// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: finalizers and block profiling. package runtime import "unsafe" type finblock struct { alllink *finblock next *finblock cnt int32 _ int32 fin [(_FinBlockSize - 2*ptrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer } var finlock mutex // protects the following variables var fing *g // goroutine that runs finalizers var finq *finblock // list of finalizers that are to be executed var finc *finblock // cache of free blocks var finptrmask [_FinBlockSize / ptrSize / 8]byte var fingwait bool var fingwake bool var allfin *finblock // list of all blocks // NOTE: Layout known to queuefinalizer. type finalizer struct { fn *funcval // function to call arg unsafe.Pointer // ptr to object nret uintptr // bytes of return values from fn fint *_type // type of first argument of fn ot *ptrtype // type of ptr to object } var finalizer1 = [...]byte{ // Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here) // Each byte describes 8 words. // Need 8 Finalizers described by 5 bytes before pattern repeats: // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // aka // // ptr ptr INT ptr ptr ptr ptr INT // ptr ptr ptr ptr INT ptr ptr ptr // ptr INT ptr ptr ptr ptr INT ptr // ptr ptr ptr INT ptr ptr ptr ptr // INT ptr ptr ptr ptr INT ptr ptr // // Assumptions about Finalizer layout checked below. 1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7, 1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7, 1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7, 1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7, 0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7, } func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) { lock(&finlock) if finq == nil || finq.cnt == int32(len(finq.fin)) { if finc == nil { // Note: write barrier here, assigning to finc, but should be okay. finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys)) finc.alllink = allfin allfin = finc if finptrmask[0] == 0 { // Build pointer mask for Finalizer array in block. // Check assumptions made in finalizer1 array above. if (unsafe.Sizeof(finalizer{}) != 5*ptrSize || unsafe.Offsetof(finalizer{}.fn) != 0 || unsafe.Offsetof(finalizer{}.arg) != ptrSize || unsafe.Offsetof(finalizer{}.nret) != 2*ptrSize || unsafe.Offsetof(finalizer{}.fint) != 3*ptrSize || unsafe.Offsetof(finalizer{}.ot) != 4*ptrSize) { throw("finalizer out of sync") } for i := range finptrmask { finptrmask[i] = finalizer1[i%len(finalizer1)] } } } block := finc finc = block.next block.next = finq finq = block } f := &finq.fin[finq.cnt] finq.cnt++ f.fn = fn f.nret = nret f.fint = fint f.ot = ot f.arg = p fingwake = true unlock(&finlock) } //go:nowritebarrier func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) { for fb := allfin; fb != nil; fb = fb.alllink { for i := int32(0); i < fb.cnt; i++ { f := &fb.fin[i] callback(f.fn, f.arg, f.nret, f.fint, f.ot) } } } func wakefing() *g { var res *g lock(&finlock) if fingwait && fingwake { fingwait = false fingwake = false res = fing } unlock(&finlock) return res } var ( fingCreate uint32 fingRunning bool ) func createfing() { // start the finalizer goroutine exactly once if fingCreate == 0 && cas(&fingCreate, 0, 1) { go runfinq() } } // This is the goroutine that runs all of the finalizers func runfinq() { var ( frame unsafe.Pointer framecap uintptr ) for { lock(&finlock) fb := finq finq = nil if fb == nil { gp := getg() fing = gp fingwait = true goparkunlock(&finlock, "finalizer wait", traceEvGoBlock, 1) continue } unlock(&finlock) if raceenabled { racefingo() } for fb != nil { for i := fb.cnt; i > 0; i-- { f := (*finalizer)(add(unsafe.Pointer(&fb.fin), uintptr(i-1)*unsafe.Sizeof(finalizer{}))) framesz := unsafe.Sizeof((interface{})(nil)) + uintptr(f.nret) if framecap < framesz { // The frame does not contain pointers interesting for GC, // all not yet finalized objects are stored in finq. // If we do not mark it as FlagNoScan, // the last finalized object is not collected. frame = mallocgc(framesz, nil, flagNoScan) framecap = framesz } if f.fint == nil { throw("missing type in runfinq") } switch f.fint.kind & kindMask { case kindPtr: // direct use of pointer *(*unsafe.Pointer)(frame) = f.arg case kindInterface: ityp := (*interfacetype)(unsafe.Pointer(f.fint)) // set up with empty interface (*eface)(frame)._type = &f.ot.typ (*eface)(frame).data = f.arg if len(ityp.mhdr) != 0 { // convert to interface with methods // this conversion is guaranteed to succeed - we checked in SetFinalizer assertE2I(ityp, *(*interface{})(frame), (*fInterface)(frame)) } default: throw("bad kind in runfinq") } fingRunning = true reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz)) fingRunning = false // drop finalizer queue references to finalized object f.fn = nil f.arg = nil f.ot = nil fb.cnt = i - 1 } next := fb.next lock(&finlock) fb.next = finc finc = fb unlock(&finlock) fb = next } } } // SetFinalizer sets the finalizer associated with x to f. // When the garbage collector finds an unreachable block // with an associated finalizer, it clears the association and runs // f(x) in a separate goroutine. This makes x reachable again, but // now without an associated finalizer. Assuming that SetFinalizer // is not called again, the next time the garbage collector sees // that x is unreachable, it will free x. // // SetFinalizer(x, nil) clears any finalizer associated with x. // // The argument x must be a pointer to an object allocated by // calling new or by taking the address of a composite literal. // The argument f must be a function that takes a single argument // to which x's type can be assigned, and can have arbitrary ignored return // values. If either of these is not true, SetFinalizer aborts the // program. // // Finalizers are run in dependency order: if A points at B, both have // finalizers, and they are otherwise unreachable, only the finalizer // for A runs; once A is freed, the finalizer for B can run. // If a cyclic structure includes a block with a finalizer, that // cycle is not guaranteed to be garbage collected and the finalizer // is not guaranteed to run, because there is no ordering that // respects the dependencies. // // The finalizer for x is scheduled to run at some arbitrary time after // x becomes unreachable. // There is no guarantee that finalizers will run before a program exits, // so typically they are useful only for releasing non-memory resources // associated with an object during a long-running program. // For example, an os.File object could use a finalizer to close the // associated operating system file descriptor when a program discards // an os.File without calling Close, but it would be a mistake // to depend on a finalizer to flush an in-memory I/O buffer such as a // bufio.Writer, because the buffer would not be flushed at program exit. // // It is not guaranteed that a finalizer will run if the size of *x is // zero bytes. // // It is not guaranteed that a finalizer will run for objects allocated // in initializers for package-level variables. Such objects may be // linker-allocated, not heap-allocated. // // A single goroutine runs all finalizers for a program, sequentially. // If a finalizer must run for a long time, it should do so by starting // a new goroutine. func SetFinalizer(obj interface{}, finalizer interface{}) { if debug.sbrk != 0 { // debug.sbrk never frees memory, so no finalizers run // (and we don't have the data structures to record them). return } e := (*eface)(unsafe.Pointer(&obj)) etyp := e._type if etyp == nil { throw("runtime.SetFinalizer: first argument is nil") } if etyp.kind&kindMask != kindPtr { throw("runtime.SetFinalizer: first argument is " + *etyp._string + ", not pointer") } ot := (*ptrtype)(unsafe.Pointer(etyp)) if ot.elem == nil { throw("nil elem type!") } // find the containing object _, base, _ := findObject(e.data) if base == nil { // 0-length objects are okay. if e.data == unsafe.Pointer(&zerobase) { return } // Global initializers might be linker-allocated. // var Foo = &Object{} // func main() { // runtime.SetFinalizer(Foo, nil) // } // The relevant segments are: noptrdata, data, bss, noptrbss. // We cannot assume they are in any order or even contiguous, // due to external linking. for datap := &firstmoduledata; datap != nil; datap = datap.next { if datap.noptrdata <= uintptr(e.data) && uintptr(e.data) < datap.enoptrdata || datap.data <= uintptr(e.data) && uintptr(e.data) < datap.edata || datap.bss <= uintptr(e.data) && uintptr(e.data) < datap.ebss || datap.noptrbss <= uintptr(e.data) && uintptr(e.data) < datap.enoptrbss { return } } throw("runtime.SetFinalizer: pointer not in allocated block") } if e.data != base { // As an implementation detail we allow to set finalizers for an inner byte // of an object if it could come from tiny alloc (see mallocgc for details). if ot.elem == nil || ot.elem.kind&kindNoPointers == 0 || ot.elem.size >= maxTinySize { throw("runtime.SetFinalizer: pointer not at beginning of allocated block") } } f := (*eface)(unsafe.Pointer(&finalizer)) ftyp := f._type if ftyp == nil { // switch to system stack and remove finalizer systemstack(func() { removefinalizer(e.data) }) return } if ftyp.kind&kindMask != kindFunc { throw("runtime.SetFinalizer: second argument is " + *ftyp._string + ", not a function") } ft := (*functype)(unsafe.Pointer(ftyp)) ins := *(*[]*_type)(unsafe.Pointer(&ft.in)) if ft.dotdotdot || len(ins) != 1 { throw("runtime.SetFinalizer: cannot pass " + *etyp._string + " to finalizer " + *ftyp._string) } fint := ins[0] switch { case fint == etyp: // ok - same type goto okarg case fint.kind&kindMask == kindPtr: if (fint.x == nil || fint.x.name == nil || etyp.x == nil || etyp.x.name == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem { // ok - not same type, but both pointers, // one or the other is unnamed, and same element type, so assignable. goto okarg } case fint.kind&kindMask == kindInterface: ityp := (*interfacetype)(unsafe.Pointer(fint)) if len(ityp.mhdr) == 0 { // ok - satisfies empty interface goto okarg } if assertE2I2(ityp, obj, nil) { goto okarg } } throw("runtime.SetFinalizer: cannot pass " + *etyp._string + " to finalizer " + *ftyp._string) okarg: // compute size needed for return parameters nret := uintptr(0) for _, t := range *(*[]*_type)(unsafe.Pointer(&ft.out)) { nret = round(nret, uintptr(t.align)) + uintptr(t.size) } nret = round(nret, ptrSize) // make sure we have a finalizer goroutine createfing() systemstack(func() { if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) { throw("runtime.SetFinalizer: finalizer already set") } }) } // Look up pointer v in heap. Return the span containing the object, // the start of the object, and the size of the object. If the object // does not exist, return nil, nil, 0. func findObject(v unsafe.Pointer) (s *mspan, x unsafe.Pointer, n uintptr) { c := gomcache() c.local_nlookup++ if ptrSize == 4 && c.local_nlookup >= 1<<30 { // purge cache stats to prevent overflow lock(&mheap_.lock) purgecachedstats(c) unlock(&mheap_.lock) } // find span arena_start := uintptr(unsafe.Pointer(mheap_.arena_start)) arena_used := uintptr(unsafe.Pointer(mheap_.arena_used)) if uintptr(v) < arena_start || uintptr(v) >= arena_used { return } p := uintptr(v) >> pageShift q := p - arena_start>>pageShift s = *(**mspan)(add(unsafe.Pointer(mheap_.spans), q*ptrSize)) if s == nil { return } x = unsafe.Pointer(uintptr(s.start) << pageShift) if uintptr(v) < uintptr(x) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != mSpanInUse { s = nil x = nil return } n = uintptr(s.elemsize) if s.sizeclass != 0 { x = add(x, (uintptr(v)-uintptr(x))/n*n) } return }