// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as // defined in FIPS 186-3. // // This implementation derives the nonce from an AES-CTR CSPRNG keyed by // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by // a result of Coron; the AES-CTR stream is IRO under standard assumptions. package ecdsa // References: // [NSA]: Suite B implementer's guide to FIPS 186-3, // http://www.nsa.gov/ia/_files/ecdsa.pdf // [SECG]: SECG, SEC1 // http://www.secg.org/sec1-v2.pdf import ( "crypto" "crypto/aes" "crypto/cipher" "crypto/elliptic" "crypto/sha512" "encoding/asn1" "io" "math/big" ) const ( aesIV = "IV for ECDSA CTR" ) // PublicKey represents an ECDSA public key. type PublicKey struct { elliptic.Curve X, Y *big.Int } // PrivateKey represents a ECDSA private key. type PrivateKey struct { PublicKey D *big.Int } type ecdsaSignature struct { R, S *big.Int } // Public returns the public key corresponding to priv. func (priv *PrivateKey) Public() crypto.PublicKey { return &priv.PublicKey } // Sign signs msg with priv, reading randomness from rand. This method is // intended to support keys where the private part is kept in, for example, a // hardware module. Common uses should use the Sign function in this package // directly. func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { r, s, err := Sign(rand, priv, msg) if err != nil { return nil, err } return asn1.Marshal(ecdsaSignature{r, s}) } var one = new(big.Int).SetInt64(1) // randFieldElement returns a random element of the field underlying the given // curve using the procedure given in [NSA] A.2.1. func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { params := c.Params() b := make([]byte, params.BitSize/8+8) _, err = io.ReadFull(rand, b) if err != nil { return } k = new(big.Int).SetBytes(b) n := new(big.Int).Sub(params.N, one) k.Mod(k, n) k.Add(k, one) return } // GenerateKey generates a public and private key pair. func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) { k, err := randFieldElement(c, rand) if err != nil { return } priv = new(PrivateKey) priv.PublicKey.Curve = c priv.D = k priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) return } // hashToInt converts a hash value to an integer. There is some disagreement // about how this is done. [NSA] suggests that this is done in the obvious // manner, but [SECG] truncates the hash to the bit-length of the curve order // first. We follow [SECG] because that's what OpenSSL does. Additionally, // OpenSSL right shifts excess bits from the number if the hash is too large // and we mirror that too. func hashToInt(hash []byte, c elliptic.Curve) *big.Int { orderBits := c.Params().N.BitLen() orderBytes := (orderBits + 7) / 8 if len(hash) > orderBytes { hash = hash[:orderBytes] } ret := new(big.Int).SetBytes(hash) excess := len(hash)*8 - orderBits if excess > 0 { ret.Rsh(ret, uint(excess)) } return ret } // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. // This has better constant-time properties than Euclid's method (implemented // in math/big.Int.ModInverse) although math/big itself isn't strictly // constant-time so it's not perfect. func fermatInverse(k, N *big.Int) *big.Int { two := big.NewInt(2) nMinus2 := new(big.Int).Sub(N, two) return new(big.Int).Exp(k, nMinus2, N) } // Sign signs an arbitrary length hash (which should be the result of hashing a // larger message) using the private key, priv. It returns the signature as a // pair of integers. The security of the private key depends on the entropy of // rand. func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { // Get max(log2(q) / 2, 256) bits of entropy from rand. entropylen := (priv.Curve.Params().BitSize + 7) / 16 if entropylen > 32 { entropylen = 32 } entropy := make([]byte, entropylen) _, err = io.ReadFull(rand, entropy) if err != nil { return } // Initialize an SHA-512 hash context; digest ... md := sha512.New() md.Write(priv.D.Bytes()) // the private key, md.Write(entropy) // the entropy, md.Write(hash) // and the input hash; key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), // which is an indifferentiable MAC. // Create an AES-CTR instance to use as a CSPRNG. block, err := aes.NewCipher(key) if err != nil { return nil, nil, err } // Create a CSPRNG that xors a stream of zeros with // the output of the AES-CTR instance. csprng := cipher.StreamReader{ R: zeroReader, S: cipher.NewCTR(block, []byte(aesIV)), } // See [NSA] 3.4.1 c := priv.PublicKey.Curve N := c.Params().N var k, kInv *big.Int for { for { k, err = randFieldElement(c, csprng) if err != nil { r = nil return } kInv = fermatInverse(k, N) r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) r.Mod(r, N) if r.Sign() != 0 { break } } e := hashToInt(hash, c) s = new(big.Int).Mul(priv.D, r) s.Add(s, e) s.Mul(s, kInv) s.Mod(s, N) if s.Sign() != 0 { break } } return } // Verify verifies the signature in r, s of hash using the public key, pub. Its // return value records whether the signature is valid. func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { // See [NSA] 3.4.2 c := pub.Curve N := c.Params().N if r.Sign() == 0 || s.Sign() == 0 { return false } if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { return false } e := hashToInt(hash, c) w := new(big.Int).ModInverse(s, N) u1 := e.Mul(e, w) u1.Mod(u1, N) u2 := w.Mul(r, w) u2.Mod(u2, N) x1, y1 := c.ScalarBaseMult(u1.Bytes()) x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) x, y := c.Add(x1, y1, x2, y2) if x.Sign() == 0 && y.Sign() == 0 { return false } x.Mod(x, N) return x.Cmp(r) == 0 } type zr struct { io.Reader } // Read replaces the contents of dst with zeros. func (z *zr) Read(dst []byte) (n int, err error) { for i := range dst { dst[i] = 0 } return len(dst), nil } var zeroReader = &zr{}