// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ppc64 import ( "cmd/compile/internal/gc" "cmd/internal/obj" "cmd/internal/obj/ppc64" "fmt" ) func defframe(ptxt *obj.Prog) { var n *gc.Node // fill in argument size, stack size ptxt.To.Type = obj.TYPE_TEXTSIZE ptxt.To.Val = int32(gc.Rnd(gc.Curfn.Type.Argwid, int64(gc.Widthptr))) frame := uint32(gc.Rnd(gc.Stksize+gc.Maxarg, int64(gc.Widthreg))) ptxt.To.Offset = int64(frame) // insert code to zero ambiguously live variables // so that the garbage collector only sees initialized values // when it looks for pointers. p := ptxt hi := int64(0) lo := hi // iterate through declarations - they are sorted in decreasing xoffset order. for l := gc.Curfn.Func.Dcl; l != nil; l = l.Next { n = l.N if !n.Name.Needzero { continue } if n.Class != gc.PAUTO { gc.Fatal("needzero class %d", n.Class) } if n.Type.Width%int64(gc.Widthptr) != 0 || n.Xoffset%int64(gc.Widthptr) != 0 || n.Type.Width == 0 { gc.Fatal("var %v has size %d offset %d", gc.Nconv(n, obj.FmtLong), int(n.Type.Width), int(n.Xoffset)) } if lo != hi && n.Xoffset+n.Type.Width >= lo-int64(2*gc.Widthreg) { // merge with range we already have lo = n.Xoffset continue } // zero old range p = zerorange(p, int64(frame), lo, hi) // set new range hi = n.Xoffset + n.Type.Width lo = n.Xoffset } // zero final range zerorange(p, int64(frame), lo, hi) } func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog { cnt := hi - lo if cnt == 0 { return p } if cnt < int64(4*gc.Widthptr) { for i := int64(0); i < cnt; i += int64(gc.Widthptr) { p = appendpp(p, ppc64.AMOVD, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGSP, 8+frame+lo+i) } // TODO(dfc): https://golang.org/issue/12108 // If DUFFZERO is used inside a tail call (see genwrapper) it will // overwrite the link register. } else if false && cnt <= int64(128*gc.Widthptr) { p = appendpp(p, ppc64.AADD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, ppc64.REGRT1, 0) p.Reg = ppc64.REGSP p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0) f := gc.Sysfunc("duffzero") gc.Naddr(&p.To, f) gc.Afunclit(&p.To, f) p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr)) } else { p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, ppc64.REGTMP, 0) p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT1, 0) p.Reg = ppc64.REGSP p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, ppc64.REGTMP, 0) p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT2, 0) p.Reg = ppc64.REGRT1 p = appendpp(p, ppc64.AMOVDU, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGRT1, int64(gc.Widthptr)) p1 := p p = appendpp(p, ppc64.ACMP, obj.TYPE_REG, ppc64.REGRT1, 0, obj.TYPE_REG, ppc64.REGRT2, 0) p = appendpp(p, ppc64.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0) gc.Patch(p, p1) } return p } func appendpp(p *obj.Prog, as int, ftype int, freg int, foffset int64, ttype int, treg int, toffset int64) *obj.Prog { q := gc.Ctxt.NewProg() gc.Clearp(q) q.As = int16(as) q.Lineno = p.Lineno q.From.Type = int16(ftype) q.From.Reg = int16(freg) q.From.Offset = foffset q.To.Type = int16(ttype) q.To.Reg = int16(treg) q.To.Offset = toffset q.Link = p.Link p.Link = q return q } func ginsnop() { var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], ppc64.REG_R0) gins(ppc64.AOR, ®, ®) } var panicdiv *gc.Node /* * generate division. * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will generate undefined result. // Also need to explicitly trap on division on zero, // the hardware will silently generate undefined result. // DIVW will leave unpredicable result in higher 32-bit, // so always use DIVD/DIVDU. t := nl.Type t0 := t check := 0 if gc.Issigned[t.Etype] { check = 1 if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) { check = 0 } else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 { check = 0 } } if t.Width < 8 { if gc.Issigned[t.Etype] { t = gc.Types[gc.TINT64] } else { t = gc.Types[gc.TUINT64] } check = 0 } a := optoas(gc.ODIV, t) var tl gc.Node gc.Regalloc(&tl, t0, nil) var tr gc.Node gc.Regalloc(&tr, t0, nil) if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &tl) gc.Cgen(nr, &tr) } else { gc.Cgen(nr, &tr) gc.Cgen(nl, &tl) } if t != t0 { // Convert tl2 := tl tr2 := tr tl.Type = t tr.Type = t gmove(&tl2, &tl) gmove(&tr2, &tr) } // Handle divide-by-zero panic. p1 := gins(optoas(gc.OCMP, t), &tr, nil) p1.To.Type = obj.TYPE_REG p1.To.Reg = ppc64.REGZERO p1 = gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) var p2 *obj.Prog if check != 0 { var nm1 gc.Node gc.Nodconst(&nm1, t, -1) gins(optoas(gc.OCMP, t), &tr, &nm1) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, &tl) gmove(&tl, res) } else { // a % (-1) is 0. var nz gc.Node gc.Nodconst(&nz, t, 0) gmove(&nz, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } p1 = gins(a, &tr, &tl) if op == gc.ODIV { gc.Regfree(&tr) gmove(&tl, res) } else { // A%B = A-(A/B*B) var tm gc.Node gc.Regalloc(&tm, t, nil) // patch div to use the 3 register form // TODO(minux): add gins3? p1.Reg = p1.To.Reg p1.To.Reg = tm.Reg gins(optoas(gc.OMUL, t), &tr, &tm) gc.Regfree(&tr) gins(optoas(gc.OSUB, t), &tm, &tl) gc.Regfree(&tm) gmove(&tl, res) } gc.Regfree(&tl) if check != 0 { gc.Patch(p2, gc.Pc) } } /* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { // largest ullman on left. if nl.Ullman < nr.Ullman { tmp := (*gc.Node)(nl) nl = nr nr = tmp } t := (*gc.Type)(nl.Type) w := int(int(t.Width * 8)) var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16, gc.TINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := (*obj.Prog)(gins(ppc64.ASRAD, nil, &n1)) p.From.Type = obj.TYPE_CONST p.From.Offset = int64(w) case gc.TUINT8, gc.TUINT16, gc.TUINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := (*obj.Prog)(gins(ppc64.ASRD, nil, &n1)) p.From.Type = obj.TYPE_CONST p.From.Offset = int64(w) case gc.TINT64, gc.TUINT64: if gc.Issigned[t.Etype] { gins(ppc64.AMULHD, &n2, &n1) } else { gins(ppc64.AMULHDU, &n2, &n1) } default: gc.Fatal("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) } /* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { a := int(optoas(op, nl.Type)) if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(nr.Int()) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 var n3 gc.Node gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n1) gins(a, &n3, &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nl.Ullman >= gc.UINF { var n4 gc.Node gc.Tempname(&n4, nl.Type) gc.Cgen(nl, &n4) nl = &n4 } if nr.Ullman >= gc.UINF { var n5 gc.Node gc.Tempname(&n5, nr.Type) gc.Cgen(nr, &n5) nr = &n5 } // Allow either uint32 or uint64 as shift type, // to avoid unnecessary conversion from uint32 to uint64 // just to do the comparison. tcount := gc.Types[gc.Simtype[nr.Type.Etype]] if tcount.Etype < gc.TUINT32 { tcount = gc.Types[gc.TUINT32] } var n1 gc.Node gc.Regalloc(&n1, nr.Type, nil) // to hold the shift type in CX var n3 gc.Node gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX var n2 gc.Node gc.Regalloc(&n2, nl.Type, res) if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) gmove(&n1, &n3) } else { gc.Cgen(nr, &n1) gmove(&n1, &n3) gc.Cgen(nl, &n2) } gc.Regfree(&n3) // test and fix up large shifts if !bounded { gc.Nodconst(&n3, tcount, nl.Type.Width*8) gins(optoas(gc.OCMP, tcount), &n1, &n3) p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, tcount), nil, +1)) if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n2) } else { gc.Nodconst(&n3, nl.Type, 0) gmove(&n3, &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) } func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { fmt.Printf("clearfat %v (%v, size: %d)\n", nl, nl.Type, nl.Type.Width) } w := uint64(uint64(nl.Type.Width)) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := uint64(w % 8) // bytes q := uint64(w / 8) // dwords if gc.Reginuse(ppc64.REGRT1) { gc.Fatal("%v in use during clearfat", obj.Rconv(ppc64.REGRT1)) } var r0 gc.Node gc.Nodreg(&r0, gc.Types[gc.TUINT64], ppc64.REGZERO) var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], ppc64.REGRT1) gc.Regrealloc(&dst) gc.Agen(nl, &dst) var boff uint64 if q > 128 { p := gins(ppc64.ASUB, nil, &dst) p.From.Type = obj.TYPE_CONST p.From.Offset = 8 var end gc.Node gc.Regalloc(&end, gc.Types[gc.Tptr], nil) p = gins(ppc64.AMOVD, &dst, &end) p.From.Type = obj.TYPE_ADDR p.From.Offset = int64(q * 8) p = gins(ppc64.AMOVDU, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 8 pl := (*obj.Prog)(p) p = gins(ppc64.ACMP, &dst, &end) gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), pl) gc.Regfree(&end) // The loop leaves R3 on the last zeroed dword boff = 8 // TODO(dfc): https://golang.org/issue/12108 // If DUFFZERO is used inside a tail call (see genwrapper) it will // overwrite the link register. } else if false && q >= 4 { p := gins(ppc64.ASUB, nil, &dst) p.From.Type = obj.TYPE_CONST p.From.Offset = 8 f := (*gc.Node)(gc.Sysfunc("duffzero")) p = gins(obj.ADUFFZERO, nil, f) gc.Afunclit(&p.To, f) // 4 and 128 = magic constants: see ../../runtime/asm_ppc64x.s p.To.Offset = int64(4 * (128 - q)) // duffzero leaves R3 on the last zeroed dword boff = 8 } else { var p *obj.Prog for t := uint64(0); t < q; t++ { p = gins(ppc64.AMOVD, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(8 * t) } boff = 8 * q } var p *obj.Prog for t := uint64(0); t < c; t++ { p = gins(ppc64.AMOVB, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(t + boff) } gc.Regfree(&dst) } // Called after regopt and peep have run. // Expand CHECKNIL pseudo-op into actual nil pointer check. func expandchecks(firstp *obj.Prog) { var p1 *obj.Prog var p2 *obj.Prog for p := (*obj.Prog)(firstp); p != nil; p = p.Link { if gc.Debug_checknil != 0 && gc.Ctxt.Debugvlog != 0 { fmt.Printf("expandchecks: %v\n", p) } if p.As != obj.ACHECKNIL { continue } if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers gc.Warnl(int(p.Lineno), "generated nil check") } if p.From.Type != obj.TYPE_REG { gc.Fatal("invalid nil check %v\n", p) } /* // check is // TD $4, R0, arg (R0 is always zero) // eqv. to: // tdeq r0, arg // NOTE: this needs special runtime support to make SIGTRAP recoverable. reg = p->from.reg; p->as = ATD; p->from = p->to = p->from3 = zprog.from; p->from.type = TYPE_CONST; p->from.offset = 4; p->from.reg = 0; p->reg = REGZERO; p->to.type = TYPE_REG; p->to.reg = reg; */ // check is // CMP arg, R0 // BNE 2(PC) [likely] // MOVD R0, 0(R0) p1 = gc.Ctxt.NewProg() p2 = gc.Ctxt.NewProg() gc.Clearp(p1) gc.Clearp(p2) p1.Link = p2 p2.Link = p.Link p.Link = p1 p1.Lineno = p.Lineno p2.Lineno = p.Lineno p1.Pc = 9999 p2.Pc = 9999 p.As = ppc64.ACMP p.To.Type = obj.TYPE_REG p.To.Reg = ppc64.REGZERO p1.As = ppc64.ABNE //p1->from.type = TYPE_CONST; //p1->from.offset = 1; // likely p1.To.Type = obj.TYPE_BRANCH p1.To.Val = p2.Link // crash by write to memory address 0. p2.As = ppc64.AMOVD p2.From.Type = obj.TYPE_REG p2.From.Reg = ppc64.REGZERO p2.To.Type = obj.TYPE_MEM p2.To.Reg = ppc64.REGZERO p2.To.Offset = 0 } } // res = runtime.getg() func getg(res *gc.Node) { var n1 gc.Node gc.Nodreg(&n1, res.Type, ppc64.REGG) gmove(&n1, res) }