n" " continue Continue with autoboot.\n" " reboot [bootloader] Reboot device [into bootloader].\n" " reboot-bootloader Reboot device into bootloader.\n" " help Show this help message.\n" "\n" "options:\n" " -w Erase userdata and cache (and format\n" " if supported by partition type).\n" " -u Do not erase partition before\n" " formatting.\n" " -s <specific device> Specify a device. For USB, provide either\n" " a serial number or path to device port.\n" " For ethernet, provide an address in the" " form <protocol>:<hostname>[:port] where" " <protocol> is either tcp or udp.\n" " -p <product> Specify product name.\n" " -c <cmdline> Override kernel commandline.\n" " -i <vendor id> Specify a custom USB vendor id.\n" " -b, --base <base_addr> Specify a custom kernel base\n" " address (default: 0x10000000).\n" " --kernel-offset Specify a custom kernel offset.\n" " (default: 0x00008000)\n" " --ramdisk-offset Specify a custom ramdisk offset.\n" " (default: 0x01000000)\n" " --tags-offset Specify a custom tags offset.\n" " (default: 0x00000100)\n" " -n, --page-size <page size> Specify the nand page size\n" " (default: 2048).\n" " -S <size>[K|M|G] Automatically sparse files greater\n" " than 'size'. 0 to disable.\n" " --slot <suffix> Specify slot suffix to be used if the\n" " device supports slots. This will be\n" " added to all partition names that use\n" " slots. 'all' can be given to refer\n" " to all slots. 'other' can be given to\n" " refer to a non-current slot. If this\n" " flag is not used, slotted partitions\n" " will default to the current active slot.\n" " -a, --set-active[=<suffix>] Sets the active slot. If no suffix is\n" " provided, this will default to the value\n" " given by --slot. If slots are not\n" " supported, this does nothing. This will\n" " run after all non-reboot commands.\n" #if !defined(_WIN32) " --wipe-and-use-fbe On devices which support it,\n" " erase userdata and cache, and\n" " enable file-based encryption\n" #endif " --unbuffered Do not buffer input or output.\n" " --version Display version.\n" " -h, --help show this message.\n" ); } static void* load_bootable_image(const char* kernel, const char* ramdisk, const char* secondstage, int64_t* sz, const char* cmdline) { if (kernel == nullptr) { fprintf(stderr, "no image specified\n"); return 0; } int64_t ksize; void* kdata = load_file(kernel, &ksize); if (kdata == nullptr) { fprintf(stderr, "cannot load '%s': %s\n", kernel, strerror(errno)); return 0; } // Is this actually a boot image? if(!memcmp(kdata, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { if (cmdline) bootimg_set_cmdline((boot_img_hdr*) kdata, cmdline); if (ramdisk) { fprintf(stderr, "cannot boot a boot.img *and* ramdisk\n"); return 0; } *sz = ksize; return kdata; } void* rdata = nullptr; int64_t rsize = 0; if (ramdisk) { rdata = load_file(ramdisk, &rsize); if (rdata == nullptr) { fprintf(stderr,"cannot load '%s': %s\n", ramdisk, strerror(errno)); return 0; } } void* sdata = nullptr; int64_t ssize = 0; if (secondstage) { sdata = load_file(secondstage, &ssize); if (sdata == nullptr) { fprintf(stderr,"cannot load '%s': %s\n", secondstage, strerror(errno)); return 0; } } fprintf(stderr,"creating boot image...\n"); int64_t bsize = 0; void* bdata = mkbootimg(kdata, ksize, kernel_offset, rdata, rsize, ramdisk_offset, sdata, ssize, second_offset, page_size, base_addr, tags_offset, &bsize); if (bdata == nullptr) { fprintf(stderr,"failed to create boot.img\n"); return 0; } if (cmdline) bootimg_set_cmdline((boot_img_hdr*) bdata, cmdline); fprintf(stderr, "creating boot image - %" PRId64 " bytes\n", bsize); *sz = bsize; return bdata; } static void* unzip_file(ZipArchiveHandle zip, const char* entry_name, int64_t* sz) { ZipString zip_entry_name(entry_name); ZipEntry zip_entry; if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) { fprintf(stderr, "archive does not contain '%s'\n", entry_name); return 0; } *sz = zip_entry.uncompressed_length; uint8_t* data = reinterpret_cast<uint8_t*>(malloc(zip_entry.uncompressed_length)); if (data == nullptr) { fprintf(stderr, "failed to allocate %" PRId64 " bytes for '%s'\n", *sz, entry_name); return 0; } int error = ExtractToMemory(zip, &zip_entry, data, zip_entry.uncompressed_length); if (error != 0) { fprintf(stderr, "failed to extract '%s': %s\n", entry_name, ErrorCodeString(error)); free(data); return 0; } return data; } #if defined(_WIN32) // TODO: move this to somewhere it can be shared. #include <windows.h> // Windows' tmpfile(3) requires administrator rights because // it creates temporary files in the root directory. static FILE* win32_tmpfile() { char temp_path[PATH_MAX]; DWORD nchars = GetTempPath(sizeof(temp_path), temp_path); if (nchars == 0 || nchars >= sizeof(temp_path)) { fprintf(stderr, "GetTempPath failed, error %ld\n", GetLastError()); return nullptr; } char filename[PATH_MAX]; if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) { fprintf(stderr, "GetTempFileName failed, error %ld\n", GetLastError()); return nullptr; } return fopen(filename, "w+bTD"); } #define tmpfile win32_tmpfile static std::string make_temporary_directory() { fprintf(stderr, "make_temporary_directory not supported under Windows, sorry!"); return ""; } #else static std::string make_temporary_directory() { const char *tmpdir = getenv("TMPDIR"); if (tmpdir == nullptr) { tmpdir = P_tmpdir; } std::string result = std::string(tmpdir) + "/fastboot_userdata_XXXXXX"; if (mkdtemp(&result[0]) == NULL) { fprintf(stderr, "Unable to create temporary directory: %s\n", strerror(errno)); return ""; } return result; } #endif static std::string create_fbemarker_tmpdir() { std::string dir = make_temporary_directory(); if (dir.empty()) { fprintf(stderr, "Unable to create local temp directory for FBE marker\n"); return ""; } std::string marker_file = dir + "/" + convert_fbe_marker_filename; int fd = open(marker_file.c_str(), O_CREAT | O_WRONLY | O_CLOEXEC, 0666); if (fd == -1) { fprintf(stderr, "Unable to create FBE marker file %s locally: %d, %s\n", marker_file.c_str(), errno, strerror(errno)); return ""; } close(fd); return dir; } static void delete_fbemarker_tmpdir(const std::string& dir) { std::string marker_file = dir + "/" + convert_fbe_marker_filename; if (unlink(marker_file.c_str()) == -1) { fprintf(stderr, "Unable to delete FBE marker file %s locally: %d, %s\n", marker_file.c_str(), errno, strerror(errno)); return; } if (rmdir(dir.c_str()) == -1) { fprintf(stderr, "Unable to delete FBE marker directory %s locally: %d, %s\n", dir.c_str(), errno, strerror(errno)); return; } } static int unzip_to_file(ZipArchiveHandle zip, char* entry_name) { FILE* fp = tmpfile(); if (fp == nullptr) { fprintf(stderr, "failed to create temporary file for '%s': %s\n", entry_name, strerror(errno)); return -1; } ZipString zip_entry_name(entry_name); ZipEntry zip_entry; if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) { fprintf(stderr, "archive does not contain '%s'\n", entry_name); return -1; } int fd = fileno(fp); int error = ExtractEntryToFile(zip, &zip_entry, fd); if (error != 0) { fprintf(stderr, "failed to extract '%s': %s\n", entry_name, ErrorCodeString(error)); return -1; } lseek(fd, 0, SEEK_SET); return fd; } static char *strip(char *s) { int n; while(*s && isspace(*s)) s++; n = strlen(s); while(n-- > 0) { if(!isspace(s[n])) break; s[n] = 0; } return s; } #define MAX_OPTIONS 32 static int setup_requirement_line(char *name) { char *val[MAX_OPTIONS]; char *prod = nullptr; unsigned n, count; char *x; int invert = 0; if (!strncmp(name, "reject ", 7)) { name += 7; invert = 1; } else if (!strncmp(name, "require ", 8)) { name += 8; invert = 0; } else if (!strncmp(name, "require-for-product:", 20)) { // Get the product and point name past it prod = name + 20; name = strchr(name, ' '); if (!name) return -1; *name = 0; name += 1; invert = 0; } x = strchr(name, '='); if (x == 0) return 0; *x = 0; val[0] = x + 1; for(count = 1; count < MAX_OPTIONS; count++) { x = strchr(val[count - 1],'|'); if (x == 0) break; *x = 0; val[count] = x + 1; } name = strip(name); for(n = 0; n < count; n++) val[n] = strip(val[n]); name = strip(name); if (name == 0) return -1; const char* var = name; // Work around an unfortunate name mismatch. if (!strcmp(name,"board")) var = "product"; const char** out = reinterpret_cast<const char**>(malloc(sizeof(char*) * count)); if (out == 0) return -1; for(n = 0; n < count; n++) { out[n] = strdup(strip(val[n])); if (out[n] == 0) { for(size_t i = 0; i < n; ++i) { free((char*) out[i]); } free(out); return -1; } } fb_queue_require(prod, var, invert, n, out); return 0; } static void setup_requirements(char* data, int64_t sz) { char* s = data; while (sz-- > 0) { if (*s == '\n') { *s++ = 0; if (setup_requirement_line(data)) { die("out of memory"); } data = s; } else { s++; } } } static void queue_info_dump() { fb_queue_notice("--------------------------------------------"); fb_queue_display("version-bootloader", "Bootloader Version..."); fb_queue_display("version-baseband", "Baseband Version....."); fb_queue_display("serialno", "Serial Number........"); fb_queue_notice("--------------------------------------------"); } static struct sparse_file **load_sparse_files(int fd, int max_size) { struct sparse_file* s = sparse_file_import_auto(fd, false, true); if (!s) { die("cannot sparse read file\n"); } int files = sparse_file_resparse(s, max_size, nullptr, 0); if (files < 0) { die("Failed to resparse\n"); } sparse_file** out_s = reinterpret_cast<sparse_file**>(calloc(sizeof(struct sparse_file *), files + 1)); if (!out_s) { die("Failed to allocate sparse file array\n"); } files = sparse_file_resparse(s, max_size, out_s, files); if (files < 0) { die("Failed to resparse\n"); } return out_s; } static int64_t get_target_sparse_limit(Transport* transport) { std::string max_download_size; if (!fb_getvar(transport, "max-download-size", &max_download_size) || max_download_size.empty()) { fprintf(stderr, "target didn't report max-download-size\n"); return 0; } // Some bootloaders (angler, for example) send spurious whitespace too. max_download_size = android::base::Trim(max_download_size); uint64_t limit; if (!android::base::ParseUint(max_download_size.c_str(), &limit)) { fprintf(stderr, "couldn't parse max-download-size '%s'\n", max_download_size.c_str()); return 0; } if (limit > 0) { fprintf(stderr, "target reported max download size of %" PRId64 " bytes\n", limit); } return limit; } static int64_t get_sparse_limit(Transport* transport, int64_t size) { int64_t limit; if (sparse_limit == 0) { return 0; } else if (sparse_limit > 0) { limit = sparse_limit; } else { if (target_sparse_limit == -1) { target_sparse_limit = get_target_sparse_limit(transport); } if (target_sparse_limit > 0) { limit = target_sparse_limit; } else { return 0; } } if (size > limit) { return limit; } return 0; } // Until we get lazy inode table init working in make_ext4fs, we need to // erase partitions of type ext4 before flashing a filesystem so no stale // inodes are left lying around. Otherwise, e2fsck gets very upset. static bool needs_erase(Transport* transport, const char* partition) { std::string partition_type; if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) { return false; } return partition_type == "ext4"; } static int load_buf_fd(Transport* transport, int fd, struct fastboot_buffer* buf) { int64_t sz = get_file_size(fd); if (sz == -1) { return -1; } lseek64(fd, 0, SEEK_SET); int64_t limit = get_sparse_limit(transport, sz); if (limit) { sparse_file** s = load_sparse_files(fd, limit); if (s == nullptr) { return -1; } buf->type = FB_BUFFER_SPARSE; buf->data = s; } else { void* data = load_fd(fd, &sz); if (data == nullptr) return -1; buf->type = FB_BUFFER; buf->data = data; buf->sz = sz; } return 0; } static int load_buf(Transport* transport, const char *fname, struct fastboot_buffer *buf) { int fd; fd = open(fname, O_RDONLY | O_BINARY); if (fd < 0) { return -1; } return load_buf_fd(transport, fd, buf); } static void flash_buf(const char *pname, struct fastboot_buffer *buf) { sparse_file** s; switch (buf->type) { case FB_BUFFER_SPARSE: { std::vector<std::pair<sparse_file*, int64_t>> sparse_files; s = reinterpret_cast<sparse_file**>(buf->data); while (*s) { int64_t sz = sparse_file_len(*s, true, false); sparse_files.emplace_back(*s, sz); ++s; } for (size_t i = 0; i < sparse_files.size(); ++i) { const auto& pair = sparse_files[i]; fb_queue_flash_sparse(pname, pair.first, pair.second, i + 1, sparse_files.size()); } break; } case FB_BUFFER: fb_queue_flash(pname, buf->data, buf->sz); break; default: die("unknown buffer type: %d", buf->type); } } static std::vector<std::string> get_suffixes(Transport* transport) { std::vector<std::string> suffixes; std::string suffix_list; if (!fb_getvar(transport, "slot-suffixes", &suffix_list)) { die("Could not get suffixes.\n"); } return android::base::Split(suffix_list, ","); } static std::string verify_slot(Transport* transport, const char *slot, bool allow_all) { if (strcmp(slot, "all") == 0) { if (allow_all) { return "all"; } else { std::vector<std::string> suffixes = get_suffixes(transport); if (!suffixes.empty()) { return suffixes[0]; } else { die("No known slots."); } } } std::vector<std::string> suffixes = get_suffixes(transport); if (strcmp(slot, "other") == 0) { std::string current_slot; if (!fb_getvar(transport, "current-slot", ¤t_slot)) { die("Failed to identify current slot."); } if (!suffixes.empty()) { for (size_t i = 0; i < suffixes.size(); i++) { if (current_slot == suffixes[i]) return suffixes[(i+1)%suffixes.size()]; } } else { die("No known slots."); } } for (const std::string &suffix : suffixes) { if (suffix == slot) return slot; } fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot); for (const std::string &suffix : suffixes) { fprintf(stderr, "%s\n", suffix.c_str()); } exit(1); } static std::string verify_slot(Transport* transport, const char *slot) { return verify_slot(transport, slot, true); } static void do_for_partition(Transport* transport, const char *part, const char *slot, std::function<void(const std::string&)> func, bool force_slot) { std::string has_slot; std::string current_slot; if (!fb_getvar(transport, std::string("has-slot:")+part, &has_slot)) { /* If has-slot is not supported, the answer is no. */ has_slot = "no"; } if (has_slot == "yes") { if (!slot || slot[0] == 0) { if (!fb_getvar(transport, "current-slot", ¤t_slot)) { die("Failed to identify current slot.\n"); } func(std::string(part) + current_slot); } else { func(std::string(part) + slot); } } else { if (force_slot && slot && slot[0]) { fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n", part, slot); } func(part); } } /* This function will find the real partition name given a base name, and a slot. If slot is NULL or * empty, it will use the current slot. If slot is "all", it will return a list of all possible * partition names. If force_slot is true, it will fail if a slot is specified, and the given * partition does not support slots. */ static void do_for_partitions(Transport* transport, const char *part, const char *slot, std::function<void(const std::string&)> func, bool force_slot) { std::string has_slot; if (slot && strcmp(slot, "all") == 0) { if (!fb_getvar(transport, std::string("has-slot:") + part, &has_slot)) { die("Could not check if partition %s has slot.", part); } if (has_slot == "yes") { std::vector<std::string> suffixes = get_suffixes(transport); for (std::string &suffix : suffixes) { do_for_partition(transport, part, suffix.c_str(), func, force_slot); } } else { do_for_partition(transport, part, "", func, force_slot); } } else { do_for_partition(transport, part, slot, func, force_slot); } } static void do_flash(Transport* transport, const char* pname, const char* fname) { struct fastboot_buffer buf; if (load_buf(transport, fname, &buf)) { die("cannot load '%s'", fname); } flash_buf(pname, &buf); } static void do_update_signature(ZipArchiveHandle zip, char* fn) { int64_t sz; void* data = unzip_file(zip, fn, &sz); if (data == nullptr) return; fb_queue_download("signature", data, sz); fb_queue_command("signature", "installing signature"); } static void do_update(Transport* transport, const char* filename, const char* slot_override, bool erase_first) { queue_info_dump(); fb_queue_query_save("product", cur_product, sizeof(cur_product)); ZipArchiveHandle zip; int error = OpenArchive(filename, &zip); if (error != 0) { CloseArchive(zip); die("failed to open zip file '%s': %s", filename, ErrorCodeString(error)); } int64_t sz; void* data = unzip_file(zip, "android-info.txt", &sz); if (data == nullptr) { CloseArchive(zip); die("update package '%s' has no android-info.txt", filename); } setup_requirements(reinterpret_cast<char*>(data), sz); for (size_t i = 0; i < ARRAY_SIZE(images); ++i) { int fd = unzip_to_file(zip, images[i].img_name); if (fd == -1) { if (images[i].is_optional) { continue; } CloseArchive(zip); exit(1); // unzip_to_file already explained why. } fastboot_buffer buf; int rc = load_buf_fd(transport, fd, &buf); if (rc) die("cannot load %s from flash", images[i].img_name); auto update = [&](const std::string &partition) { do_update_signature(zip, images[i].sig_name); if (erase_first && needs_erase(transport, partition.c_str())) { fb_queue_erase(partition.c_str()); } flash_buf(partition.c_str(), &buf); /* not closing the fd here since the sparse code keeps the fd around * but hasn't mmaped data yet. The tmpfile will get cleaned up when the * program exits. */ }; do_for_partitions(transport, images[i].part_name, slot_override, update, false); } CloseArchive(zip); } static void do_send_signature(char* fn) { char* xtn = strrchr(fn, '.'); if (!xtn) return; if (strcmp(xtn, ".img")) return; strcpy(xtn, ".sig"); int64_t sz; void* data = load_file(fn, &sz); strcpy(xtn, ".img"); if (data == nullptr) return; fb_queue_download("signature", data, sz); fb_queue_command("signature", "installing signature"); } static void do_flashall(Transport* transport, const char* slot_override, int erase_first) { queue_info_dump(); fb_queue_query_save("product", cur_product, sizeof(cur_product)); char* fname = find_item("info", product); if (fname == nullptr) die("cannot find android-info.txt"); int64_t sz; void* data = load_file(fname, &sz); if (data == nullptr) die("could not load android-info.txt: %s", strerror(errno)); setup_requirements(reinterpret_cast<char*>(data), sz); for (size_t i = 0; i < ARRAY_SIZE(images); i++) { fname = find_item(images[i].part_name, product); fastboot_buffer buf; if (load_buf(transport, fname, &buf)) { if (images[i].is_optional) continue; die("could not load %s\n", images[i].img_name); } auto flashall = [&](const std::string &partition) { do_send_signature(fname); if (erase_first && needs_erase(transport, partition.c_str())) { fb_queue_erase(partition.c_str()); } flash_buf(partition.c_str(), &buf); }; do_for_partitions(transport, images[i].part_name, slot_override, flashall, false); } } #define skip(n) do { argc -= (n); argv += (n); } while (0) #define require(n) do { if (argc < (n)) {usage(); exit(1);}} while (0) static int do_bypass_unlock_command(int argc, char **argv) { if (argc <= 2) return 0; skip(2); /* * Process unlock_bootloader, we have to load the message file * and send that to the remote device. */ require(1); int64_t sz; void* data = load_file(*argv, &sz); if (data == nullptr) die("could not load '%s': %s", *argv, strerror(errno)); fb_queue_download("unlock_message", data, sz); fb_queue_command("flashing unlock_bootloader", "unlocking bootloader"); skip(1); return 0; } static int do_oem_command(int argc, char **argv) { char command[256]; if (argc <= 1) return 0; command[0] = 0; while(1) { strcat(command,*argv); skip(1); if(argc == 0) break; strcat(command," "); } fb_queue_command(command,""); return 0; } static int64_t parse_num(const char *arg) { char *endptr; unsigned long long num; num = strtoull(arg, &endptr, 0); if (endptr == arg) { return -1; } if (*endptr == 'k' || *endptr == 'K') { if (num >= (-1ULL) / 1024) { return -1; } num *= 1024LL; endptr++; } else if (*endptr == 'm' || *endptr == 'M') { if (num >= (-1ULL) / (1024 * 1024)) { return -1; } num *= 1024LL * 1024LL; endptr++; } else if (*endptr == 'g' || *endptr == 'G') { if (num >= (-1ULL) / (1024 * 1024 * 1024)) { return -1; } num *= 1024LL * 1024LL * 1024LL; endptr++; } if (*endptr != '\0') { return -1; } if (num > INT64_MAX) { return -1; } return num; } static void fb_perform_format(Transport* transport, const char* partition, int skip_if_not_supported, const char* type_override, const char* size_override, const std::string& initial_dir) { std::string partition_type, partition_size; struct fastboot_buffer buf; const char* errMsg = nullptr; const struct fs_generator* gen = nullptr; int fd; unsigned int limit = INT_MAX; if (target_sparse_limit > 0 && target_sparse_limit < limit) { limit = target_sparse_limit; } if (sparse_limit > 0 && sparse_limit < limit) { limit = sparse_limit; } if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) { errMsg = "Can't determine partition type.\n"; goto failed; } if (type_override) { if (partition_type != type_override) { fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n", partition, partition_type.c_str(), type_override); } partition_type = type_override; } if (!fb_getvar(transport, std::string("partition-size:") + partition, &partition_size)) { errMsg = "Unable to get partition size\n"; goto failed; } if (size_override) { if (partition_size != size_override) { fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n", partition, partition_size.c_str(), size_override); } partition_size = size_override; } // Some bootloaders (angler, for example), send spurious leading whitespace. partition_size = android::base::Trim(partition_size); // Some bootloaders (hammerhead, for example) use implicit hex. // This code used to use strtol with base 16. if (!android::base::StartsWith(partition_size, "0x")) partition_size = "0x" + partition_size; gen = fs_get_generator(partition_type); if (!gen) { if (skip_if_not_supported) { fprintf(stderr, "Erase successful, but not automatically formatting.\n"); fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str()); return; } fprintf(stderr, "Formatting is not supported for file system with type '%s'.\n", partition_type.c_str()); return; } int64_t size; if (!android::base::ParseInt(partition_size.c_str(), &size)) { fprintf(stderr, "Couldn't parse partition size '%s'.\n", partition_size.c_str()); return; } fd = fileno(tmpfile()); if (fs_generator_generate(gen, fd, size, initial_dir)) { fprintf(stderr, "Cannot generate image: %s\n", strerror(errno)); close(fd); return; } if (load_buf_fd(transport, fd, &buf)) { fprintf(stderr, "Cannot read image: %s\n", strerror(errno)); close(fd); return; } flash_buf(partition, &buf); return; failed: if (skip_if_not_supported) { fprintf(stderr, "Erase successful, but not automatically formatting.\n"); if (errMsg) fprintf(stderr, "%s", errMsg); } fprintf(stderr,"FAILED (%s)\n", fb_get_error()); } int main(int argc, char **argv) { bool wants_wipe = false; bool wants_reboot = false; bool wants_reboot_bootloader = false; bool wants_set_active = false; bool erase_first = true; bool set_fbe_marker = false; void *data; int64_t sz; int longindex; std::string slot_override; std::string next_active; const struct option longopts[] = { {"base", required_argument, 0, 'b'}, {"kernel_offset", required_argument, 0, 'k'}, {"kernel-offset", required_argument, 0, 'k'}, {"page_size", required_argument, 0, 'n'}, {"page-size", required_argument, 0, 'n'}, {"ramdisk_offset", required_argument, 0, 'r'}, {"ramdisk-offset", required_argument, 0, 'r'}, {"tags_offset", required_argument, 0, 't'}, {"tags-offset", required_argument, 0, 't'}, {"help", no_argument, 0, 'h'}, {"unbuffered", no_argument, 0, 0}, {"version", no_argument, 0, 0}, {"slot", required_argument, 0, 0}, {"set_active", optional_argument, 0, 'a'}, {"set-active", optional_argument, 0, 'a'}, #if !defined(_WIN32) {"wipe-and-use-fbe", no_argument, 0, 0}, #endif {0, 0, 0, 0} }; serial = getenv("ANDROID_SERIAL"); while (1) { int c = getopt_long(argc, argv, "wub:k:n:r:t:s:S:lp:c:i:m:ha::", longopts, &longindex); if (c < 0) { break; } /* Alphabetical cases */ switch (c) { case 'a': wants_set_active = true; if (optarg) next_active = optarg; break; case 'b': base_addr = strtoul(optarg, 0, 16); break; case 'c': cmdline = optarg; break; case 'h': usage(); return 1; case 'i': { char *endptr = nullptr; unsigned long val; val = strtoul(optarg, &endptr, 0); if (!endptr || *endptr != '\0' || (val & ~0xffff)) die("invalid vendor id '%s'", optarg); vendor_id = (unsigned short)val; break; } case 'k': kernel_offset = strtoul(optarg, 0, 16); break; case 'l': long_listing = 1; break; case 'n': page_size = (unsigned)strtoul(optarg, nullptr, 0); if (!page_size) die("invalid page size"); break; case 'p': product = optarg; break; case 'r': ramdisk_offset = strtoul(optarg, 0, 16); break; case 't': tags_offset = strtoul(optarg, 0, 16); break; case 's': serial = optarg; break; case 'S': sparse_limit = parse_num(optarg); if (sparse_limit < 0) { die("invalid sparse limit"); } break; case 'u': erase_first = false; break; case 'w': wants_wipe = true; break; case '?': return 1; case 0: if (strcmp("unbuffered", longopts[longindex].name) == 0) { setvbuf(stdout, nullptr, _IONBF, 0); setvbuf(stderr, nullptr, _IONBF, 0); } else if (strcmp("version", longopts[longindex].name) == 0) { fprintf(stdout, "fastboot version %s\n", FASTBOOT_REVISION); return 0; } else if (strcmp("slot", longopts[longindex].name) == 0) { slot_override = std::string(optarg); #if !defined(_WIN32) } else if (strcmp("wipe-and-use-fbe", longopts[longindex].name) == 0) { wants_wipe = true; set_fbe_marker = true; #endif } else { fprintf(stderr, "Internal error in options processing for %s\n", longopts[longindex].name); return 1; } break; default: abort(); } } argc -= optind; argv += optind; if (argc == 0 && !wants_wipe && !wants_set_active) { usage(); return 1; } if (argc > 0 && !strcmp(*argv, "devices")) { skip(1); list_devices(); return 0; } if (argc > 0 && !strcmp(*argv, "help")) { usage(); return 0; } Transport* transport = open_device(); if (transport == nullptr) { return 1; } if (slot_override != "") slot_override = verify_slot(transport, slot_override.c_str()); if (next_active != "") next_active = verify_slot(transport, next_active.c_str(), false); if (wants_set_active) { if (next_active == "") { if (slot_override == "") { wants_set_active = false; } else { next_active = verify_slot(transport, slot_override.c_str(), false); } } } while (argc > 0) { if (!strcmp(*argv, "getvar")) { require(2); fb_queue_display(argv[1], argv[1]); skip(2); } else if(!strcmp(*argv, "erase")) { require(2); auto erase = [&](const std::string &partition) { std::string partition_type; if (fb_getvar(transport, std::string("partition-type:") + argv[1], &partition_type) && fs_get_generator(partition_type) != nullptr) { fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n", partition_type.c_str()); } fb_queue_erase(partition.c_str()); }; do_for_partitions(transport, argv[1], slot_override.c_str(), erase, true); skip(2); } else if(!strncmp(*argv, "format", strlen("format"))) { char *overrides; char *type_override = nullptr; char *size_override = nullptr; require(2); /* * Parsing for: "format[:[type][:[size]]]" * Some valid things: * - select ontly the size, and leave default fs type: * format::0x4000000 userdata * - default fs type and size: * format userdata * format:: userdata */ overrides = strchr(*argv, ':'); if (overrides) { overrides++; size_override = strchr(overrides, ':'); if (size_override) { size_override[0] = '\0'; size_override++; } type_override = overrides; } if (type_override && !type_override[0]) type_override = nullptr; if (size_override && !size_override[0]) size_override = nullptr; auto format = [&](const std::string &partition) { if (erase_first && needs_erase(transport, partition.c_str())) { fb_queue_erase(partition.c_str()); } fb_perform_format(transport, partition.c_str(), 0, type_override, size_override, ""); }; do_for_partitions(transport, argv[1], slot_override.c_str(), format, true); skip(2); } else if(!strcmp(*argv, "signature")) { require(2); data = load_file(argv[1], &sz); if (data == nullptr) die("could not load '%s': %s", argv[1], strerror(errno)); if (sz != 256) die("signature must be 256 bytes"); fb_queue_download("signature", data, sz); fb_queue_command("signature", "installing signature"); skip(2); } else if(!strcmp(*argv, "reboot")) { wants_reboot = true; skip(1); if (argc > 0) { if (!strcmp(*argv, "bootloader")) { wants_reboot = false; wants_reboot_bootloader = true; skip(1); } } require(0); } else if(!strcmp(*argv, "reboot-bootloader")) { wants_reboot_bootloader = true; skip(1); } else if (!strcmp(*argv, "continue")) { fb_queue_command("continue", "resuming boot"); skip(1); } else if(!strcmp(*argv, "boot")) { char *kname = 0; char *rname = 0; char *sname = 0; skip(1); if (argc > 0) { kname = argv[0]; skip(1); } if (argc > 0) { rname = argv[0]; skip(1); } if (argc > 0) { sname = argv[0]; skip(1); } data = load_bootable_image(kname, rname, sname, &sz, cmdline); if (data == 0) return 1; fb_queue_download("boot.img", data, sz); fb_queue_command("boot", "booting"); } else if(!strcmp(*argv, "flash")) { char *pname = argv[1]; char *fname = 0; require(2); if (argc > 2) { fname = argv[2]; skip(3); } else { fname = find_item(pname, product); skip(2); } if (fname == 0) die("cannot determine image filename for '%s'", pname); auto flash = [&](const std::string &partition) { if (erase_first && needs_erase(transport, partition.c_str())) { fb_queue_erase(partition.c_str()); } do_flash(transport, partition.c_str(), fname); }; do_for_partitions(transport, pname, slot_override.c_str(), flash, true); } else if(!strcmp(*argv, "flash:raw")) { char *kname = argv[2]; char *rname = 0; char *sname = 0; require(3); skip(3); if (argc > 0) { rname = argv[0]; skip(1); } if (argc > 0) { sname = argv[0]; skip(1); } data = load_bootable_image(kname, rname, sname, &sz, cmdline); if (data == 0) die("cannot load bootable image"); auto flashraw = [&](const std::string &partition) { fb_queue_flash(partition.c_str(), data, sz); }; do_for_partitions(transport, argv[1], slot_override.c_str(), flashraw, true); } else if(!strcmp(*argv, "flashall")) { skip(1); do_flashall(transport, slot_override.c_str(), erase_first); wants_reboot = true; } else if(!strcmp(*argv, "update")) { if (argc > 1) { do_update(transport, argv[1], slot_override.c_str(), erase_first); skip(2); } else { do_update(transport, "update.zip", slot_override.c_str(), erase_first); skip(1); } wants_reboot = 1; } else if(!strcmp(*argv, "set_active")) { require(2); std::string slot = verify_slot(transport, argv[1], false); fb_set_active(slot.c_str()); skip(2); } else if(!strcmp(*argv, "oem")) { argc = do_oem_command(argc, argv); } else if(!strcmp(*argv, "flashing")) { if (argc == 2 && (!strcmp(*(argv+1), "unlock") || !strcmp(*(argv+1), "lock") || !strcmp(*(argv+1), "unlock_critical") || !strcmp(*(argv+1), "lock_critical") || !strcmp(*(argv+1), "get_unlock_ability") || !strcmp(*(argv+1), "get_unlock_bootloader_nonce") || !strcmp(*(argv+1), "lock_bootloader"))) { argc = do_oem_command(argc, argv); } else if (argc == 3 && !strcmp(*(argv+1), "unlock_bootloader")) { argc = do_bypass_unlock_command(argc, argv); } else { usage(); return 1; } } else { usage(); return 1; } } if (wants_wipe) { fprintf(stderr, "wiping userdata...\n"); fb_queue_erase("userdata"); if (set_fbe_marker) { fprintf(stderr, "setting FBE marker...\n"); std::string initial_userdata_dir = create_fbemarker_tmpdir(); if (initial_userdata_dir.empty()) { return 1; } fb_perform_format(transport, "userdata", 1, nullptr, nullptr, initial_userdata_dir); delete_fbemarker_tmpdir(initial_userdata_dir); } else { fb_perform_format(transport, "userdata", 1, nullptr, nullptr, ""); } std::string cache_type; if (fb_getvar(transport, "partition-type:cache", &cache_type) && !cache_type.empty()) { fprintf(stderr, "wiping cache...\n"); fb_queue_erase("cache"); fb_perform_format(transport, "cache", 1, nullptr, nullptr, ""); } } if (wants_set_active) { fb_set_active(next_active.c_str()); } if (wants_reboot) { fb_queue_reboot(); fb_queue_wait_for_disconnect(); } else if (wants_reboot_bootloader) { fb_queue_command("reboot-bootloader", "rebooting into bootloader"); fb_queue_wait_for_disconnect(); } return fb_execute_queue(transport) ? EXIT_FAILURE : EXIT_SUCCESS; }