// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build ppc64 ppc64le

#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"

TEXT runtime·rt0_go(SB),NOSPLIT,$0
	// R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer

	// initialize essential registers
	BL	runtime·reginit(SB)

	SUB	$24, R1
	MOVW	R3, 8(R1) // argc
	MOVD	R4, 16(R1) // argv

	// create istack out of the given (operating system) stack.
	// _cgo_init may update stackguard.
	MOVD	$runtime·g0(SB), g
	MOVD	$(-64*1024), R31
	ADD	R31, R1, R3
	MOVD	R3, g_stackguard0(g)
	MOVD	R3, g_stackguard1(g)
	MOVD	R3, (g_stack+stack_lo)(g)
	MOVD	R1, (g_stack+stack_hi)(g)

	// if there is a _cgo_init, call it using the gcc ABI.
	MOVD	_cgo_init(SB), R12
	CMP	R0, R12
	BEQ	nocgo
	MOVD	R12, CTR		// r12 = "global function entry point"
	MOVD	R13, R5			// arg 2: TLS base pointer
	MOVD	$setg_gcc<>(SB), R4 	// arg 1: setg
	MOVD	g, R3			// arg 0: G
	// C functions expect 32 bytes of space on caller stack frame
	// and a 16-byte aligned R1
	MOVD	R1, R14			// save current stack
	SUB	$32, R1			// reserve 32 bytes
	RLDCR	$0, R1, $~15, R1	// 16-byte align
	BL	(CTR)			// may clobber R0, R3-R12
	MOVD	R14, R1			// restore stack
	XOR	R0, R0			// fix R0

nocgo:
	// update stackguard after _cgo_init
	MOVD	(g_stack+stack_lo)(g), R3
	ADD	$const__StackGuard, R3
	MOVD	R3, g_stackguard0(g)
	MOVD	R3, g_stackguard1(g)

	// set the per-goroutine and per-mach "registers"
	MOVD	$runtime·m0(SB), R3

	// save m->g0 = g0
	MOVD	g, m_g0(R3)
	// save m0 to g0->m
	MOVD	R3, g_m(g)

	BL	runtime·check(SB)

	// args are already prepared
	BL	runtime·args(SB)
	BL	runtime·osinit(SB)
	BL	runtime·schedinit(SB)

	// create a new goroutine to start program
	MOVD	$runtime·mainPC(SB), R3		// entry
	MOVDU	R3, -8(R1)
	MOVDU	R0, -8(R1)
	MOVDU	R0, -8(R1)
	BL	runtime·newproc(SB)
	ADD	$24, R1

	// start this M
	BL	runtime·mstart(SB)

	MOVD	R0, 1(R0)
	RET

DATA	runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL	runtime·mainPC(SB),RODATA,$8

TEXT runtime·breakpoint(SB),NOSPLIT,$-8-0
	MOVD	R0, 2(R0) // TODO: TD
	RET

TEXT runtime·asminit(SB),NOSPLIT,$-8-0
	RET

TEXT _cgo_reginit(SB),NOSPLIT,$-8-0
	// crosscall_ppc64 and crosscall2 need to reginit, but can't
	// get at the 'runtime.reginit' symbol.
	BR	runtime·reginit(SB)

TEXT runtime·reginit(SB),NOSPLIT,$-8-0
	// set R0 to zero, it's expected by the toolchain
	XOR R0, R0
	// initialize essential FP registers
	FMOVD	$4503601774854144.0, F27
	FMOVD	$0.5, F29
	FSUB	F29, F29, F28
	FADD	F29, F29, F30
	FADD	F30, F30, F31
	RET

/*
 *  go-routine
 */

// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $-8-8
	MOVD	buf+0(FP), R3
	MOVD	R1, gobuf_sp(R3)
	MOVD	LR, R31
	MOVD	R31, gobuf_pc(R3)
	MOVD	g, gobuf_g(R3)
	MOVD	R0, gobuf_lr(R3)
	MOVD	R0, gobuf_ret(R3)
	MOVD	R0, gobuf_ctxt(R3)
	RET

// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $-8-8
	MOVD	buf+0(FP), R5
	MOVD	gobuf_g(R5), g	// make sure g is not nil
	BL	runtime·save_g(SB)

	MOVD	0(g), R4
	MOVD	gobuf_sp(R5), R1
	MOVD	gobuf_lr(R5), R31
	MOVD	R31, LR
	MOVD	gobuf_ret(R5), R3
	MOVD	gobuf_ctxt(R5), R11
	MOVD	R0, gobuf_sp(R5)
	MOVD	R0, gobuf_ret(R5)
	MOVD	R0, gobuf_lr(R5)
	MOVD	R0, gobuf_ctxt(R5)
	CMP	R0, R0 // set condition codes for == test, needed by stack split
	MOVD	gobuf_pc(R5), R31
	MOVD	R31, CTR
	BR	(CTR)

// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return.  It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $-8-8
	// Save caller state in g->sched
	MOVD	R1, (g_sched+gobuf_sp)(g)
	MOVD	LR, R31
	MOVD	R31, (g_sched+gobuf_pc)(g)
	MOVD	R0, (g_sched+gobuf_lr)(g)
	MOVD	g, (g_sched+gobuf_g)(g)

	// Switch to m->g0 & its stack, call fn.
	MOVD	g, R3
	MOVD	g_m(g), R8
	MOVD	m_g0(R8), g
	BL	runtime·save_g(SB)
	CMP	g, R3
	BNE	2(PC)
	BR	runtime·badmcall(SB)
	MOVD	fn+0(FP), R11			// context
	MOVD	0(R11), R4			// code pointer
	MOVD	R4, CTR
	MOVD	(g_sched+gobuf_sp)(g), R1	// sp = m->g0->sched.sp
	MOVDU	R3, -8(R1)
	MOVDU	R0, -8(R1)
	BL	(CTR)
	BR	runtime·badmcall2(SB)

// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack.  We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
	UNDEF
	BL	(LR)	// make sure this function is not leaf
	RET

// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
	MOVD	fn+0(FP), R3	// R3 = fn
	MOVD	R3, R11		// context
	MOVD	g_m(g), R4	// R4 = m

	MOVD	m_gsignal(R4), R5	// R5 = gsignal
	CMP	g, R5
	BEQ	noswitch

	MOVD	m_g0(R4), R5	// R5 = g0
	CMP	g, R5
	BEQ	noswitch

	MOVD	m_curg(R4), R6
	CMP	g, R6
	BEQ	switch

	// Bad: g is not gsignal, not g0, not curg. What is it?
	// Hide call from linker nosplit analysis.
	MOVD	$runtime·badsystemstack(SB), R3
	MOVD	R3, CTR
	BL	(CTR)

switch:
	// save our state in g->sched.  Pretend to
	// be systemstack_switch if the G stack is scanned.
	MOVD	$runtime·systemstack_switch(SB), R6
	ADD	$8, R6	// get past prologue
	MOVD	R6, (g_sched+gobuf_pc)(g)
	MOVD	R1, (g_sched+gobuf_sp)(g)
	MOVD	R0, (g_sched+gobuf_lr)(g)
	MOVD	g, (g_sched+gobuf_g)(g)

	// switch to g0
	MOVD	R5, g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R3
	// make it look like mstart called systemstack on g0, to stop traceback
	SUB	$8, R3
	MOVD	$runtime·mstart(SB), R4
	MOVD	R4, 0(R3)
	MOVD	R3, R1

	// call target function
	MOVD	0(R11), R3	// code pointer
	MOVD	R3, CTR
	BL	(CTR)

	// switch back to g
	MOVD	g_m(g), R3
	MOVD	m_curg(R3), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R1
	MOVD	R0, (g_sched+gobuf_sp)(g)
	RET

noswitch:
	// already on m stack, just call directly
	MOVD	0(R11), R3	// code pointer
	MOVD	R3, CTR
	BL	(CTR)
	RET

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$-8-0
	// Cannot grow scheduler stack (m->g0).
	MOVD	g_m(g), R7
	MOVD	m_g0(R7), R8
	CMP	g, R8
	BNE	2(PC)
	BL	runtime·abort(SB)

	// Cannot grow signal stack (m->gsignal).
	MOVD	m_gsignal(R7), R8
	CMP	g, R8
	BNE	2(PC)
	BL	runtime·abort(SB)

	// Called from f.
	// Set g->sched to context in f.
	MOVD	R11, (g_sched+gobuf_ctxt)(g)
	MOVD	R1, (g_sched+gobuf_sp)(g)
	MOVD	LR, R8
	MOVD	R8, (g_sched+gobuf_pc)(g)
	MOVD	R5, (g_sched+gobuf_lr)(g)

	// Called from f.
	// Set m->morebuf to f's caller.
	MOVD	R5, (m_morebuf+gobuf_pc)(R7)	// f's caller's PC
	MOVD	R1, (m_morebuf+gobuf_sp)(R7)	// f's caller's SP
	MOVD	g, (m_morebuf+gobuf_g)(R7)

	// Call newstack on m->g0's stack.
	MOVD	m_g0(R7), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R1
	BL	runtime·newstack(SB)

	// Not reached, but make sure the return PC from the call to newstack
	// is still in this function, and not the beginning of the next.
	UNDEF

TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-8-0
	MOVD	R0, R11
	BR	runtime·morestack(SB)

TEXT runtime·stackBarrier(SB),NOSPLIT,$0
	// We came here via a RET to an overwritten LR.
	// R3 may be live. Other registers are available.

	// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
	MOVD	(g_stkbar+slice_array)(g), R4
	MOVD	g_stkbarPos(g), R5
	MOVD	$stkbar__size, R6
	MULLD	R5, R6
	ADD	R4, R6
	MOVD	stkbar_savedLRVal(R6), R6
	// Record that this stack barrier was hit.
	ADD	$1, R5
	MOVD	R5, g_stkbarPos(g)
	// Jump to the original return PC.
	MOVD	R6, CTR
	BR	(CTR)

// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!

#define DISPATCH(NAME,MAXSIZE)		\
	MOVD	$MAXSIZE, R31;		\
	CMP	R3, R31;		\
	BGT	4(PC);			\
	MOVD	$NAME(SB), R31;	\
	MOVD	R31, CTR;		\
	BR	(CTR)
// Note: can't just "BR NAME(SB)" - bad inlining results.

TEXT reflect·call(SB), NOSPLIT, $0-0
	BR	·reflectcall(SB)

TEXT ·reflectcall(SB), NOSPLIT, $-8-32
	MOVWZ argsize+24(FP), R3
	// NOTE(rsc): No call16, because CALLFN needs four words
	// of argument space to invoke callwritebarrier.
	DISPATCH(runtime·call32, 32)
	DISPATCH(runtime·call64, 64)
	DISPATCH(runtime·call128, 128)
	DISPATCH(runtime·call256, 256)
	DISPATCH(runtime·call512, 512)
	DISPATCH(runtime·call1024, 1024)
	DISPATCH(runtime·call2048, 2048)
	DISPATCH(runtime·call4096, 4096)
	DISPATCH(runtime·call8192, 8192)
	DISPATCH(runtime·call16384, 16384)
	DISPATCH(runtime·call32768, 32768)
	DISPATCH(runtime·call65536, 65536)
	DISPATCH(runtime·call131072, 131072)
	DISPATCH(runtime·call262144, 262144)
	DISPATCH(runtime·call524288, 524288)
	DISPATCH(runtime·call1048576, 1048576)
	DISPATCH(runtime·call2097152, 2097152)
	DISPATCH(runtime·call4194304, 4194304)
	DISPATCH(runtime·call8388608, 8388608)
	DISPATCH(runtime·call16777216, 16777216)
	DISPATCH(runtime·call33554432, 33554432)
	DISPATCH(runtime·call67108864, 67108864)
	DISPATCH(runtime·call134217728, 134217728)
	DISPATCH(runtime·call268435456, 268435456)
	DISPATCH(runtime·call536870912, 536870912)
	DISPATCH(runtime·call1073741824, 1073741824)
	MOVD	$runtime·badreflectcall(SB), R31
	MOVD	R31, CTR
	BR	(CTR)

#define CALLFN(NAME,MAXSIZE)			\
TEXT NAME(SB), WRAPPER, $MAXSIZE-24;		\
	NO_LOCAL_POINTERS;			\
	/* copy arguments to stack */		\
	MOVD	arg+16(FP), R3;			\
	MOVWZ	argsize+24(FP), R4;			\
	MOVD	R1, R5;				\
	ADD	$(8-1), R5;			\
	SUB	$1, R3;				\
	ADD	R5, R4;				\
	CMP	R5, R4;				\
	BEQ	4(PC);				\
	MOVBZU	1(R3), R6;			\
	MOVBZU	R6, 1(R5);			\
	BR	-4(PC);				\
	/* call function */			\
	MOVD	f+8(FP), R11;			\
	MOVD	(R11), R31;			\
	MOVD	R31, CTR;			\
	PCDATA  $PCDATA_StackMapIndex, $0;	\
	BL	(CTR);				\
	/* copy return values back */		\
	MOVD	arg+16(FP), R3;			\
	MOVWZ	n+24(FP), R4;			\
	MOVWZ	retoffset+28(FP), R6;		\
	MOVD	R1, R5;				\
	ADD	R6, R5; 			\
	ADD	R6, R3;				\
	SUB	R6, R4;				\
	ADD	$(8-1), R5;			\
	SUB	$1, R3;				\
	ADD	R5, R4;				\
loop:						\
	CMP	R5, R4;				\
	BEQ	end;				\
	MOVBZU	1(R5), R6;			\
	MOVBZU	R6, 1(R3);			\
	BR	loop;				\
end:						\
	/* execute write barrier updates */	\
	MOVD	argtype+0(FP), R7;		\
	MOVD	arg+16(FP), R3;			\
	MOVWZ	n+24(FP), R4;			\
	MOVWZ	retoffset+28(FP), R6;		\
	MOVD	R7, 8(R1);			\
	MOVD	R3, 16(R1);			\
	MOVD	R4, 24(R1);			\
	MOVD	R6, 32(R1);			\
	BL	runtime·callwritebarrier(SB);	\
	RET

CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)

// bool cas(uint32 *ptr, uint32 old, uint32 new)
// Atomically:
//	if(*val == old){
//		*val = new;
//		return 1;
//	} else
//		return 0;
TEXT runtime·cas(SB), NOSPLIT, $0-17
	MOVD	ptr+0(FP), R3
	MOVWZ	old+8(FP), R4
	MOVWZ	new+12(FP), R5
cas_again:
	SYNC
	LWAR	(R3), R6
	CMPW	R6, R4
	BNE	cas_fail
	STWCCC	R5, (R3)
	BNE	cas_again
	MOVD	$1, R3
	SYNC
	ISYNC
	MOVB	R3, ret+16(FP)
	RET
cas_fail:
	MOVD	$0, R3
	BR	-5(PC)

// bool	runtime·cas64(uint64 *ptr, uint64 old, uint64 new)
// Atomically:
//	if(*val == *old){
//		*val = new;
//		return 1;
//	} else {
//		return 0;
//	}
TEXT runtime·cas64(SB), NOSPLIT, $0-25
	MOVD	ptr+0(FP), R3
	MOVD	old+8(FP), R4
	MOVD	new+16(FP), R5
cas64_again:
	SYNC
	LDAR	(R3), R6
	CMP	R6, R4
	BNE	cas64_fail
	STDCCC	R5, (R3)
	BNE	cas64_again
	MOVD	$1, R3
	SYNC
	ISYNC
	MOVB	R3, ret+24(FP)
	RET
cas64_fail:
	MOVD	$0, R3
	BR	-5(PC)

TEXT runtime·casuintptr(SB), NOSPLIT, $0-25
	BR	runtime·cas64(SB)

TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $-8-16
	BR	runtime·atomicload64(SB)

TEXT runtime·atomicloaduint(SB), NOSPLIT, $-8-16
	BR	runtime·atomicload64(SB)

TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-16
	BR	runtime·atomicstore64(SB)

// bool casp(void **val, void *old, void *new)
// Atomically:
//	if(*val == old){
//		*val = new;
//		return 1;
//	} else
//		return 0;
TEXT runtime·casp1(SB), NOSPLIT, $0-25
	BR runtime·cas64(SB)

// uint32 xadd(uint32 volatile *ptr, int32 delta)
// Atomically:
//	*val += delta;
//	return *val;
TEXT runtime·xadd(SB), NOSPLIT, $0-20
	MOVD	ptr+0(FP), R4
	MOVW	delta+8(FP), R5
	SYNC
	LWAR	(R4), R3
	ADD	R5, R3
	STWCCC	R3, (R4)
	BNE	-4(PC)
	SYNC
	ISYNC
	MOVW	R3, ret+16(FP)
	RET

TEXT runtime·xadd64(SB), NOSPLIT, $0-24
	MOVD	ptr+0(FP), R4
	MOVD	delta+8(FP), R5
	SYNC
	LDAR	(R4), R3
	ADD	R5, R3
	STDCCC	R3, (R4)
	BNE	-4(PC)
	SYNC
	ISYNC
	MOVD	R3, ret+16(FP)
	RET

TEXT runtime·xchg(SB), NOSPLIT, $0-20
	MOVD	ptr+0(FP), R4
	MOVW	new+8(FP), R5
	SYNC
	LWAR	(R4), R3
	STWCCC	R5, (R4)
	BNE	-3(PC)
	SYNC
	ISYNC
	MOVW	R3, ret+16(FP)
	RET

TEXT runtime·xchg64(SB), NOSPLIT, $0-24
	MOVD	ptr+0(FP), R4
	MOVD	new+8(FP), R5
	SYNC
	LDAR	(R4), R3
	STDCCC	R5, (R4)
	BNE	-3(PC)
	SYNC
	ISYNC
	MOVD	R3, ret+16(FP)
	RET

TEXT runtime·xchgp1(SB), NOSPLIT, $0-24
	BR	runtime·xchg64(SB)

TEXT runtime·xchguintptr(SB), NOSPLIT, $0-24
	BR	runtime·xchg64(SB)

TEXT runtime·procyield(SB),NOSPLIT,$0-0
	RET

TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-16
	BR	runtime·atomicstore64(SB)

TEXT runtime·atomicstore(SB), NOSPLIT, $0-12
	MOVD	ptr+0(FP), R3
	MOVW	val+8(FP), R4
	SYNC
	MOVW	R4, 0(R3)
	RET

TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16
	MOVD	ptr+0(FP), R3
	MOVD	val+8(FP), R4
	SYNC
	MOVD	R4, 0(R3)
	RET

// void	runtime·atomicor8(byte volatile*, byte);
TEXT runtime·atomicor8(SB), NOSPLIT, $0-9
	MOVD	ptr+0(FP), R3
	MOVBZ	val+8(FP), R4
	// Align ptr down to 4 bytes so we can use 32-bit load/store.
	// R5 = (R3 << 0) & ~3
	RLDCR	$0, R3, $~3, R5
	// Compute val shift.
#ifdef GOARCH_ppc64
	// Big endian.  ptr = ptr ^ 3
	XOR	$3, R3
#endif
	// R6 = ((ptr & 3) * 8) = (ptr << 3) & (3*8)
	RLDC	$3, R3, $(3*8), R6
	// Shift val for aligned ptr.  R4 = val << R6
	SLD	R6, R4, R4

again:
	SYNC
	LWAR	(R5), R6
	OR	R4, R6
	STWCCC	R6, (R5)
	BNE	again
	SYNC
	ISYNC
	RET

// void	runtime·atomicand8(byte volatile*, byte);
TEXT runtime·atomicand8(SB), NOSPLIT, $0-9
	MOVD	ptr+0(FP), R3
	MOVBZ	val+8(FP), R4
	// Align ptr down to 4 bytes so we can use 32-bit load/store.
	// R5 = (R3 << 0) & ~3
	RLDCR	$0, R3, $~3, R5
	// Compute val shift.
#ifdef GOARCH_ppc64
	// Big endian.  ptr = ptr ^ 3
	XOR	$3, R3
#endif
	// R6 = ((ptr & 3) * 8) = (ptr << 3) & (3*8)
	RLDC	$3, R3, $(3*8), R6
	// Shift val for aligned ptr.  R4 = val << R6 | ^(0xFF << R6)
	MOVD	$0xFF, R7
	SLD	R6, R4
	SLD	R6, R7
	XOR $-1, R7
	OR	R7, R4
again:
	SYNC
	LWAR	(R5), R6
	AND	R4, R6
	STWCCC	R6, (R5)
	BNE	again
	SYNC
	ISYNC
	RET

// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 4 bytes to get back to BL deferreturn
// 3. BR to fn
TEXT runtime·jmpdefer(SB), NOSPLIT, $-8-16
	MOVD	0(R1), R31
	SUB	$4, R31
	MOVD	R31, LR

	MOVD	fv+0(FP), R11
	MOVD	argp+8(FP), R1
	SUB	$8, R1
	MOVD	0(R11), R3
	MOVD	R3, CTR
	BR	(CTR)

// Save state of caller into g->sched. Smashes R31.
TEXT gosave<>(SB),NOSPLIT,$-8
	MOVD	LR, R31
	MOVD	R31, (g_sched+gobuf_pc)(g)
	MOVD	R1, (g_sched+gobuf_sp)(g)
	MOVD	R0, (g_sched+gobuf_lr)(g)
	MOVD	R0, (g_sched+gobuf_ret)(g)
	MOVD	R0, (g_sched+gobuf_ctxt)(g)
	RET

// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
	MOVD	fn+0(FP), R3
	MOVD	arg+8(FP), R4

	MOVD	R1, R2		// save original stack pointer
	MOVD	g, R5

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already.
	MOVD	g_m(g), R6
	MOVD	m_g0(R6), R6
	CMP	R6, g
	BEQ	g0
	BL	gosave<>(SB)
	MOVD	R6, g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R1

	// Now on a scheduling stack (a pthread-created stack).
g0:
	// Save room for two of our pointers, plus 32 bytes of callee
	// save area that lives on the caller stack.
	SUB	$48, R1
	RLDCR	$0, R1, $~15, R1	// 16-byte alignment for gcc ABI
	MOVD	R5, 40(R1)	// save old g on stack
	MOVD	(g_stack+stack_hi)(R5), R5
	SUB	R2, R5
	MOVD	R5, 32(R1)	// save depth in old g stack (can't just save SP, as stack might be copied during a callback)
	MOVD	R0, 0(R1)	// clear back chain pointer (TODO can we give it real back trace information?)
	// This is a "global call", so put the global entry point in r12
	MOVD	R3, R12
	MOVD	R12, CTR
	MOVD	R4, R3		// arg in r3
	BL	(CTR)

	// C code can clobber R0, so set it back to 0.  F27-F31 are
	// callee save, so we don't need to recover those.
	XOR	R0, R0
	// Restore g, stack pointer.  R3 is errno, so don't touch it
	MOVD	40(R1), g
	BL	runtime·save_g(SB)
	MOVD	(g_stack+stack_hi)(g), R5
	MOVD	32(R1), R6
	SUB	R6, R5
	MOVD	R5, R1

	MOVW	R3, ret+16(FP)
	RET

// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$24-24
	MOVD	$fn+0(FP), R3
	MOVD	R3, 8(R1)
	MOVD	frame+8(FP), R3
	MOVD	R3, 16(R1)
	MOVD	framesize+16(FP), R3
	MOVD	R3, 24(R1)
	MOVD	$runtime·cgocallback_gofunc(SB), R3
	MOVD	R3, CTR
	BL	(CTR)
	RET

// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-24
	NO_LOCAL_POINTERS

	// Load m and g from thread-local storage.
	MOVB	runtime·iscgo(SB), R3
	CMP	R3, $0
	BEQ	nocgo
	BL	runtime·load_g(SB)
nocgo:

	// If g is nil, Go did not create the current thread.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call.
	CMP	g, $0
	BNE	havem
	MOVD	g, savedm-8(SP) // g is zero, so is m.
	MOVD	$runtime·needm(SB), R3
	MOVD	R3, CTR
	BL	(CTR)

	// Set m->sched.sp = SP, so that if a panic happens
	// during the function we are about to execute, it will
	// have a valid SP to run on the g0 stack.
	// The next few lines (after the havem label)
	// will save this SP onto the stack and then write
	// the same SP back to m->sched.sp. That seems redundant,
	// but if an unrecovered panic happens, unwindm will
	// restore the g->sched.sp from the stack location
	// and then systemstack will try to use it. If we don't set it here,
	// that restored SP will be uninitialized (typically 0) and
	// will not be usable.
	MOVD	g_m(g), R3
	MOVD	m_g0(R3), R3
	MOVD	R1, (g_sched+gobuf_sp)(R3)

havem:
	MOVD	g_m(g), R8
	MOVD	R8, savedm-8(SP)
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
	MOVD	m_g0(R8), R3
	MOVD	(g_sched+gobuf_sp)(R3), R4
	MOVD	R4, savedsp-16(SP)
	MOVD	R1, (g_sched+gobuf_sp)(R3)

	// Switch to m->curg stack and call runtime.cgocallbackg.
	// Because we are taking over the execution of m->curg
	// but *not* resuming what had been running, we need to
	// save that information (m->curg->sched) so we can restore it.
	// We can restore m->curg->sched.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->sched.pc, we push it onto the stack.
	// This has the added benefit that it looks to the traceback
	// routine like cgocallbackg is going to return to that
	// PC (because the frame we allocate below has the same
	// size as cgocallback_gofunc's frame declared above)
	// so that the traceback will seamlessly trace back into
	// the earlier calls.
	//
	// In the new goroutine, -16(SP) and -8(SP) are unused.
	MOVD	m_curg(R8), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R4 // prepare stack as R4
	MOVD	(g_sched+gobuf_pc)(g), R5
	MOVD	R5, -24(R4)
	MOVD	$-24(R4), R1
	BL	runtime·cgocallbackg(SB)

	// Restore g->sched (== m->curg->sched) from saved values.
	MOVD	0(R1), R5
	MOVD	R5, (g_sched+gobuf_pc)(g)
	MOVD	$24(R1), R4
	MOVD	R4, (g_sched+gobuf_sp)(g)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOVD	g_m(g), R8
	MOVD	m_g0(R8), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R1
	MOVD	savedsp-16(SP), R4
	MOVD	R4, (g_sched+gobuf_sp)(g)

	// If the m on entry was nil, we called needm above to borrow an m
	// for the duration of the call. Since the call is over, return it with dropm.
	MOVD	savedm-8(SP), R6
	CMP	R6, $0
	BNE	droppedm
	MOVD	$runtime·dropm(SB), R3
	MOVD	R3, CTR
	BL	(CTR)
droppedm:

	// Done!
	RET

// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
	MOVD	gg+0(FP), g
	// This only happens if iscgo, so jump straight to save_g
	BL	runtime·save_g(SB)
	RET

// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT,$-8-0
	// The standard prologue clobbers R31, which is callee-save in
	// the C ABI, so we have to use $-8-0 and save LR ourselves.
	MOVD	LR, R4
	// Also save g and R31, since they're callee-save in C ABI
	MOVD	R31, R5
	MOVD	g, R6

	MOVD	R3, g
	BL	runtime·save_g(SB)

	MOVD	R6, g
	MOVD	R5, R31
	MOVD	R4, LR
	RET

TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
	MOVD	16(R1), R3		// LR saved by caller
	MOVD	runtime·stackBarrierPC(SB), R4
	CMP	R3, R4
	BNE	nobar
	// Get original return PC.
	BL	runtime·nextBarrierPC(SB)
	MOVD	8(R1), R3
nobar:
	MOVD	R3, ret+8(FP)
	RET

TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
	MOVD	pc+8(FP), R3
	MOVD	16(R1), R4
	MOVD	runtime·stackBarrierPC(SB), R5
	CMP	R4, R5
	BEQ	setbar
	MOVD	R3, 16(R1)		// set LR in caller
	RET
setbar:
	// Set the stack barrier return PC.
	MOVD	R3, 8(R1)
	BL	runtime·setNextBarrierPC(SB)
	RET

TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
	MOVD	argp+0(FP), R3
	SUB	$8, R3
	MOVD	R3, ret+8(FP)
	RET

TEXT runtime·abort(SB),NOSPLIT,$-8-0
	MOVW	(R0), R0
	UNDEF

#define	TBRL	268
#define	TBRU	269		/* Time base Upper/Lower */

// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
	MOVW	SPR(TBRU), R4
	MOVW	SPR(TBRL), R3
	MOVW	SPR(TBRU), R5
	CMPW	R4, R5
	BNE	-4(PC)
	SLD	$32, R5
	OR	R5, R3
	MOVD	R3, ret+0(FP)
	RET

// memhash_varlen(p unsafe.Pointer, h seed) uintptr
// redirects to memhash(p, h, size) using the size
// stored in the closure.
TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24
	GO_ARGS
	NO_LOCAL_POINTERS
	MOVD	p+0(FP), R3
	MOVD	h+8(FP), R4
	MOVD	8(R11), R5
	MOVD	R3, 8(R1)
	MOVD	R4, 16(R1)
	MOVD	R5, 24(R1)
	BL	runtime·memhash(SB)
	MOVD	32(R1), R3
	MOVD	R3, ret+16(FP)
	RET

// AES hashing not implemented for ppc64
TEXT runtime·aeshash(SB),NOSPLIT,$-8-0
	MOVW	(R0), R1
TEXT runtime·aeshash32(SB),NOSPLIT,$-8-0
	MOVW	(R0), R1
TEXT runtime·aeshash64(SB),NOSPLIT,$-8-0
	MOVW	(R0), R1
TEXT runtime·aeshashstr(SB),NOSPLIT,$-8-0
	MOVW	(R0), R1

TEXT runtime·memeq(SB),NOSPLIT,$-8-25
	MOVD	a+0(FP), R3
	MOVD	b+8(FP), R4
	MOVD	size+16(FP), R5
	SUB	$1, R3
	SUB	$1, R4
	ADD	R3, R5, R8
loop:
	CMP	R3, R8
	BNE	test
	MOVD	$1, R3
	MOVB	R3, ret+24(FP)
	RET
test:
	MOVBZU	1(R3), R6
	MOVBZU	1(R4), R7
	CMP	R6, R7
	BEQ	loop

	MOVB	R0, ret+24(FP)
	RET

// memequal_varlen(a, b unsafe.Pointer) bool
TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17
	MOVD	a+0(FP), R3
	MOVD	b+8(FP), R4
	CMP	R3, R4
	BEQ	eq
	MOVD	8(R11), R5    // compiler stores size at offset 8 in the closure
	MOVD	R3, 8(R1)
	MOVD	R4, 16(R1)
	MOVD	R5, 24(R1)
	BL	runtime·memeq(SB)
	MOVBZ	32(R1), R3
	MOVB	R3, ret+16(FP)
	RET
eq:
	MOVD	$1, R3
	MOVB	R3, ret+16(FP)
	RET

// eqstring tests whether two strings are equal.
// The compiler guarantees that strings passed
// to eqstring have equal length.
// See runtime_test.go:eqstring_generic for
// equivalent Go code.
TEXT runtime·eqstring(SB),NOSPLIT,$0-33
	MOVD	s1str+0(FP), R3
	MOVD	s2str+16(FP), R4
	MOVD	$1, R5
	MOVB	R5, ret+32(FP)
	CMP	R3, R4
	BNE	2(PC)
	RET
	MOVD	s1len+8(FP), R5
	SUB	$1, R3
	SUB	$1, R4
	ADD	R3, R5, R8
loop:
	CMP	R3, R8
	BNE	2(PC)
	RET
	MOVBZU	1(R3), R6
	MOVBZU	1(R4), R7
	CMP	R6, R7
	BEQ	loop
	MOVB	R0, ret+32(FP)
	RET

// TODO: share code with memeq?
TEXT bytes·Equal(SB),NOSPLIT,$0-49
	MOVD	a_len+8(FP), R3
	MOVD	b_len+32(FP), R4

	CMP	R3, R4		// unequal lengths are not equal
	BNE	noteq

	MOVD	a+0(FP), R5
	MOVD	b+24(FP), R6
	SUB	$1, R5
	SUB	$1, R6
	ADD	R5, R3		// end-1

loop:
	CMP	R5, R3
	BEQ	equal		// reached the end
	MOVBZU	1(R5), R4
	MOVBZU	1(R6), R7
	CMP	R4, R7
	BEQ	loop

noteq:
	MOVBZ	R0, ret+48(FP)
	RET

equal:
	MOVD	$1, R3
	MOVBZ	R3, ret+48(FP)
	RET

TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
	MOVD	s+0(FP), R3
	MOVD	s_len+8(FP), R4
	MOVBZ	c+24(FP), R5	// byte to find
	MOVD	R3, R6		// store base for later
	SUB	$1, R3
	ADD	R3, R4		// end-1

loop:
	CMP	R3, R4
	BEQ	notfound
	MOVBZU	1(R3), R7
	CMP	R7, R5
	BNE	loop

	SUB	R6, R3		// remove base
	MOVD	R3, ret+32(FP)
	RET

notfound:
	MOVD	$-1, R3
	MOVD	R3, ret+32(FP)
	RET

TEXT strings·IndexByte(SB),NOSPLIT,$0-32
	MOVD	p+0(FP), R3
	MOVD	b_len+8(FP), R4
	MOVBZ	c+16(FP), R5	// byte to find
	MOVD	R3, R6		// store base for later
	SUB	$1, R3
	ADD	R3, R4		// end-1

loop:
	CMP	R3, R4
	BEQ	notfound
	MOVBZU	1(R3), R7
	CMP	R7, R5
	BNE	loop

	SUB	R6, R3		// remove base
	MOVD	R3, ret+24(FP)
	RET

notfound:
	MOVD	$-1, R3
	MOVD	R3, ret+24(FP)
	RET

TEXT runtime·fastrand1(SB), NOSPLIT, $0-4
	MOVD	g_m(g), R4
	MOVWZ	m_fastrand(R4), R3
	ADD	R3, R3
	CMPW	R3, $0
	BGE	2(PC)
	XOR	$0x88888eef, R3
	MOVW	R3, m_fastrand(R4)
	MOVW	R3, ret+0(FP)
	RET

TEXT runtime·return0(SB), NOSPLIT, $0
	MOVW	$0, R3
	RET

// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$-8
	// g (R30) and R31 are callee-save in the C ABI, so save them
	MOVD	g, R4
	MOVD	R31, R5
	MOVD	LR, R6

	BL	runtime·load_g(SB)	// clobbers g (R30), R31
	MOVD	g_m(g), R3
	MOVD	m_curg(R3), R3
	MOVD	(g_stack+stack_hi)(R3), R3

	MOVD	R4, g
	MOVD	R5, R31
	MOVD	R6, LR
	RET

// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT,$-8-0
	MOVD	R0, R0	// NOP
	BL	runtime·goexit1(SB)	// does not return
	// traceback from goexit1 must hit code range of goexit
	MOVD	R0, R0	// NOP

TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
	RET

TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
	RET

TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
	RET

TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
	RET